michael@0: /* This Source Code Form is subject to the terms of the Mozilla Public michael@0: * License, v. 2.0. If a copy of the MPL was not distributed with this michael@0: * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ michael@0: michael@0: #include "ecp.h" michael@0: #include "mpi.h" michael@0: #include "mplogic.h" michael@0: #include "mpi-priv.h" michael@0: michael@0: /* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r. michael@0: * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to michael@0: * Elliptic Curve Cryptography. */ michael@0: static mp_err michael@0: ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth) michael@0: { michael@0: mp_err res = MP_OKAY; michael@0: int a_bits = mpl_significant_bits(a); michael@0: int i; michael@0: michael@0: /* m1, m2 are statically-allocated mp_int of exactly the size we need */ michael@0: mp_int m[10]; michael@0: michael@0: #ifdef ECL_THIRTY_TWO_BIT michael@0: mp_digit s[10][12]; michael@0: for (i = 0; i < 10; i++) { michael@0: MP_SIGN(&m[i]) = MP_ZPOS; michael@0: MP_ALLOC(&m[i]) = 12; michael@0: MP_USED(&m[i]) = 12; michael@0: MP_DIGITS(&m[i]) = s[i]; michael@0: } michael@0: #else michael@0: mp_digit s[10][6]; michael@0: for (i = 0; i < 10; i++) { michael@0: MP_SIGN(&m[i]) = MP_ZPOS; michael@0: MP_ALLOC(&m[i]) = 6; michael@0: MP_USED(&m[i]) = 6; michael@0: MP_DIGITS(&m[i]) = s[i]; michael@0: } michael@0: #endif michael@0: michael@0: #ifdef ECL_THIRTY_TWO_BIT michael@0: /* for polynomials larger than twice the field size or polynomials michael@0: * not using all words, use regular reduction */ michael@0: if ((a_bits > 768) || (a_bits <= 736)) { michael@0: MP_CHECKOK(mp_mod(a, &meth->irr, r)); michael@0: } else { michael@0: for (i = 0; i < 12; i++) { michael@0: s[0][i] = MP_DIGIT(a, i); michael@0: } michael@0: s[1][0] = 0; michael@0: s[1][1] = 0; michael@0: s[1][2] = 0; michael@0: s[1][3] = 0; michael@0: s[1][4] = MP_DIGIT(a, 21); michael@0: s[1][5] = MP_DIGIT(a, 22); michael@0: s[1][6] = MP_DIGIT(a, 23); michael@0: s[1][7] = 0; michael@0: s[1][8] = 0; michael@0: s[1][9] = 0; michael@0: s[1][10] = 0; michael@0: s[1][11] = 0; michael@0: for (i = 0; i < 12; i++) { michael@0: s[2][i] = MP_DIGIT(a, i+12); michael@0: } michael@0: s[3][0] = MP_DIGIT(a, 21); michael@0: s[3][1] = MP_DIGIT(a, 22); michael@0: s[3][2] = MP_DIGIT(a, 23); michael@0: for (i = 3; i < 12; i++) { michael@0: s[3][i] = MP_DIGIT(a, i+9); michael@0: } michael@0: s[4][0] = 0; michael@0: s[4][1] = MP_DIGIT(a, 23); michael@0: s[4][2] = 0; michael@0: s[4][3] = MP_DIGIT(a, 20); michael@0: for (i = 4; i < 12; i++) { michael@0: s[4][i] = MP_DIGIT(a, i+8); michael@0: } michael@0: s[5][0] = 0; michael@0: s[5][1] = 0; michael@0: s[5][2] = 0; michael@0: s[5][3] = 0; michael@0: s[5][4] = MP_DIGIT(a, 20); michael@0: s[5][5] = MP_DIGIT(a, 21); michael@0: s[5][6] = MP_DIGIT(a, 22); michael@0: s[5][7] = MP_DIGIT(a, 23); michael@0: s[5][8] = 0; michael@0: s[5][9] = 0; michael@0: s[5][10] = 0; michael@0: s[5][11] = 0; michael@0: s[6][0] = MP_DIGIT(a, 20); michael@0: s[6][1] = 0; michael@0: s[6][2] = 0; michael@0: s[6][3] = MP_DIGIT(a, 21); michael@0: s[6][4] = MP_DIGIT(a, 22); michael@0: s[6][5] = MP_DIGIT(a, 23); michael@0: s[6][6] = 0; michael@0: s[6][7] = 0; michael@0: s[6][8] = 0; michael@0: s[6][9] = 0; michael@0: s[6][10] = 0; michael@0: s[6][11] = 0; michael@0: s[7][0] = MP_DIGIT(a, 23); michael@0: for (i = 1; i < 12; i++) { michael@0: s[7][i] = MP_DIGIT(a, i+11); michael@0: } michael@0: s[8][0] = 0; michael@0: s[8][1] = MP_DIGIT(a, 20); michael@0: s[8][2] = MP_DIGIT(a, 21); michael@0: s[8][3] = MP_DIGIT(a, 22); michael@0: s[8][4] = MP_DIGIT(a, 23); michael@0: s[8][5] = 0; michael@0: s[8][6] = 0; michael@0: s[8][7] = 0; michael@0: s[8][8] = 0; michael@0: s[8][9] = 0; michael@0: s[8][10] = 0; michael@0: s[8][11] = 0; michael@0: s[9][0] = 0; michael@0: s[9][1] = 0; michael@0: s[9][2] = 0; michael@0: s[9][3] = MP_DIGIT(a, 23); michael@0: s[9][4] = MP_DIGIT(a, 23); michael@0: s[9][5] = 0; michael@0: s[9][6] = 0; michael@0: s[9][7] = 0; michael@0: s[9][8] = 0; michael@0: s[9][9] = 0; michael@0: s[9][10] = 0; michael@0: s[9][11] = 0; michael@0: michael@0: MP_CHECKOK(mp_add(&m[0], &m[1], r)); michael@0: MP_CHECKOK(mp_add(r, &m[1], r)); michael@0: MP_CHECKOK(mp_add(r, &m[2], r)); michael@0: MP_CHECKOK(mp_add(r, &m[3], r)); michael@0: MP_CHECKOK(mp_add(r, &m[4], r)); michael@0: MP_CHECKOK(mp_add(r, &m[5], r)); michael@0: MP_CHECKOK(mp_add(r, &m[6], r)); michael@0: MP_CHECKOK(mp_sub(r, &m[7], r)); michael@0: MP_CHECKOK(mp_sub(r, &m[8], r)); michael@0: MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); michael@0: s_mp_clamp(r); michael@0: } michael@0: #else michael@0: /* for polynomials larger than twice the field size or polynomials michael@0: * not using all words, use regular reduction */ michael@0: if ((a_bits > 768) || (a_bits <= 736)) { michael@0: MP_CHECKOK(mp_mod(a, &meth->irr, r)); michael@0: } else { michael@0: for (i = 0; i < 6; i++) { michael@0: s[0][i] = MP_DIGIT(a, i); michael@0: } michael@0: s[1][0] = 0; michael@0: s[1][1] = 0; michael@0: s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); michael@0: s[1][3] = MP_DIGIT(a, 11) >> 32; michael@0: s[1][4] = 0; michael@0: s[1][5] = 0; michael@0: for (i = 0; i < 6; i++) { michael@0: s[2][i] = MP_DIGIT(a, i+6); michael@0: } michael@0: s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); michael@0: s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); michael@0: for (i = 2; i < 6; i++) { michael@0: s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32); michael@0: } michael@0: s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32; michael@0: s[4][1] = MP_DIGIT(a, 10) << 32; michael@0: for (i = 2; i < 6; i++) { michael@0: s[4][i] = MP_DIGIT(a, i+4); michael@0: } michael@0: s[5][0] = 0; michael@0: s[5][1] = 0; michael@0: s[5][2] = MP_DIGIT(a, 10); michael@0: s[5][3] = MP_DIGIT(a, 11); michael@0: s[5][4] = 0; michael@0: s[5][5] = 0; michael@0: s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32; michael@0: s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32; michael@0: s[6][2] = MP_DIGIT(a, 11); michael@0: s[6][3] = 0; michael@0: s[6][4] = 0; michael@0: s[6][5] = 0; michael@0: s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); michael@0: for (i = 1; i < 6; i++) { michael@0: s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32); michael@0: } michael@0: s[8][0] = MP_DIGIT(a, 10) << 32; michael@0: s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); michael@0: s[8][2] = MP_DIGIT(a, 11) >> 32; michael@0: s[8][3] = 0; michael@0: s[8][4] = 0; michael@0: s[8][5] = 0; michael@0: s[9][0] = 0; michael@0: s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32; michael@0: s[9][2] = MP_DIGIT(a, 11) >> 32; michael@0: s[9][3] = 0; michael@0: s[9][4] = 0; michael@0: s[9][5] = 0; michael@0: michael@0: MP_CHECKOK(mp_add(&m[0], &m[1], r)); michael@0: MP_CHECKOK(mp_add(r, &m[1], r)); michael@0: MP_CHECKOK(mp_add(r, &m[2], r)); michael@0: MP_CHECKOK(mp_add(r, &m[3], r)); michael@0: MP_CHECKOK(mp_add(r, &m[4], r)); michael@0: MP_CHECKOK(mp_add(r, &m[5], r)); michael@0: MP_CHECKOK(mp_add(r, &m[6], r)); michael@0: MP_CHECKOK(mp_sub(r, &m[7], r)); michael@0: MP_CHECKOK(mp_sub(r, &m[8], r)); michael@0: MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); michael@0: s_mp_clamp(r); michael@0: } michael@0: #endif michael@0: michael@0: CLEANUP: michael@0: return res; michael@0: } michael@0: michael@0: /* Compute the square of polynomial a, reduce modulo p384. Store the michael@0: * result in r. r could be a. Uses optimized modular reduction for p384. michael@0: */ michael@0: static mp_err michael@0: ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) michael@0: { michael@0: mp_err res = MP_OKAY; michael@0: michael@0: MP_CHECKOK(mp_sqr(a, r)); michael@0: MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); michael@0: CLEANUP: michael@0: return res; michael@0: } michael@0: michael@0: /* Compute the product of two polynomials a and b, reduce modulo p384. michael@0: * Store the result in r. r could be a or b; a could be b. Uses michael@0: * optimized modular reduction for p384. */ michael@0: static mp_err michael@0: ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r, michael@0: const GFMethod *meth) michael@0: { michael@0: mp_err res = MP_OKAY; michael@0: michael@0: MP_CHECKOK(mp_mul(a, b, r)); michael@0: MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); michael@0: CLEANUP: michael@0: return res; michael@0: } michael@0: michael@0: /* Wire in fast field arithmetic and precomputation of base point for michael@0: * named curves. */ michael@0: mp_err michael@0: ec_group_set_gfp384(ECGroup *group, ECCurveName name) michael@0: { michael@0: if (name == ECCurve_NIST_P384) { michael@0: group->meth->field_mod = &ec_GFp_nistp384_mod; michael@0: group->meth->field_mul = &ec_GFp_nistp384_mul; michael@0: group->meth->field_sqr = &ec_GFp_nistp384_sqr; michael@0: } michael@0: return MP_OKAY; michael@0: }