michael@0: // Copyright (c) 2011 The Chromium Authors. All rights reserved. michael@0: // Use of this source code is governed by a BSD-style license that can be michael@0: // found in the LICENSE file. michael@0: michael@0: // This is a low level implementation of atomic semantics for reference michael@0: // counting. Please use base/memory/ref_counted.h directly instead. michael@0: // michael@0: // The implementation includes annotations to avoid some false positives michael@0: // when using data race detection tools. michael@0: michael@0: #ifndef BASE_ATOMIC_REF_COUNT_H_ michael@0: #define BASE_ATOMIC_REF_COUNT_H_ michael@0: michael@0: #include "base/atomicops.h" michael@0: #include "base/third_party/dynamic_annotations/dynamic_annotations.h" michael@0: michael@0: namespace base { michael@0: michael@0: typedef subtle::Atomic32 AtomicRefCount; michael@0: michael@0: // Increment a reference count by "increment", which must exceed 0. michael@0: inline void AtomicRefCountIncN(volatile AtomicRefCount *ptr, michael@0: AtomicRefCount increment) { michael@0: subtle::NoBarrier_AtomicIncrement(ptr, increment); michael@0: } michael@0: michael@0: // Decrement a reference count by "decrement", which must exceed 0, michael@0: // and return whether the result is non-zero. michael@0: // Insert barriers to ensure that state written before the reference count michael@0: // became zero will be visible to a thread that has just made the count zero. michael@0: inline bool AtomicRefCountDecN(volatile AtomicRefCount *ptr, michael@0: AtomicRefCount decrement) { michael@0: ANNOTATE_HAPPENS_BEFORE(ptr); michael@0: bool res = (subtle::Barrier_AtomicIncrement(ptr, -decrement) != 0); michael@0: if (!res) { michael@0: ANNOTATE_HAPPENS_AFTER(ptr); michael@0: } michael@0: return res; michael@0: } michael@0: michael@0: // Increment a reference count by 1. michael@0: inline void AtomicRefCountInc(volatile AtomicRefCount *ptr) { michael@0: base::AtomicRefCountIncN(ptr, 1); michael@0: } michael@0: michael@0: // Decrement a reference count by 1 and return whether the result is non-zero. michael@0: // Insert barriers to ensure that state written before the reference count michael@0: // became zero will be visible to a thread that has just made the count zero. michael@0: inline bool AtomicRefCountDec(volatile AtomicRefCount *ptr) { michael@0: return base::AtomicRefCountDecN(ptr, 1); michael@0: } michael@0: michael@0: // Return whether the reference count is one. If the reference count is used michael@0: // in the conventional way, a refrerence count of 1 implies that the current michael@0: // thread owns the reference and no other thread shares it. This call performs michael@0: // the test for a reference count of one, and performs the memory barrier michael@0: // needed for the owning thread to act on the object, knowing that it has michael@0: // exclusive access to the object. michael@0: inline bool AtomicRefCountIsOne(volatile AtomicRefCount *ptr) { michael@0: bool res = (subtle::Acquire_Load(ptr) == 1); michael@0: if (res) { michael@0: ANNOTATE_HAPPENS_AFTER(ptr); michael@0: } michael@0: return res; michael@0: } michael@0: michael@0: // Return whether the reference count is zero. With conventional object michael@0: // referencing counting, the object will be destroyed, so the reference count michael@0: // should never be zero. Hence this is generally used for a debug check. michael@0: inline bool AtomicRefCountIsZero(volatile AtomicRefCount *ptr) { michael@0: bool res = (subtle::Acquire_Load(ptr) == 0); michael@0: if (res) { michael@0: ANNOTATE_HAPPENS_AFTER(ptr); michael@0: } michael@0: return res; michael@0: } michael@0: michael@0: } // namespace base michael@0: michael@0: #endif // BASE_ATOMIC_REF_COUNT_H_