michael@0: /* Copyright (c) 2002-2008 Jean-Marc Valin michael@0: Copyright (c) 2007-2008 CSIRO michael@0: Copyright (c) 2007-2009 Xiph.Org Foundation michael@0: Written by Jean-Marc Valin */ michael@0: /** michael@0: @file mathops.h michael@0: @brief Various math functions michael@0: */ michael@0: /* michael@0: Redistribution and use in source and binary forms, with or without michael@0: modification, are permitted provided that the following conditions michael@0: are met: michael@0: michael@0: - Redistributions of source code must retain the above copyright michael@0: notice, this list of conditions and the following disclaimer. michael@0: michael@0: - Redistributions in binary form must reproduce the above copyright michael@0: notice, this list of conditions and the following disclaimer in the michael@0: documentation and/or other materials provided with the distribution. michael@0: michael@0: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS michael@0: ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT michael@0: LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR michael@0: A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER michael@0: OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, michael@0: EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, michael@0: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR michael@0: PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF michael@0: LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING michael@0: NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS michael@0: SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. michael@0: */ michael@0: michael@0: #ifdef HAVE_CONFIG_H michael@0: #include "config.h" michael@0: #endif michael@0: michael@0: #include "mathops.h" michael@0: michael@0: /*Compute floor(sqrt(_val)) with exact arithmetic. michael@0: This has been tested on all possible 32-bit inputs.*/ michael@0: unsigned isqrt32(opus_uint32 _val){ michael@0: unsigned b; michael@0: unsigned g; michael@0: int bshift; michael@0: /*Uses the second method from michael@0: http://www.azillionmonkeys.com/qed/sqroot.html michael@0: The main idea is to search for the largest binary digit b such that michael@0: (g+b)*(g+b) <= _val, and add it to the solution g.*/ michael@0: g=0; michael@0: bshift=(EC_ILOG(_val)-1)>>1; michael@0: b=1U<>=1; michael@0: bshift--; michael@0: } michael@0: while(bshift>=0); michael@0: return g; michael@0: } michael@0: michael@0: #ifdef FIXED_POINT michael@0: michael@0: opus_val32 frac_div32(opus_val32 a, opus_val32 b) michael@0: { michael@0: opus_val16 rcp; michael@0: opus_val32 result, rem; michael@0: int shift = celt_ilog2(b)-29; michael@0: a = VSHR32(a,shift); michael@0: b = VSHR32(b,shift); michael@0: /* 16-bit reciprocal */ michael@0: rcp = ROUND16(celt_rcp(ROUND16(b,16)),3); michael@0: result = MULT16_32_Q15(rcp, a); michael@0: rem = PSHR32(a,2)-MULT32_32_Q31(result, b); michael@0: result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2)); michael@0: if (result >= 536870912) /* 2^29 */ michael@0: return 2147483647; /* 2^31 - 1 */ michael@0: else if (result <= -536870912) /* -2^29 */ michael@0: return -2147483647; /* -2^31 */ michael@0: else michael@0: return SHL32(result, 2); michael@0: } michael@0: michael@0: /** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */ michael@0: opus_val16 celt_rsqrt_norm(opus_val32 x) michael@0: { michael@0: opus_val16 n; michael@0: opus_val16 r; michael@0: opus_val16 r2; michael@0: opus_val16 y; michael@0: /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */ michael@0: n = x-32768; michael@0: /* Get a rough initial guess for the root. michael@0: The optimal minimax quadratic approximation (using relative error) is michael@0: r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485). michael@0: Coefficients here, and the final result r, are Q14.*/ michael@0: r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713)))); michael@0: /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14. michael@0: We can compute the result from n and r using Q15 multiplies with some michael@0: adjustment, carefully done to avoid overflow. michael@0: Range of y is [-1564,1594]. */ michael@0: r2 = MULT16_16_Q15(r, r); michael@0: y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1); michael@0: /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5). michael@0: This yields the Q14 reciprocal square root of the Q16 x, with a maximum michael@0: relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a michael@0: peak absolute error of 2.26591/16384. */ michael@0: return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y, michael@0: SUB16(MULT16_16_Q15(y, 12288), 16384)))); michael@0: } michael@0: michael@0: /** Sqrt approximation (QX input, QX/2 output) */ michael@0: opus_val32 celt_sqrt(opus_val32 x) michael@0: { michael@0: int k; michael@0: opus_val16 n; michael@0: opus_val32 rt; michael@0: static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664}; michael@0: if (x==0) michael@0: return 0; michael@0: else if (x>=1073741824) michael@0: return 32767; michael@0: k = (celt_ilog2(x)>>1)-7; michael@0: x = VSHR32(x, 2*k); michael@0: n = x-32768; michael@0: rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], michael@0: MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4]))))))))); michael@0: rt = VSHR32(rt,7-k); michael@0: return rt; michael@0: } michael@0: michael@0: #define L1 32767 michael@0: #define L2 -7651 michael@0: #define L3 8277 michael@0: #define L4 -626 michael@0: michael@0: static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x) michael@0: { michael@0: opus_val16 x2; michael@0: michael@0: x2 = MULT16_16_P15(x,x); michael@0: return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2 michael@0: )))))))); michael@0: } michael@0: michael@0: #undef L1 michael@0: #undef L2 michael@0: #undef L3 michael@0: #undef L4 michael@0: michael@0: opus_val16 celt_cos_norm(opus_val32 x) michael@0: { michael@0: x = x&0x0001ffff; michael@0: if (x>SHL32(EXTEND32(1), 16)) michael@0: x = SUB32(SHL32(EXTEND32(1), 17),x); michael@0: if (x&0x00007fff) michael@0: { michael@0: if (x0, "celt_rcp() only defined for positive values"); michael@0: i = celt_ilog2(x); michael@0: /* n is Q15 with range [0,1). */ michael@0: n = VSHR32(x,i-15)-32768; michael@0: /* Start with a linear approximation: michael@0: r = 1.8823529411764706-0.9411764705882353*n. michael@0: The coefficients and the result are Q14 in the range [15420,30840].*/ michael@0: r = ADD16(30840, MULT16_16_Q15(-15420, n)); michael@0: /* Perform two Newton iterations: michael@0: r -= r*((r*n)-1.Q15) michael@0: = r*((r*n)+(r-1.Q15)). */ michael@0: r = SUB16(r, MULT16_16_Q15(r, michael@0: ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))); michael@0: /* We subtract an extra 1 in the second iteration to avoid overflow; it also michael@0: neatly compensates for truncation error in the rest of the process. */ michael@0: r = SUB16(r, ADD16(1, MULT16_16_Q15(r, michael@0: ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))))); michael@0: /* r is now the Q15 solution to 2/(n+1), with a maximum relative error michael@0: of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute michael@0: error of 1.24665/32768. */ michael@0: return VSHR32(EXTEND32(r),i-16); michael@0: } michael@0: michael@0: #endif