michael@0: // Copyright 2010 the V8 project authors. All rights reserved. michael@0: // Redistribution and use in source and binary forms, with or without michael@0: // modification, are permitted provided that the following conditions are michael@0: // met: michael@0: // michael@0: // * Redistributions of source code must retain the above copyright michael@0: // notice, this list of conditions and the following disclaimer. michael@0: // * Redistributions in binary form must reproduce the above michael@0: // copyright notice, this list of conditions and the following michael@0: // disclaimer in the documentation and/or other materials provided michael@0: // with the distribution. michael@0: // * Neither the name of Google Inc. nor the names of its michael@0: // contributors may be used to endorse or promote products derived michael@0: // from this software without specific prior written permission. michael@0: // michael@0: // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS michael@0: // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT michael@0: // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR michael@0: // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT michael@0: // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, michael@0: // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT michael@0: // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, michael@0: // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY michael@0: // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT michael@0: // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE michael@0: // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. michael@0: michael@0: #ifndef DOUBLE_CONVERSION_DIY_FP_H_ michael@0: #define DOUBLE_CONVERSION_DIY_FP_H_ michael@0: michael@0: #include "utils.h" michael@0: michael@0: namespace double_conversion { michael@0: michael@0: // This "Do It Yourself Floating Point" class implements a floating-point number michael@0: // with a uint64 significand and an int exponent. Normalized DiyFp numbers will michael@0: // have the most significant bit of the significand set. michael@0: // Multiplication and Subtraction do not normalize their results. michael@0: // DiyFp are not designed to contain special doubles (NaN and Infinity). michael@0: class DiyFp { michael@0: public: michael@0: static const int kSignificandSize = 64; michael@0: michael@0: DiyFp() : f_(0), e_(0) {} michael@0: DiyFp(uint64_t f, int e) : f_(f), e_(e) {} michael@0: michael@0: // this = this - other. michael@0: // The exponents of both numbers must be the same and the significand of this michael@0: // must be bigger than the significand of other. michael@0: // The result will not be normalized. michael@0: void Subtract(const DiyFp& other) { michael@0: ASSERT(e_ == other.e_); michael@0: ASSERT(f_ >= other.f_); michael@0: f_ -= other.f_; michael@0: } michael@0: michael@0: // Returns a - b. michael@0: // The exponents of both numbers must be the same and this must be bigger michael@0: // than other. The result will not be normalized. michael@0: static DiyFp Minus(const DiyFp& a, const DiyFp& b) { michael@0: DiyFp result = a; michael@0: result.Subtract(b); michael@0: return result; michael@0: } michael@0: michael@0: michael@0: // this = this * other. michael@0: void Multiply(const DiyFp& other); michael@0: michael@0: // returns a * b; michael@0: static DiyFp Times(const DiyFp& a, const DiyFp& b) { michael@0: DiyFp result = a; michael@0: result.Multiply(b); michael@0: return result; michael@0: } michael@0: michael@0: void Normalize() { michael@0: ASSERT(f_ != 0); michael@0: uint64_t f = f_; michael@0: int e = e_; michael@0: michael@0: // This method is mainly called for normalizing boundaries. In general michael@0: // boundaries need to be shifted by 10 bits. We thus optimize for this case. michael@0: const uint64_t k10MSBits = UINT64_2PART_C(0xFFC00000, 00000000); michael@0: while ((f & k10MSBits) == 0) { michael@0: f <<= 10; michael@0: e -= 10; michael@0: } michael@0: while ((f & kUint64MSB) == 0) { michael@0: f <<= 1; michael@0: e--; michael@0: } michael@0: f_ = f; michael@0: e_ = e; michael@0: } michael@0: michael@0: static DiyFp Normalize(const DiyFp& a) { michael@0: DiyFp result = a; michael@0: result.Normalize(); michael@0: return result; michael@0: } michael@0: michael@0: uint64_t f() const { return f_; } michael@0: int e() const { return e_; } michael@0: michael@0: void set_f(uint64_t new_value) { f_ = new_value; } michael@0: void set_e(int new_value) { e_ = new_value; } michael@0: michael@0: private: michael@0: static const uint64_t kUint64MSB = UINT64_2PART_C(0x80000000, 00000000); michael@0: michael@0: uint64_t f_; michael@0: int e_; michael@0: }; michael@0: michael@0: } // namespace double_conversion michael@0: michael@0: #endif // DOUBLE_CONVERSION_DIY_FP_H_