michael@0: /* michael@0: * written by Colin Plumb in 1993, no copyright is claimed. michael@0: * This code is in the public domain; do with it what you wish. michael@0: * michael@0: * Equivalent code is available from RSA Data Security, Inc. michael@0: * This code has been tested against that, and is equivalent, michael@0: * except that you don't need to include two pages of legalese michael@0: * with every copy. michael@0: * michael@0: * To compute the message digest of a chunk of bytes, declare an michael@0: * MD5Context structure, pass it to MD5Init, call MD5Update as michael@0: * needed on buffers full of bytes, and then call MD5Final, which michael@0: * will fill a supplied 16-byte array with the digest. michael@0: */ michael@0: michael@0: #include michael@0: michael@0: #include "common/md5.h" michael@0: michael@0: namespace google_breakpad { michael@0: michael@0: #ifndef WORDS_BIGENDIAN michael@0: #define byteReverse(buf, len) /* Nothing */ michael@0: #else michael@0: /* michael@0: * Note: this code is harmless on little-endian machines. michael@0: */ michael@0: static void byteReverse(unsigned char *buf, unsigned longs) michael@0: { michael@0: u32 t; michael@0: do { michael@0: t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | michael@0: ((unsigned) buf[1] << 8 | buf[0]); michael@0: *(u32 *) buf = t; michael@0: buf += 4; michael@0: } while (--longs); michael@0: } michael@0: #endif michael@0: michael@0: static void MD5Transform(u32 buf[4], u32 const in[16]); michael@0: michael@0: /* michael@0: * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious michael@0: * initialization constants. michael@0: */ michael@0: void MD5Init(struct MD5Context *ctx) michael@0: { michael@0: ctx->buf[0] = 0x67452301; michael@0: ctx->buf[1] = 0xefcdab89; michael@0: ctx->buf[2] = 0x98badcfe; michael@0: ctx->buf[3] = 0x10325476; michael@0: michael@0: ctx->bits[0] = 0; michael@0: ctx->bits[1] = 0; michael@0: } michael@0: michael@0: /* michael@0: * Update context to reflect the concatenation of another buffer full michael@0: * of bytes. michael@0: */ michael@0: void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) michael@0: { michael@0: u32 t; michael@0: michael@0: /* Update bitcount */ michael@0: michael@0: t = ctx->bits[0]; michael@0: if ((ctx->bits[0] = t + ((u32) len << 3)) < t) michael@0: ctx->bits[1]++; /* Carry from low to high */ michael@0: ctx->bits[1] += len >> 29; michael@0: michael@0: t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ michael@0: michael@0: /* Handle any leading odd-sized chunks */ michael@0: michael@0: if (t) { michael@0: unsigned char *p = (unsigned char *) ctx->in + t; michael@0: michael@0: t = 64 - t; michael@0: if (len < t) { michael@0: memcpy(p, buf, len); michael@0: return; michael@0: } michael@0: memcpy(p, buf, t); michael@0: byteReverse(ctx->in, 16); michael@0: MD5Transform(ctx->buf, (u32 *) ctx->in); michael@0: buf += t; michael@0: len -= t; michael@0: } michael@0: /* Process data in 64-byte chunks */ michael@0: michael@0: while (len >= 64) { michael@0: memcpy(ctx->in, buf, 64); michael@0: byteReverse(ctx->in, 16); michael@0: MD5Transform(ctx->buf, (u32 *) ctx->in); michael@0: buf += 64; michael@0: len -= 64; michael@0: } michael@0: michael@0: /* Handle any remaining bytes of data. */ michael@0: michael@0: memcpy(ctx->in, buf, len); michael@0: } michael@0: michael@0: /* michael@0: * Final wrapup - pad to 64-byte boundary with the bit pattern michael@0: * 1 0* (64-bit count of bits processed, MSB-first) michael@0: */ michael@0: void MD5Final(unsigned char digest[16], struct MD5Context *ctx) michael@0: { michael@0: unsigned count; michael@0: unsigned char *p; michael@0: michael@0: /* Compute number of bytes mod 64 */ michael@0: count = (ctx->bits[0] >> 3) & 0x3F; michael@0: michael@0: /* Set the first char of padding to 0x80. This is safe since there is michael@0: always at least one byte free */ michael@0: p = ctx->in + count; michael@0: *p++ = 0x80; michael@0: michael@0: /* Bytes of padding needed to make 64 bytes */ michael@0: count = 64 - 1 - count; michael@0: michael@0: /* Pad out to 56 mod 64 */ michael@0: if (count < 8) { michael@0: /* Two lots of padding: Pad the first block to 64 bytes */ michael@0: memset(p, 0, count); michael@0: byteReverse(ctx->in, 16); michael@0: MD5Transform(ctx->buf, (u32 *) ctx->in); michael@0: michael@0: /* Now fill the next block with 56 bytes */ michael@0: memset(ctx->in, 0, 56); michael@0: } else { michael@0: /* Pad block to 56 bytes */ michael@0: memset(p, 0, count - 8); michael@0: } michael@0: byteReverse(ctx->in, 14); michael@0: michael@0: /* Append length in bits and transform */ michael@0: ((u32 *) ctx->in)[14] = ctx->bits[0]; michael@0: ((u32 *) ctx->in)[15] = ctx->bits[1]; michael@0: michael@0: MD5Transform(ctx->buf, (u32 *) ctx->in); michael@0: byteReverse((unsigned char *) ctx->buf, 4); michael@0: memcpy(digest, ctx->buf, 16); michael@0: memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ michael@0: } michael@0: michael@0: /* The four core functions - F1 is optimized somewhat */ michael@0: michael@0: /* #define F1(x, y, z) (x & y | ~x & z) */ michael@0: #define F1(x, y, z) (z ^ (x & (y ^ z))) michael@0: #define F2(x, y, z) F1(z, x, y) michael@0: #define F3(x, y, z) (x ^ y ^ z) michael@0: #define F4(x, y, z) (y ^ (x | ~z)) michael@0: michael@0: /* This is the central step in the MD5 algorithm. */ michael@0: #define MD5STEP(f, w, x, y, z, data, s) \ michael@0: ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) michael@0: michael@0: /* michael@0: * The core of the MD5 algorithm, this alters an existing MD5 hash to michael@0: * reflect the addition of 16 longwords of new data. MD5Update blocks michael@0: * the data and converts bytes into longwords for this routine. michael@0: */ michael@0: static void MD5Transform(u32 buf[4], u32 const in[16]) michael@0: { michael@0: register u32 a, b, c, d; michael@0: michael@0: a = buf[0]; michael@0: b = buf[1]; michael@0: c = buf[2]; michael@0: d = buf[3]; michael@0: michael@0: MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); michael@0: MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); michael@0: MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); michael@0: MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); michael@0: MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); michael@0: MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); michael@0: MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); michael@0: MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); michael@0: MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); michael@0: MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); michael@0: MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); michael@0: MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); michael@0: MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); michael@0: MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); michael@0: MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); michael@0: MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); michael@0: michael@0: MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); michael@0: MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); michael@0: MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); michael@0: MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); michael@0: MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); michael@0: MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); michael@0: MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); michael@0: MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); michael@0: MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); michael@0: MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); michael@0: MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); michael@0: MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); michael@0: MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); michael@0: MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); michael@0: MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); michael@0: MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); michael@0: michael@0: MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); michael@0: MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); michael@0: MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); michael@0: MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); michael@0: MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); michael@0: MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); michael@0: MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); michael@0: MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); michael@0: MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); michael@0: MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); michael@0: MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); michael@0: MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); michael@0: MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); michael@0: MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); michael@0: MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); michael@0: MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); michael@0: michael@0: MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); michael@0: MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); michael@0: MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); michael@0: MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); michael@0: MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); michael@0: MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); michael@0: MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); michael@0: MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); michael@0: MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); michael@0: MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); michael@0: MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); michael@0: MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); michael@0: MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); michael@0: MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); michael@0: MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); michael@0: MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); michael@0: michael@0: buf[0] += a; michael@0: buf[1] += b; michael@0: buf[2] += c; michael@0: buf[3] += d; michael@0: } michael@0: michael@0: } // namespace google_breakpad michael@0: