michael@0: /*- michael@0: * Copyright 2005,2007,2009 Colin Percival michael@0: * All rights reserved. michael@0: * michael@0: * Redistribution and use in source and binary forms, with or without michael@0: * modification, are permitted provided that the following conditions michael@0: * are met: michael@0: * 1. Redistributions of source code must retain the above copyright michael@0: * notice, this list of conditions and the following disclaimer. michael@0: * 2. Redistributions in binary form must reproduce the above copyright michael@0: * notice, this list of conditions and the following disclaimer in the michael@0: * documentation and/or other materials provided with the distribution. michael@0: * michael@0: * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND michael@0: * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE michael@0: * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE michael@0: * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE michael@0: * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL michael@0: * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS michael@0: * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) michael@0: * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT michael@0: * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY michael@0: * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF michael@0: * SUCH DAMAGE. michael@0: */ michael@0: #include michael@0: michael@0: #include michael@0: #include michael@0: michael@0: #include michael@0: michael@0: #include "pbkdf2_sha256.h" michael@0: michael@0: static inline uint32_t michael@0: be32dec(const void *pp) michael@0: { michael@0: const uint8_t *p = (uint8_t const *)pp; michael@0: michael@0: return ((uint32_t)(p[3]) + michael@0: ((uint32_t)(p[2]) << 8) + michael@0: ((uint32_t)(p[1]) << 16) + michael@0: ((uint32_t)(p[0]) << 24)); michael@0: } michael@0: michael@0: static inline void michael@0: be32enc(void *pp, uint32_t x) michael@0: { michael@0: uint8_t * p = (uint8_t *)pp; michael@0: michael@0: p[3] = x & 0xff; michael@0: p[2] = (x >> 8) & 0xff; michael@0: p[1] = (x >> 16) & 0xff; michael@0: p[0] = (x >> 24) & 0xff; michael@0: } michael@0: michael@0: /* michael@0: * Encode a length len/4 vector of (uint32_t) into a length len vector of michael@0: * (unsigned char) in big-endian form. Assumes len is a multiple of 4. michael@0: */ michael@0: static void michael@0: be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) michael@0: { michael@0: size_t i; michael@0: michael@0: for (i = 0; i < len / 4; i++) michael@0: be32enc(dst + i * 4, src[i]); michael@0: } michael@0: michael@0: /* michael@0: * Decode a big-endian length len vector of (unsigned char) into a length michael@0: * len/4 vector of (uint32_t). Assumes len is a multiple of 4. michael@0: */ michael@0: static void michael@0: be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) michael@0: { michael@0: size_t i; michael@0: michael@0: for (i = 0; i < len / 4; i++) michael@0: dst[i] = be32dec(src + i * 4); michael@0: } michael@0: michael@0: /* Elementary functions used by SHA256 */ michael@0: #define Ch(x, y, z) ((x & (y ^ z)) ^ z) michael@0: #define Maj(x, y, z) ((x & (y | z)) | (y & z)) michael@0: #define SHR(x, n) (x >> n) michael@0: #define ROTR(x, n) ((x >> n) | (x << (32 - n))) michael@0: #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) michael@0: #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) michael@0: #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) michael@0: #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) michael@0: michael@0: /* SHA256 round function */ michael@0: #define RND(a, b, c, d, e, f, g, h, k) \ michael@0: t0 = h + S1(e) + Ch(e, f, g) + k; \ michael@0: t1 = S0(a) + Maj(a, b, c); \ michael@0: d += t0; \ michael@0: h = t0 + t1; michael@0: michael@0: /* Adjusted round function for rotating state */ michael@0: #define RNDr(S, W, i, k) \ michael@0: RND(S[(64 - i) % 8], S[(65 - i) % 8], \ michael@0: S[(66 - i) % 8], S[(67 - i) % 8], \ michael@0: S[(68 - i) % 8], S[(69 - i) % 8], \ michael@0: S[(70 - i) % 8], S[(71 - i) % 8], \ michael@0: W[i] + k) michael@0: michael@0: /* michael@0: * SHA256 block compression function. The 256-bit state is transformed via michael@0: * the 512-bit input block to produce a new state. michael@0: */ michael@0: static void michael@0: SHA256_Transform(uint32_t * state, const unsigned char block[64]) michael@0: { michael@0: uint32_t W[64]; michael@0: uint32_t S[8]; michael@0: uint32_t t0, t1; michael@0: int i; michael@0: michael@0: /* 1. Prepare message schedule W. */ michael@0: be32dec_vect(W, block, 64); michael@0: for (i = 16; i < 64; i++) michael@0: W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; michael@0: michael@0: /* 2. Initialize working variables. */ michael@0: memcpy(S, state, 32); michael@0: michael@0: /* 3. Mix. */ michael@0: RNDr(S, W, 0, 0x428a2f98); michael@0: RNDr(S, W, 1, 0x71374491); michael@0: RNDr(S, W, 2, 0xb5c0fbcf); michael@0: RNDr(S, W, 3, 0xe9b5dba5); michael@0: RNDr(S, W, 4, 0x3956c25b); michael@0: RNDr(S, W, 5, 0x59f111f1); michael@0: RNDr(S, W, 6, 0x923f82a4); michael@0: RNDr(S, W, 7, 0xab1c5ed5); michael@0: RNDr(S, W, 8, 0xd807aa98); michael@0: RNDr(S, W, 9, 0x12835b01); michael@0: RNDr(S, W, 10, 0x243185be); michael@0: RNDr(S, W, 11, 0x550c7dc3); michael@0: RNDr(S, W, 12, 0x72be5d74); michael@0: RNDr(S, W, 13, 0x80deb1fe); michael@0: RNDr(S, W, 14, 0x9bdc06a7); michael@0: RNDr(S, W, 15, 0xc19bf174); michael@0: RNDr(S, W, 16, 0xe49b69c1); michael@0: RNDr(S, W, 17, 0xefbe4786); michael@0: RNDr(S, W, 18, 0x0fc19dc6); michael@0: RNDr(S, W, 19, 0x240ca1cc); michael@0: RNDr(S, W, 20, 0x2de92c6f); michael@0: RNDr(S, W, 21, 0x4a7484aa); michael@0: RNDr(S, W, 22, 0x5cb0a9dc); michael@0: RNDr(S, W, 23, 0x76f988da); michael@0: RNDr(S, W, 24, 0x983e5152); michael@0: RNDr(S, W, 25, 0xa831c66d); michael@0: RNDr(S, W, 26, 0xb00327c8); michael@0: RNDr(S, W, 27, 0xbf597fc7); michael@0: RNDr(S, W, 28, 0xc6e00bf3); michael@0: RNDr(S, W, 29, 0xd5a79147); michael@0: RNDr(S, W, 30, 0x06ca6351); michael@0: RNDr(S, W, 31, 0x14292967); michael@0: RNDr(S, W, 32, 0x27b70a85); michael@0: RNDr(S, W, 33, 0x2e1b2138); michael@0: RNDr(S, W, 34, 0x4d2c6dfc); michael@0: RNDr(S, W, 35, 0x53380d13); michael@0: RNDr(S, W, 36, 0x650a7354); michael@0: RNDr(S, W, 37, 0x766a0abb); michael@0: RNDr(S, W, 38, 0x81c2c92e); michael@0: RNDr(S, W, 39, 0x92722c85); michael@0: RNDr(S, W, 40, 0xa2bfe8a1); michael@0: RNDr(S, W, 41, 0xa81a664b); michael@0: RNDr(S, W, 42, 0xc24b8b70); michael@0: RNDr(S, W, 43, 0xc76c51a3); michael@0: RNDr(S, W, 44, 0xd192e819); michael@0: RNDr(S, W, 45, 0xd6990624); michael@0: RNDr(S, W, 46, 0xf40e3585); michael@0: RNDr(S, W, 47, 0x106aa070); michael@0: RNDr(S, W, 48, 0x19a4c116); michael@0: RNDr(S, W, 49, 0x1e376c08); michael@0: RNDr(S, W, 50, 0x2748774c); michael@0: RNDr(S, W, 51, 0x34b0bcb5); michael@0: RNDr(S, W, 52, 0x391c0cb3); michael@0: RNDr(S, W, 53, 0x4ed8aa4a); michael@0: RNDr(S, W, 54, 0x5b9cca4f); michael@0: RNDr(S, W, 55, 0x682e6ff3); michael@0: RNDr(S, W, 56, 0x748f82ee); michael@0: RNDr(S, W, 57, 0x78a5636f); michael@0: RNDr(S, W, 58, 0x84c87814); michael@0: RNDr(S, W, 59, 0x8cc70208); michael@0: RNDr(S, W, 60, 0x90befffa); michael@0: RNDr(S, W, 61, 0xa4506ceb); michael@0: RNDr(S, W, 62, 0xbef9a3f7); michael@0: RNDr(S, W, 63, 0xc67178f2); michael@0: michael@0: /* 4. Mix local working variables into global state. */ michael@0: for (i = 0; i < 8; i++) michael@0: state[i] += S[i]; michael@0: michael@0: /* Clean the stack. */ michael@0: memset(W, 0, 256); michael@0: memset(S, 0, 32); michael@0: t0 = t1 = 0; michael@0: } michael@0: michael@0: static unsigned char PAD[64] = { michael@0: 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, michael@0: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, michael@0: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, michael@0: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 michael@0: }; michael@0: michael@0: /* Add padding and terminating bit-count. */ michael@0: static void michael@0: SHA256_Pad(SHA256_CTX * ctx) michael@0: { michael@0: unsigned char len[8]; michael@0: uint32_t r, plen; michael@0: michael@0: /* michael@0: * Convert length to a vector of bytes -- we do this now rather michael@0: * than later because the length will change after we pad. michael@0: */ michael@0: be32enc_vect(len, ctx->count, 8); michael@0: michael@0: /* Add 1--64 bytes so that the resulting length is 56 mod 64. */ michael@0: r = (ctx->count[1] >> 3) & 0x3f; michael@0: plen = (r < 56) ? (56 - r) : (120 - r); michael@0: SHA256_Update(ctx, PAD, (size_t)plen); michael@0: michael@0: /* Add the terminating bit-count. */ michael@0: SHA256_Update(ctx, len, 8); michael@0: } michael@0: michael@0: /* SHA-256 initialization. Begins a SHA-256 operation. */ michael@0: void michael@0: SHA256_Init(SHA256_CTX * ctx) michael@0: { michael@0: michael@0: /* Zero bits processed so far. */ michael@0: ctx->count[0] = ctx->count[1] = 0; michael@0: michael@0: /* Magic initialization constants. */ michael@0: ctx->state[0] = 0x6A09E667; michael@0: ctx->state[1] = 0xBB67AE85; michael@0: ctx->state[2] = 0x3C6EF372; michael@0: ctx->state[3] = 0xA54FF53A; michael@0: ctx->state[4] = 0x510E527F; michael@0: ctx->state[5] = 0x9B05688C; michael@0: ctx->state[6] = 0x1F83D9AB; michael@0: ctx->state[7] = 0x5BE0CD19; michael@0: } michael@0: michael@0: /* Add bytes into the hash. */ michael@0: void michael@0: SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) michael@0: { michael@0: uint32_t bitlen[2]; michael@0: uint32_t r; michael@0: const unsigned char *src = in; michael@0: michael@0: /* Number of bytes left in the buffer from previous updates. */ michael@0: r = (ctx->count[1] >> 3) & 0x3f; michael@0: michael@0: /* Convert the length into a number of bits. */ michael@0: bitlen[1] = ((uint32_t)len) << 3; michael@0: bitlen[0] = (uint32_t)(len >> 29); michael@0: michael@0: /* Update number of bits. */ michael@0: if ((ctx->count[1] += bitlen[1]) < bitlen[1]) michael@0: ctx->count[0]++; michael@0: ctx->count[0] += bitlen[0]; michael@0: michael@0: /* Handle the case where we don't need to perform any transforms. */ michael@0: if (len < 64 - r) { michael@0: memcpy(&ctx->buf[r], src, len); michael@0: return; michael@0: } michael@0: michael@0: /* Finish the current block. */ michael@0: memcpy(&ctx->buf[r], src, 64 - r); michael@0: SHA256_Transform(ctx->state, ctx->buf); michael@0: src += 64 - r; michael@0: len -= 64 - r; michael@0: michael@0: /* Perform complete blocks. */ michael@0: while (len >= 64) { michael@0: SHA256_Transform(ctx->state, src); michael@0: src += 64; michael@0: len -= 64; michael@0: } michael@0: michael@0: /* Copy left over data into buffer. */ michael@0: memcpy(ctx->buf, src, len); michael@0: } michael@0: michael@0: /* michael@0: * SHA-256 finalization. Pads the input data, exports the hash value, michael@0: * and clears the context state. michael@0: */ michael@0: void michael@0: SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) michael@0: { michael@0: michael@0: /* Add padding. */ michael@0: SHA256_Pad(ctx); michael@0: michael@0: /* Write the hash. */ michael@0: be32enc_vect(digest, ctx->state, 32); michael@0: michael@0: /* Clear the context state. */ michael@0: memset((void *)ctx, 0, sizeof(*ctx)); michael@0: } michael@0: michael@0: /* Initialize an HMAC-SHA256 operation with the given key. */ michael@0: void michael@0: HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen) michael@0: { michael@0: unsigned char pad[64]; michael@0: unsigned char khash[32]; michael@0: const unsigned char * K = _K; michael@0: size_t i; michael@0: michael@0: /* If Klen > 64, the key is really SHA256(K). */ michael@0: if (Klen > 64) { michael@0: SHA256_Init(&ctx->ictx); michael@0: SHA256_Update(&ctx->ictx, K, Klen); michael@0: SHA256_Final(khash, &ctx->ictx); michael@0: K = khash; michael@0: Klen = 32; michael@0: } michael@0: michael@0: /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ michael@0: SHA256_Init(&ctx->ictx); michael@0: memset(pad, 0x36, 64); michael@0: for (i = 0; i < Klen; i++) michael@0: pad[i] ^= K[i]; michael@0: SHA256_Update(&ctx->ictx, pad, 64); michael@0: michael@0: /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ michael@0: SHA256_Init(&ctx->octx); michael@0: memset(pad, 0x5c, 64); michael@0: for (i = 0; i < Klen; i++) michael@0: pad[i] ^= K[i]; michael@0: SHA256_Update(&ctx->octx, pad, 64); michael@0: michael@0: /* Clean the stack. */ michael@0: memset(khash, 0, 32); michael@0: } michael@0: michael@0: /* Add bytes to the HMAC-SHA256 operation. */ michael@0: void michael@0: HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len) michael@0: { michael@0: michael@0: /* Feed data to the inner SHA256 operation. */ michael@0: SHA256_Update(&ctx->ictx, in, len); michael@0: } michael@0: michael@0: /* Finish an HMAC-SHA256 operation. */ michael@0: void michael@0: HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx) michael@0: { michael@0: unsigned char ihash[32]; michael@0: michael@0: /* Finish the inner SHA256 operation. */ michael@0: SHA256_Final(ihash, &ctx->ictx); michael@0: michael@0: /* Feed the inner hash to the outer SHA256 operation. */ michael@0: SHA256_Update(&ctx->octx, ihash, 32); michael@0: michael@0: /* Finish the outer SHA256 operation. */ michael@0: SHA256_Final(digest, &ctx->octx); michael@0: michael@0: /* Clean the stack. */ michael@0: memset(ihash, 0, 32); michael@0: } michael@0: michael@0: /** michael@0: * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): michael@0: * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and michael@0: * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). michael@0: */ michael@0: void michael@0: PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, michael@0: size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) michael@0: { michael@0: HMAC_SHA256_CTX PShctx, hctx; michael@0: size_t i; michael@0: uint8_t ivec[4]; michael@0: uint8_t U[32]; michael@0: uint8_t T[32]; michael@0: uint64_t j; michael@0: int k; michael@0: size_t clen; michael@0: michael@0: /* Compute HMAC state after processing P and S. */ michael@0: HMAC_SHA256_Init(&PShctx, passwd, passwdlen); michael@0: HMAC_SHA256_Update(&PShctx, salt, saltlen); michael@0: michael@0: /* Iterate through the blocks. */ michael@0: for (i = 0; i * 32 < dkLen; i++) { michael@0: /* Generate INT(i + 1). */ michael@0: be32enc(ivec, (uint32_t)(i + 1)); michael@0: michael@0: /* Compute U_1 = PRF(P, S || INT(i)). */ michael@0: memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); michael@0: HMAC_SHA256_Update(&hctx, ivec, 4); michael@0: HMAC_SHA256_Final(U, &hctx); michael@0: michael@0: /* T_i = U_1 ... */ michael@0: memcpy(T, U, 32); michael@0: michael@0: for (j = 2; j <= c; j++) { michael@0: /* Compute U_j. */ michael@0: HMAC_SHA256_Init(&hctx, passwd, passwdlen); michael@0: HMAC_SHA256_Update(&hctx, U, 32); michael@0: HMAC_SHA256_Final(U, &hctx); michael@0: michael@0: /* ... xor U_j ... */ michael@0: for (k = 0; k < 32; k++) michael@0: T[k] ^= U[k]; michael@0: } michael@0: michael@0: /* Copy as many bytes as necessary into buf. */ michael@0: clen = dkLen - i * 32; michael@0: if (clen > 32) michael@0: clen = 32; michael@0: memcpy(&buf[i * 32], T, clen); michael@0: } michael@0: michael@0: /* Clean PShctx, since we never called _Final on it. */ michael@0: memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); michael@0: }