michael@0: /* michael@0: * Copyright (c) 2010 The WebM project authors. All Rights Reserved. michael@0: * michael@0: * Use of this source code is governed by a BSD-style license michael@0: * that can be found in the LICENSE file in the root of the source michael@0: * tree. An additional intellectual property rights grant can be found michael@0: * in the file PATENTS. All contributing project authors may michael@0: * be found in the AUTHORS file in the root of the source tree. michael@0: */ michael@0: michael@0: #include michael@0: #include michael@0: #include michael@0: michael@0: #include "./vpx_scale_rtcd.h" michael@0: #include "block.h" michael@0: #include "onyx_int.h" michael@0: #include "vp8/common/variance.h" michael@0: #include "encodeintra.h" michael@0: #include "vp8/common/setupintrarecon.h" michael@0: #include "vp8/common/systemdependent.h" michael@0: #include "mcomp.h" michael@0: #include "firstpass.h" michael@0: #include "vpx_scale/vpx_scale.h" michael@0: #include "encodemb.h" michael@0: #include "vp8/common/extend.h" michael@0: #include "vpx_mem/vpx_mem.h" michael@0: #include "vp8/common/swapyv12buffer.h" michael@0: #include "rdopt.h" michael@0: #include "vp8/common/quant_common.h" michael@0: #include "encodemv.h" michael@0: #include "encodeframe.h" michael@0: michael@0: /* #define OUTPUT_FPF 1 */ michael@0: michael@0: extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); michael@0: extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv); michael@0: extern void vp8_alloc_compressor_data(VP8_COMP *cpi); michael@0: michael@0: #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] michael@0: extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; michael@0: michael@0: extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; michael@0: michael@0: #define IIFACTOR 1.5 michael@0: #define IIKFACTOR1 1.40 michael@0: #define IIKFACTOR2 1.5 michael@0: #define RMAX 14.0 michael@0: #define GF_RMAX 48.0 michael@0: michael@0: #define KF_MB_INTRA_MIN 300 michael@0: #define GF_MB_INTRA_MIN 200 michael@0: michael@0: #define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001) michael@0: michael@0: #define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 michael@0: #define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 michael@0: michael@0: #define NEW_BOOST 1 michael@0: michael@0: static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3}; michael@0: static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3}; michael@0: michael@0: michael@0: static const int cq_level[QINDEX_RANGE] = michael@0: { michael@0: 0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9, michael@0: 9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20, michael@0: 20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31, michael@0: 32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43, michael@0: 44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56, michael@0: 57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70, michael@0: 71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85, michael@0: 86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 michael@0: }; michael@0: michael@0: static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); michael@0: michael@0: /* Resets the first pass file to the given position using a relative seek michael@0: * from the current position michael@0: */ michael@0: static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) michael@0: { michael@0: cpi->twopass.stats_in = Position; michael@0: } michael@0: michael@0: static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) michael@0: { michael@0: if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) michael@0: return EOF; michael@0: michael@0: *next_frame = *cpi->twopass.stats_in; michael@0: return 1; michael@0: } michael@0: michael@0: /* Read frame stats at an offset from the current position */ michael@0: static int read_frame_stats( VP8_COMP *cpi, michael@0: FIRSTPASS_STATS *frame_stats, michael@0: int offset ) michael@0: { michael@0: FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in; michael@0: michael@0: /* Check legality of offset */ michael@0: if ( offset >= 0 ) michael@0: { michael@0: if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end ) michael@0: return EOF; michael@0: } michael@0: else if ( offset < 0 ) michael@0: { michael@0: if ( &fps_ptr[offset] < cpi->twopass.stats_in_start ) michael@0: return EOF; michael@0: } michael@0: michael@0: *frame_stats = fps_ptr[offset]; michael@0: return 1; michael@0: } michael@0: michael@0: static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) michael@0: { michael@0: if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) michael@0: return EOF; michael@0: michael@0: *fps = *cpi->twopass.stats_in; michael@0: cpi->twopass.stats_in = michael@0: (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); michael@0: return 1; michael@0: } michael@0: michael@0: static void output_stats(const VP8_COMP *cpi, michael@0: struct vpx_codec_pkt_list *pktlist, michael@0: FIRSTPASS_STATS *stats) michael@0: { michael@0: struct vpx_codec_cx_pkt pkt; michael@0: pkt.kind = VPX_CODEC_STATS_PKT; michael@0: pkt.data.twopass_stats.buf = stats; michael@0: pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); michael@0: vpx_codec_pkt_list_add(pktlist, &pkt); michael@0: michael@0: /* TEMP debug code */ michael@0: #if OUTPUT_FPF michael@0: michael@0: { michael@0: FILE *fpfile; michael@0: fpfile = fopen("firstpass.stt", "a"); michael@0: michael@0: fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" michael@0: " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" michael@0: " %12.0f %12.0f %12.4f\n", michael@0: stats->frame, michael@0: stats->intra_error, michael@0: stats->coded_error, michael@0: stats->ssim_weighted_pred_err, michael@0: stats->pcnt_inter, michael@0: stats->pcnt_motion, michael@0: stats->pcnt_second_ref, michael@0: stats->pcnt_neutral, michael@0: stats->MVr, michael@0: stats->mvr_abs, michael@0: stats->MVc, michael@0: stats->mvc_abs, michael@0: stats->MVrv, michael@0: stats->MVcv, michael@0: stats->mv_in_out_count, michael@0: stats->new_mv_count, michael@0: stats->count, michael@0: stats->duration); michael@0: fclose(fpfile); michael@0: } michael@0: #endif michael@0: } michael@0: michael@0: static void zero_stats(FIRSTPASS_STATS *section) michael@0: { michael@0: section->frame = 0.0; michael@0: section->intra_error = 0.0; michael@0: section->coded_error = 0.0; michael@0: section->ssim_weighted_pred_err = 0.0; michael@0: section->pcnt_inter = 0.0; michael@0: section->pcnt_motion = 0.0; michael@0: section->pcnt_second_ref = 0.0; michael@0: section->pcnt_neutral = 0.0; michael@0: section->MVr = 0.0; michael@0: section->mvr_abs = 0.0; michael@0: section->MVc = 0.0; michael@0: section->mvc_abs = 0.0; michael@0: section->MVrv = 0.0; michael@0: section->MVcv = 0.0; michael@0: section->mv_in_out_count = 0.0; michael@0: section->new_mv_count = 0.0; michael@0: section->count = 0.0; michael@0: section->duration = 1.0; michael@0: } michael@0: michael@0: static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) michael@0: { michael@0: section->frame += frame->frame; michael@0: section->intra_error += frame->intra_error; michael@0: section->coded_error += frame->coded_error; michael@0: section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; michael@0: section->pcnt_inter += frame->pcnt_inter; michael@0: section->pcnt_motion += frame->pcnt_motion; michael@0: section->pcnt_second_ref += frame->pcnt_second_ref; michael@0: section->pcnt_neutral += frame->pcnt_neutral; michael@0: section->MVr += frame->MVr; michael@0: section->mvr_abs += frame->mvr_abs; michael@0: section->MVc += frame->MVc; michael@0: section->mvc_abs += frame->mvc_abs; michael@0: section->MVrv += frame->MVrv; michael@0: section->MVcv += frame->MVcv; michael@0: section->mv_in_out_count += frame->mv_in_out_count; michael@0: section->new_mv_count += frame->new_mv_count; michael@0: section->count += frame->count; michael@0: section->duration += frame->duration; michael@0: } michael@0: michael@0: static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) michael@0: { michael@0: section->frame -= frame->frame; michael@0: section->intra_error -= frame->intra_error; michael@0: section->coded_error -= frame->coded_error; michael@0: section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; michael@0: section->pcnt_inter -= frame->pcnt_inter; michael@0: section->pcnt_motion -= frame->pcnt_motion; michael@0: section->pcnt_second_ref -= frame->pcnt_second_ref; michael@0: section->pcnt_neutral -= frame->pcnt_neutral; michael@0: section->MVr -= frame->MVr; michael@0: section->mvr_abs -= frame->mvr_abs; michael@0: section->MVc -= frame->MVc; michael@0: section->mvc_abs -= frame->mvc_abs; michael@0: section->MVrv -= frame->MVrv; michael@0: section->MVcv -= frame->MVcv; michael@0: section->mv_in_out_count -= frame->mv_in_out_count; michael@0: section->new_mv_count -= frame->new_mv_count; michael@0: section->count -= frame->count; michael@0: section->duration -= frame->duration; michael@0: } michael@0: michael@0: static void avg_stats(FIRSTPASS_STATS *section) michael@0: { michael@0: if (section->count < 1.0) michael@0: return; michael@0: michael@0: section->intra_error /= section->count; michael@0: section->coded_error /= section->count; michael@0: section->ssim_weighted_pred_err /= section->count; michael@0: section->pcnt_inter /= section->count; michael@0: section->pcnt_second_ref /= section->count; michael@0: section->pcnt_neutral /= section->count; michael@0: section->pcnt_motion /= section->count; michael@0: section->MVr /= section->count; michael@0: section->mvr_abs /= section->count; michael@0: section->MVc /= section->count; michael@0: section->mvc_abs /= section->count; michael@0: section->MVrv /= section->count; michael@0: section->MVcv /= section->count; michael@0: section->mv_in_out_count /= section->count; michael@0: section->duration /= section->count; michael@0: } michael@0: michael@0: /* Calculate a modified Error used in distributing bits between easier michael@0: * and harder frames michael@0: */ michael@0: static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) michael@0: { michael@0: double av_err = ( cpi->twopass.total_stats.ssim_weighted_pred_err / michael@0: cpi->twopass.total_stats.count ); michael@0: double this_err = this_frame->ssim_weighted_pred_err; michael@0: double modified_err; michael@0: michael@0: if (this_err > av_err) michael@0: modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); michael@0: else michael@0: modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); michael@0: michael@0: return modified_err; michael@0: } michael@0: michael@0: static const double weight_table[256] = { michael@0: 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, michael@0: 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, michael@0: 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, michael@0: 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, michael@0: 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, michael@0: 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, michael@0: 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, michael@0: 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 michael@0: }; michael@0: michael@0: static double simple_weight(YV12_BUFFER_CONFIG *source) michael@0: { michael@0: int i, j; michael@0: michael@0: unsigned char *src = source->y_buffer; michael@0: double sum_weights = 0.0; michael@0: michael@0: /* Loop throught the Y plane raw examining levels and creating a weight michael@0: * for the image michael@0: */ michael@0: i = source->y_height; michael@0: do michael@0: { michael@0: j = source->y_width; michael@0: do michael@0: { michael@0: sum_weights += weight_table[ *src]; michael@0: src++; michael@0: }while(--j); michael@0: src -= source->y_width; michael@0: src += source->y_stride; michael@0: }while(--i); michael@0: michael@0: sum_weights /= (source->y_height * source->y_width); michael@0: michael@0: return sum_weights; michael@0: } michael@0: michael@0: michael@0: /* This function returns the current per frame maximum bitrate target */ michael@0: static int frame_max_bits(VP8_COMP *cpi) michael@0: { michael@0: /* Max allocation for a single frame based on the max section guidelines michael@0: * passed in and how many bits are left michael@0: */ michael@0: int max_bits; michael@0: michael@0: /* For CBR we need to also consider buffer fullness. michael@0: * If we are running below the optimal level then we need to gradually michael@0: * tighten up on max_bits. michael@0: */ michael@0: if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) michael@0: { michael@0: double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); michael@0: michael@0: /* For CBR base this on the target average bits per frame plus the michael@0: * maximum sedction rate passed in by the user michael@0: */ michael@0: max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); michael@0: michael@0: /* If our buffer is below the optimum level */ michael@0: if (buffer_fullness_ratio < 1.0) michael@0: { michael@0: /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */ michael@0: int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2; michael@0: michael@0: max_bits = (int)(max_bits * buffer_fullness_ratio); michael@0: michael@0: /* Lowest value we will set ... which should allow the buffer to michael@0: * refill. michael@0: */ michael@0: if (max_bits < min_max_bits) michael@0: max_bits = min_max_bits; michael@0: } michael@0: } michael@0: /* VBR */ michael@0: else michael@0: { michael@0: /* For VBR base this on the bits and frames left plus the michael@0: * two_pass_vbrmax_section rate passed in by the user michael@0: */ michael@0: max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); michael@0: } michael@0: michael@0: /* Trap case where we are out of bits */ michael@0: if (max_bits < 0) michael@0: max_bits = 0; michael@0: michael@0: return max_bits; michael@0: } michael@0: michael@0: void vp8_init_first_pass(VP8_COMP *cpi) michael@0: { michael@0: zero_stats(&cpi->twopass.total_stats); michael@0: } michael@0: michael@0: void vp8_end_first_pass(VP8_COMP *cpi) michael@0: { michael@0: output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); michael@0: } michael@0: michael@0: static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, michael@0: YV12_BUFFER_CONFIG * raw_buffer, michael@0: int * raw_motion_err, michael@0: YV12_BUFFER_CONFIG * recon_buffer, michael@0: int * best_motion_err, int recon_yoffset) michael@0: { michael@0: MACROBLOCKD * const xd = & x->e_mbd; michael@0: BLOCK *b = &x->block[0]; michael@0: BLOCKD *d = &x->e_mbd.block[0]; michael@0: michael@0: unsigned char *src_ptr = (*(b->base_src) + b->src); michael@0: int src_stride = b->src_stride; michael@0: unsigned char *raw_ptr; michael@0: int raw_stride = raw_buffer->y_stride; michael@0: unsigned char *ref_ptr; michael@0: int ref_stride = x->e_mbd.pre.y_stride; michael@0: michael@0: /* Set up pointers for this macro block raw buffer */ michael@0: raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset michael@0: + d->offset); michael@0: vp8_mse16x16 ( src_ptr, src_stride, raw_ptr, raw_stride, michael@0: (unsigned int *)(raw_motion_err)); michael@0: michael@0: /* Set up pointers for this macro block recon buffer */ michael@0: xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; michael@0: ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset ); michael@0: vp8_mse16x16 ( src_ptr, src_stride, ref_ptr, ref_stride, michael@0: (unsigned int *)(best_motion_err)); michael@0: } michael@0: michael@0: static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, michael@0: int_mv *ref_mv, MV *best_mv, michael@0: YV12_BUFFER_CONFIG *recon_buffer, michael@0: int *best_motion_err, int recon_yoffset ) michael@0: { michael@0: MACROBLOCKD *const xd = & x->e_mbd; michael@0: BLOCK *b = &x->block[0]; michael@0: BLOCKD *d = &x->e_mbd.block[0]; michael@0: int num00; michael@0: michael@0: int_mv tmp_mv; michael@0: int_mv ref_mv_full; michael@0: michael@0: int tmp_err; michael@0: int step_param = 3; /* Dont search over full range for first pass */ michael@0: int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; michael@0: int n; michael@0: vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; michael@0: int new_mv_mode_penalty = 256; michael@0: michael@0: /* override the default variance function to use MSE */ michael@0: v_fn_ptr.vf = vp8_mse16x16; michael@0: michael@0: /* Set up pointers for this macro block recon buffer */ michael@0: xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; michael@0: michael@0: /* Initial step/diamond search centred on best mv */ michael@0: tmp_mv.as_int = 0; michael@0: ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3; michael@0: ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3; michael@0: tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, michael@0: x->sadperbit16, &num00, &v_fn_ptr, michael@0: x->mvcost, ref_mv); michael@0: if ( tmp_err < INT_MAX-new_mv_mode_penalty ) michael@0: tmp_err += new_mv_mode_penalty; michael@0: michael@0: if (tmp_err < *best_motion_err) michael@0: { michael@0: *best_motion_err = tmp_err; michael@0: best_mv->row = tmp_mv.as_mv.row; michael@0: best_mv->col = tmp_mv.as_mv.col; michael@0: } michael@0: michael@0: /* Further step/diamond searches as necessary */ michael@0: n = num00; michael@0: num00 = 0; michael@0: michael@0: while (n < further_steps) michael@0: { michael@0: n++; michael@0: michael@0: if (num00) michael@0: num00--; michael@0: else michael@0: { michael@0: tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, michael@0: step_param + n, x->sadperbit16, michael@0: &num00, &v_fn_ptr, x->mvcost, michael@0: ref_mv); michael@0: if ( tmp_err < INT_MAX-new_mv_mode_penalty ) michael@0: tmp_err += new_mv_mode_penalty; michael@0: michael@0: if (tmp_err < *best_motion_err) michael@0: { michael@0: *best_motion_err = tmp_err; michael@0: best_mv->row = tmp_mv.as_mv.row; michael@0: best_mv->col = tmp_mv.as_mv.col; michael@0: } michael@0: } michael@0: } michael@0: } michael@0: michael@0: void vp8_first_pass(VP8_COMP *cpi) michael@0: { michael@0: int mb_row, mb_col; michael@0: MACROBLOCK *const x = & cpi->mb; michael@0: VP8_COMMON *const cm = & cpi->common; michael@0: MACROBLOCKD *const xd = & x->e_mbd; michael@0: michael@0: int recon_yoffset, recon_uvoffset; michael@0: YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; michael@0: YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; michael@0: YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; michael@0: int recon_y_stride = lst_yv12->y_stride; michael@0: int recon_uv_stride = lst_yv12->uv_stride; michael@0: int64_t intra_error = 0; michael@0: int64_t coded_error = 0; michael@0: michael@0: int sum_mvr = 0, sum_mvc = 0; michael@0: int sum_mvr_abs = 0, sum_mvc_abs = 0; michael@0: int sum_mvrs = 0, sum_mvcs = 0; michael@0: int mvcount = 0; michael@0: int intercount = 0; michael@0: int second_ref_count = 0; michael@0: int intrapenalty = 256; michael@0: int neutral_count = 0; michael@0: int new_mv_count = 0; michael@0: int sum_in_vectors = 0; michael@0: uint32_t lastmv_as_int = 0; michael@0: michael@0: int_mv zero_ref_mv; michael@0: michael@0: zero_ref_mv.as_int = 0; michael@0: michael@0: vp8_clear_system_state(); michael@0: michael@0: x->src = * cpi->Source; michael@0: xd->pre = *lst_yv12; michael@0: xd->dst = *new_yv12; michael@0: michael@0: x->partition_info = x->pi; michael@0: michael@0: xd->mode_info_context = cm->mi; michael@0: michael@0: if(!cm->use_bilinear_mc_filter) michael@0: { michael@0: xd->subpixel_predict = vp8_sixtap_predict4x4; michael@0: xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; michael@0: xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; michael@0: xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; michael@0: } michael@0: else michael@0: { michael@0: xd->subpixel_predict = vp8_bilinear_predict4x4; michael@0: xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; michael@0: xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; michael@0: xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; michael@0: } michael@0: michael@0: vp8_build_block_offsets(x); michael@0: michael@0: /* set up frame new frame for intra coded blocks */ michael@0: vp8_setup_intra_recon(new_yv12); michael@0: vp8cx_frame_init_quantizer(cpi); michael@0: michael@0: /* Initialise the MV cost table to the defaults */ michael@0: { michael@0: int flag[2] = {1, 1}; michael@0: vp8_initialize_rd_consts(cpi, x, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); michael@0: vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); michael@0: vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); michael@0: } michael@0: michael@0: /* for each macroblock row in image */ michael@0: for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) michael@0: { michael@0: int_mv best_ref_mv; michael@0: michael@0: best_ref_mv.as_int = 0; michael@0: michael@0: /* reset above block coeffs */ michael@0: xd->up_available = (mb_row != 0); michael@0: recon_yoffset = (mb_row * recon_y_stride * 16); michael@0: recon_uvoffset = (mb_row * recon_uv_stride * 8); michael@0: michael@0: /* Set up limit values for motion vectors to prevent them extending michael@0: * outside the UMV borders michael@0: */ michael@0: x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); michael@0: x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); michael@0: michael@0: michael@0: /* for each macroblock col in image */ michael@0: for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) michael@0: { michael@0: int this_error; michael@0: int gf_motion_error = INT_MAX; michael@0: int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); michael@0: michael@0: xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; michael@0: xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; michael@0: xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; michael@0: xd->left_available = (mb_col != 0); michael@0: michael@0: /* Copy current mb to a buffer */ michael@0: vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); michael@0: michael@0: /* do intra 16x16 prediction */ michael@0: this_error = vp8_encode_intra(cpi, x, use_dc_pred); michael@0: michael@0: /* "intrapenalty" below deals with situations where the intra michael@0: * and inter error scores are very low (eg a plain black frame) michael@0: * We do not have special cases in first pass for 0,0 and michael@0: * nearest etc so all inter modes carry an overhead cost michael@0: * estimate fot the mv. When the error score is very low this michael@0: * causes us to pick all or lots of INTRA modes and throw lots michael@0: * of key frames. This penalty adds a cost matching that of a michael@0: * 0,0 mv to the intra case. michael@0: */ michael@0: this_error += intrapenalty; michael@0: michael@0: /* Cumulative intra error total */ michael@0: intra_error += (int64_t)this_error; michael@0: michael@0: /* Set up limit values for motion vectors to prevent them michael@0: * extending outside the UMV borders michael@0: */ michael@0: x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); michael@0: x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); michael@0: michael@0: /* Other than for the first frame do a motion search */ michael@0: if (cm->current_video_frame > 0) michael@0: { michael@0: BLOCKD *d = &x->e_mbd.block[0]; michael@0: MV tmp_mv = {0, 0}; michael@0: int tmp_err; michael@0: int motion_error = INT_MAX; michael@0: int raw_motion_error = INT_MAX; michael@0: michael@0: /* Simple 0,0 motion with no mv overhead */ michael@0: zz_motion_search( cpi, x, cpi->last_frame_unscaled_source, michael@0: &raw_motion_error, lst_yv12, &motion_error, michael@0: recon_yoffset ); michael@0: d->bmi.mv.as_mv.row = 0; michael@0: d->bmi.mv.as_mv.col = 0; michael@0: michael@0: if (raw_motion_error < cpi->oxcf.encode_breakout) michael@0: goto skip_motion_search; michael@0: michael@0: /* Test last reference frame using the previous best mv as the michael@0: * starting point (best reference) for the search michael@0: */ michael@0: first_pass_motion_search(cpi, x, &best_ref_mv, michael@0: &d->bmi.mv.as_mv, lst_yv12, michael@0: &motion_error, recon_yoffset); michael@0: michael@0: /* If the current best reference mv is not centred on 0,0 michael@0: * then do a 0,0 based search as well michael@0: */ michael@0: if (best_ref_mv.as_int) michael@0: { michael@0: tmp_err = INT_MAX; michael@0: first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, michael@0: lst_yv12, &tmp_err, recon_yoffset); michael@0: michael@0: if ( tmp_err < motion_error ) michael@0: { michael@0: motion_error = tmp_err; michael@0: d->bmi.mv.as_mv.row = tmp_mv.row; michael@0: d->bmi.mv.as_mv.col = tmp_mv.col; michael@0: } michael@0: } michael@0: michael@0: /* Experimental search in a second reference frame ((0,0) michael@0: * based only) michael@0: */ michael@0: if (cm->current_video_frame > 1) michael@0: { michael@0: first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset); michael@0: michael@0: if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) michael@0: { michael@0: second_ref_count++; michael@0: } michael@0: michael@0: /* Reset to last frame as reference buffer */ michael@0: xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; michael@0: xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; michael@0: xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; michael@0: } michael@0: michael@0: skip_motion_search: michael@0: /* Intra assumed best */ michael@0: best_ref_mv.as_int = 0; michael@0: michael@0: if (motion_error <= this_error) michael@0: { michael@0: /* Keep a count of cases where the inter and intra were michael@0: * very close and very low. This helps with scene cut michael@0: * detection for example in cropped clips with black bars michael@0: * at the sides or top and bottom. michael@0: */ michael@0: if( (((this_error-intrapenalty) * 9) <= michael@0: (motion_error*10)) && michael@0: (this_error < (2*intrapenalty)) ) michael@0: { michael@0: neutral_count++; michael@0: } michael@0: michael@0: d->bmi.mv.as_mv.row *= 8; michael@0: d->bmi.mv.as_mv.col *= 8; michael@0: this_error = motion_error; michael@0: vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); michael@0: vp8_encode_inter16x16y(x); michael@0: sum_mvr += d->bmi.mv.as_mv.row; michael@0: sum_mvr_abs += abs(d->bmi.mv.as_mv.row); michael@0: sum_mvc += d->bmi.mv.as_mv.col; michael@0: sum_mvc_abs += abs(d->bmi.mv.as_mv.col); michael@0: sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; michael@0: sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; michael@0: intercount++; michael@0: michael@0: best_ref_mv.as_int = d->bmi.mv.as_int; michael@0: michael@0: /* Was the vector non-zero */ michael@0: if (d->bmi.mv.as_int) michael@0: { michael@0: mvcount++; michael@0: michael@0: /* Was it different from the last non zero vector */ michael@0: if ( d->bmi.mv.as_int != lastmv_as_int ) michael@0: new_mv_count++; michael@0: lastmv_as_int = d->bmi.mv.as_int; michael@0: michael@0: /* Does the Row vector point inwards or outwards */ michael@0: if (mb_row < cm->mb_rows / 2) michael@0: { michael@0: if (d->bmi.mv.as_mv.row > 0) michael@0: sum_in_vectors--; michael@0: else if (d->bmi.mv.as_mv.row < 0) michael@0: sum_in_vectors++; michael@0: } michael@0: else if (mb_row > cm->mb_rows / 2) michael@0: { michael@0: if (d->bmi.mv.as_mv.row > 0) michael@0: sum_in_vectors++; michael@0: else if (d->bmi.mv.as_mv.row < 0) michael@0: sum_in_vectors--; michael@0: } michael@0: michael@0: /* Does the Row vector point inwards or outwards */ michael@0: if (mb_col < cm->mb_cols / 2) michael@0: { michael@0: if (d->bmi.mv.as_mv.col > 0) michael@0: sum_in_vectors--; michael@0: else if (d->bmi.mv.as_mv.col < 0) michael@0: sum_in_vectors++; michael@0: } michael@0: else if (mb_col > cm->mb_cols / 2) michael@0: { michael@0: if (d->bmi.mv.as_mv.col > 0) michael@0: sum_in_vectors++; michael@0: else if (d->bmi.mv.as_mv.col < 0) michael@0: sum_in_vectors--; michael@0: } michael@0: } michael@0: } michael@0: } michael@0: michael@0: coded_error += (int64_t)this_error; michael@0: michael@0: /* adjust to the next column of macroblocks */ michael@0: x->src.y_buffer += 16; michael@0: x->src.u_buffer += 8; michael@0: x->src.v_buffer += 8; michael@0: michael@0: recon_yoffset += 16; michael@0: recon_uvoffset += 8; michael@0: } michael@0: michael@0: /* adjust to the next row of mbs */ michael@0: x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; michael@0: x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; michael@0: x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; michael@0: michael@0: /* extend the recon for intra prediction */ michael@0: vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); michael@0: vp8_clear_system_state(); michael@0: } michael@0: michael@0: vp8_clear_system_state(); michael@0: { michael@0: double weight = 0.0; michael@0: michael@0: FIRSTPASS_STATS fps; michael@0: michael@0: fps.frame = cm->current_video_frame ; michael@0: fps.intra_error = (double)(intra_error >> 8); michael@0: fps.coded_error = (double)(coded_error >> 8); michael@0: weight = simple_weight(cpi->Source); michael@0: michael@0: michael@0: if (weight < 0.1) michael@0: weight = 0.1; michael@0: michael@0: fps.ssim_weighted_pred_err = fps.coded_error * weight; michael@0: michael@0: fps.pcnt_inter = 0.0; michael@0: fps.pcnt_motion = 0.0; michael@0: fps.MVr = 0.0; michael@0: fps.mvr_abs = 0.0; michael@0: fps.MVc = 0.0; michael@0: fps.mvc_abs = 0.0; michael@0: fps.MVrv = 0.0; michael@0: fps.MVcv = 0.0; michael@0: fps.mv_in_out_count = 0.0; michael@0: fps.new_mv_count = 0.0; michael@0: fps.count = 1.0; michael@0: michael@0: fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; michael@0: fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; michael@0: fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; michael@0: michael@0: if (mvcount > 0) michael@0: { michael@0: fps.MVr = (double)sum_mvr / (double)mvcount; michael@0: fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; michael@0: fps.MVc = (double)sum_mvc / (double)mvcount; michael@0: fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; michael@0: fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; michael@0: fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; michael@0: fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); michael@0: fps.new_mv_count = new_mv_count; michael@0: michael@0: fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; michael@0: } michael@0: michael@0: /* TODO: handle the case when duration is set to 0, or something less michael@0: * than the full time between subsequent cpi->source_time_stamps michael@0: */ michael@0: fps.duration = (double)(cpi->source->ts_end michael@0: - cpi->source->ts_start); michael@0: michael@0: /* don't want to do output stats with a stack variable! */ michael@0: memcpy(&cpi->twopass.this_frame_stats, michael@0: &fps, michael@0: sizeof(FIRSTPASS_STATS)); michael@0: output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); michael@0: accumulate_stats(&cpi->twopass.total_stats, &fps); michael@0: } michael@0: michael@0: /* Copy the previous Last Frame into the GF buffer if specific michael@0: * conditions for doing so are met michael@0: */ michael@0: if ((cm->current_video_frame > 0) && michael@0: (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && michael@0: ((cpi->twopass.this_frame_stats.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > michael@0: 2.0)) michael@0: { michael@0: vp8_yv12_copy_frame(lst_yv12, gld_yv12); michael@0: } michael@0: michael@0: /* swap frame pointers so last frame refers to the frame we just michael@0: * compressed michael@0: */ michael@0: vp8_swap_yv12_buffer(lst_yv12, new_yv12); michael@0: vp8_yv12_extend_frame_borders(lst_yv12); michael@0: michael@0: /* Special case for the first frame. Copy into the GF buffer as a michael@0: * second reference. michael@0: */ michael@0: if (cm->current_video_frame == 0) michael@0: { michael@0: vp8_yv12_copy_frame(lst_yv12, gld_yv12); michael@0: } michael@0: michael@0: michael@0: /* use this to see what the first pass reconstruction looks like */ michael@0: if (0) michael@0: { michael@0: char filename[512]; michael@0: FILE *recon_file; michael@0: sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); michael@0: michael@0: if (cm->current_video_frame == 0) michael@0: recon_file = fopen(filename, "wb"); michael@0: else michael@0: recon_file = fopen(filename, "ab"); michael@0: michael@0: (void) fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, michael@0: recon_file); michael@0: fclose(recon_file); michael@0: } michael@0: michael@0: cm->current_video_frame++; michael@0: michael@0: } michael@0: extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; michael@0: michael@0: /* Estimate a cost per mb attributable to overheads such as the coding of michael@0: * modes and motion vectors. michael@0: * Currently simplistic in its assumptions for testing. michael@0: */ michael@0: michael@0: static double bitcost( double prob ) michael@0: { michael@0: if (prob > 0.000122) michael@0: return -log(prob) / log(2.0); michael@0: else michael@0: return 13.0; michael@0: } michael@0: static int64_t estimate_modemvcost(VP8_COMP *cpi, michael@0: FIRSTPASS_STATS * fpstats) michael@0: { michael@0: int mv_cost; michael@0: int64_t mode_cost; michael@0: michael@0: double av_pct_inter = fpstats->pcnt_inter / fpstats->count; michael@0: double av_pct_motion = fpstats->pcnt_motion / fpstats->count; michael@0: double av_intra = (1.0 - av_pct_inter); michael@0: michael@0: double zz_cost; michael@0: double motion_cost; michael@0: double intra_cost; michael@0: michael@0: zz_cost = bitcost(av_pct_inter - av_pct_motion); michael@0: motion_cost = bitcost(av_pct_motion); michael@0: intra_cost = bitcost(av_intra); michael@0: michael@0: /* Estimate of extra bits per mv overhead for mbs michael@0: * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb michael@0: */ michael@0: mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; michael@0: michael@0: /* Crude estimate of overhead cost from modes michael@0: * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb michael@0: */ michael@0: mode_cost =((((av_pct_inter - av_pct_motion) * zz_cost) + michael@0: (av_pct_motion * motion_cost) + michael@0: (av_intra * intra_cost)) * cpi->common.MBs) * 512; michael@0: michael@0: return mv_cost + mode_cost; michael@0: } michael@0: michael@0: static double calc_correction_factor( double err_per_mb, michael@0: double err_devisor, michael@0: double pt_low, michael@0: double pt_high, michael@0: int Q ) michael@0: { michael@0: double power_term; michael@0: double error_term = err_per_mb / err_devisor; michael@0: double correction_factor; michael@0: michael@0: /* Adjustment based on Q to power term. */ michael@0: power_term = pt_low + (Q * 0.01); michael@0: power_term = (power_term > pt_high) ? pt_high : power_term; michael@0: michael@0: /* Adjustments to error term */ michael@0: /* TBD */ michael@0: michael@0: /* Calculate correction factor */ michael@0: correction_factor = pow(error_term, power_term); michael@0: michael@0: /* Clip range */ michael@0: correction_factor = michael@0: (correction_factor < 0.05) michael@0: ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; michael@0: michael@0: return correction_factor; michael@0: } michael@0: michael@0: static int estimate_max_q(VP8_COMP *cpi, michael@0: FIRSTPASS_STATS * fpstats, michael@0: int section_target_bandwitdh, michael@0: int overhead_bits ) michael@0: { michael@0: int Q; michael@0: int num_mbs = cpi->common.MBs; michael@0: int target_norm_bits_per_mb; michael@0: michael@0: double section_err = (fpstats->coded_error / fpstats->count); michael@0: double err_per_mb = section_err / num_mbs; michael@0: double err_correction_factor; michael@0: double speed_correction = 1.0; michael@0: int overhead_bits_per_mb; michael@0: michael@0: if (section_target_bandwitdh <= 0) michael@0: return cpi->twopass.maxq_max_limit; /* Highest value allowed */ michael@0: michael@0: target_norm_bits_per_mb = michael@0: (section_target_bandwitdh < (1 << 20)) michael@0: ? (512 * section_target_bandwitdh) / num_mbs michael@0: : 512 * (section_target_bandwitdh / num_mbs); michael@0: michael@0: /* Calculate a corrective factor based on a rolling ratio of bits spent michael@0: * vs target bits michael@0: */ michael@0: if ((cpi->rolling_target_bits > 0) && michael@0: (cpi->active_worst_quality < cpi->worst_quality)) michael@0: { michael@0: double rolling_ratio; michael@0: michael@0: rolling_ratio = (double)cpi->rolling_actual_bits / michael@0: (double)cpi->rolling_target_bits; michael@0: michael@0: if (rolling_ratio < 0.95) michael@0: cpi->twopass.est_max_qcorrection_factor -= 0.005; michael@0: else if (rolling_ratio > 1.05) michael@0: cpi->twopass.est_max_qcorrection_factor += 0.005; michael@0: michael@0: cpi->twopass.est_max_qcorrection_factor = michael@0: (cpi->twopass.est_max_qcorrection_factor < 0.1) michael@0: ? 0.1 michael@0: : (cpi->twopass.est_max_qcorrection_factor > 10.0) michael@0: ? 10.0 : cpi->twopass.est_max_qcorrection_factor; michael@0: } michael@0: michael@0: /* Corrections for higher compression speed settings michael@0: * (reduced compression expected) michael@0: */ michael@0: if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) michael@0: { michael@0: if (cpi->oxcf.cpu_used <= 5) michael@0: speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); michael@0: else michael@0: speed_correction = 1.25; michael@0: } michael@0: michael@0: /* Estimate of overhead bits per mb */ michael@0: /* Correction to overhead bits for min allowed Q. */ michael@0: overhead_bits_per_mb = overhead_bits / num_mbs; michael@0: overhead_bits_per_mb = (int)(overhead_bits_per_mb * michael@0: pow( 0.98, (double)cpi->twopass.maxq_min_limit )); michael@0: michael@0: /* Try and pick a max Q that will be high enough to encode the michael@0: * content at the given rate. michael@0: */ michael@0: for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) michael@0: { michael@0: int bits_per_mb_at_this_q; michael@0: michael@0: /* Error per MB based correction factor */ michael@0: err_correction_factor = michael@0: calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); michael@0: michael@0: bits_per_mb_at_this_q = michael@0: vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; michael@0: michael@0: bits_per_mb_at_this_q = (int)(.5 + err_correction_factor michael@0: * speed_correction * cpi->twopass.est_max_qcorrection_factor michael@0: * cpi->twopass.section_max_qfactor michael@0: * (double)bits_per_mb_at_this_q); michael@0: michael@0: /* Mode and motion overhead */ michael@0: /* As Q rises in real encode loop rd code will force overhead down michael@0: * We make a crude adjustment for this here as *.98 per Q step. michael@0: */ michael@0: overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); michael@0: michael@0: if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) michael@0: break; michael@0: } michael@0: michael@0: /* Restriction on active max q for constrained quality mode. */ michael@0: if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && michael@0: (Q < cpi->cq_target_quality) ) michael@0: { michael@0: Q = cpi->cq_target_quality; michael@0: } michael@0: michael@0: /* Adjust maxq_min_limit and maxq_max_limit limits based on michael@0: * average q observed in clip for non kf/gf.arf frames michael@0: * Give average a chance to settle though. michael@0: */ michael@0: if ( (cpi->ni_frames > michael@0: ((int)cpi->twopass.total_stats.count >> 8)) && michael@0: (cpi->ni_frames > 150) ) michael@0: { michael@0: cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) michael@0: ? (cpi->ni_av_qi + 32) : cpi->worst_quality; michael@0: cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) michael@0: ? (cpi->ni_av_qi - 32) : cpi->best_quality; michael@0: } michael@0: michael@0: return Q; michael@0: } michael@0: michael@0: /* For cq mode estimate a cq level that matches the observed michael@0: * complexity and data rate. michael@0: */ michael@0: static int estimate_cq( VP8_COMP *cpi, michael@0: FIRSTPASS_STATS * fpstats, michael@0: int section_target_bandwitdh, michael@0: int overhead_bits ) michael@0: { michael@0: int Q; michael@0: int num_mbs = cpi->common.MBs; michael@0: int target_norm_bits_per_mb; michael@0: michael@0: double section_err = (fpstats->coded_error / fpstats->count); michael@0: double err_per_mb = section_err / num_mbs; michael@0: double err_correction_factor; michael@0: double speed_correction = 1.0; michael@0: double clip_iiratio; michael@0: double clip_iifactor; michael@0: int overhead_bits_per_mb; michael@0: michael@0: if (0) michael@0: { michael@0: FILE *f = fopen("epmp.stt", "a"); michael@0: fprintf(f, "%10.2f\n", err_per_mb ); michael@0: fclose(f); michael@0: } michael@0: michael@0: target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) michael@0: ? (512 * section_target_bandwitdh) / num_mbs michael@0: : 512 * (section_target_bandwitdh / num_mbs); michael@0: michael@0: /* Estimate of overhead bits per mb */ michael@0: overhead_bits_per_mb = overhead_bits / num_mbs; michael@0: michael@0: /* Corrections for higher compression speed settings michael@0: * (reduced compression expected) michael@0: */ michael@0: if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) michael@0: { michael@0: if (cpi->oxcf.cpu_used <= 5) michael@0: speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); michael@0: else michael@0: speed_correction = 1.25; michael@0: } michael@0: michael@0: /* II ratio correction factor for clip as a whole */ michael@0: clip_iiratio = cpi->twopass.total_stats.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); michael@0: clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); michael@0: if (clip_iifactor < 0.80) michael@0: clip_iifactor = 0.80; michael@0: michael@0: /* Try and pick a Q that can encode the content at the given rate. */ michael@0: for (Q = 0; Q < MAXQ; Q++) michael@0: { michael@0: int bits_per_mb_at_this_q; michael@0: michael@0: /* Error per MB based correction factor */ michael@0: err_correction_factor = michael@0: calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); michael@0: michael@0: bits_per_mb_at_this_q = michael@0: vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; michael@0: michael@0: bits_per_mb_at_this_q = michael@0: (int)( .5 + err_correction_factor * michael@0: speed_correction * michael@0: clip_iifactor * michael@0: (double)bits_per_mb_at_this_q); michael@0: michael@0: /* Mode and motion overhead */ michael@0: /* As Q rises in real encode loop rd code will force overhead down michael@0: * We make a crude adjustment for this here as *.98 per Q step. michael@0: */ michael@0: overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); michael@0: michael@0: if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) michael@0: break; michael@0: } michael@0: michael@0: /* Clip value to range "best allowed to (worst allowed - 1)" */ michael@0: Q = cq_level[Q]; michael@0: if ( Q >= cpi->worst_quality ) michael@0: Q = cpi->worst_quality - 1; michael@0: if ( Q < cpi->best_quality ) michael@0: Q = cpi->best_quality; michael@0: michael@0: return Q; michael@0: } michael@0: michael@0: static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh) michael@0: { michael@0: int Q; michael@0: int num_mbs = cpi->common.MBs; michael@0: int target_norm_bits_per_mb; michael@0: michael@0: double err_per_mb = section_err / num_mbs; michael@0: double err_correction_factor; michael@0: double speed_correction = 1.0; michael@0: michael@0: target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); michael@0: michael@0: /* Corrections for higher compression speed settings michael@0: * (reduced compression expected) michael@0: */ michael@0: if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) michael@0: { michael@0: if (cpi->oxcf.cpu_used <= 5) michael@0: speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); michael@0: else michael@0: speed_correction = 1.25; michael@0: } michael@0: michael@0: /* Try and pick a Q that can encode the content at the given rate. */ michael@0: for (Q = 0; Q < MAXQ; Q++) michael@0: { michael@0: int bits_per_mb_at_this_q; michael@0: michael@0: /* Error per MB based correction factor */ michael@0: err_correction_factor = michael@0: calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); michael@0: michael@0: bits_per_mb_at_this_q = michael@0: (int)( .5 + ( err_correction_factor * michael@0: speed_correction * michael@0: cpi->twopass.est_max_qcorrection_factor * michael@0: (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0 ) ); michael@0: michael@0: if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) michael@0: break; michael@0: } michael@0: michael@0: return Q; michael@0: } michael@0: michael@0: /* Estimate a worst case Q for a KF group */ michael@0: static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, double group_iiratio) michael@0: { michael@0: int Q; michael@0: int num_mbs = cpi->common.MBs; michael@0: int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; michael@0: int bits_per_mb_at_this_q; michael@0: michael@0: double err_per_mb = section_err / num_mbs; michael@0: double err_correction_factor; michael@0: double speed_correction = 1.0; michael@0: double current_spend_ratio = 1.0; michael@0: michael@0: double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; michael@0: double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; michael@0: michael@0: double iiratio_correction_factor = 1.0; michael@0: michael@0: double combined_correction_factor; michael@0: michael@0: /* Trap special case where the target is <= 0 */ michael@0: if (target_norm_bits_per_mb <= 0) michael@0: return MAXQ * 2; michael@0: michael@0: /* Calculate a corrective factor based on a rolling ratio of bits spent michael@0: * vs target bits michael@0: * This is clamped to the range 0.1 to 10.0 michael@0: */ michael@0: if (cpi->long_rolling_target_bits <= 0) michael@0: current_spend_ratio = 10.0; michael@0: else michael@0: { michael@0: current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits; michael@0: current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; michael@0: } michael@0: michael@0: /* Calculate a correction factor based on the quality of prediction in michael@0: * the sequence as indicated by intra_inter error score ratio (IIRatio) michael@0: * The idea here is to favour subsampling in the hardest sections vs michael@0: * the easyest. michael@0: */ michael@0: iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); michael@0: michael@0: if (iiratio_correction_factor < 0.5) michael@0: iiratio_correction_factor = 0.5; michael@0: michael@0: /* Corrections for higher compression speed settings michael@0: * (reduced compression expected) michael@0: */ michael@0: if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) michael@0: { michael@0: if (cpi->oxcf.cpu_used <= 5) michael@0: speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); michael@0: else michael@0: speed_correction = 1.25; michael@0: } michael@0: michael@0: /* Combine the various factors calculated above */ michael@0: combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio; michael@0: michael@0: /* Try and pick a Q that should be high enough to encode the content at michael@0: * the given rate. michael@0: */ michael@0: for (Q = 0; Q < MAXQ; Q++) michael@0: { michael@0: /* Error per MB based correction factor */ michael@0: err_correction_factor = michael@0: calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); michael@0: michael@0: bits_per_mb_at_this_q = michael@0: (int)(.5 + ( err_correction_factor * michael@0: combined_correction_factor * michael@0: (double)vp8_bits_per_mb[INTER_FRAME][Q]) ); michael@0: michael@0: if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) michael@0: break; michael@0: } michael@0: michael@0: /* If we could not hit the target even at Max Q then estimate what Q michael@0: * would have been required michael@0: */ michael@0: while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2))) michael@0: { michael@0: michael@0: bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); michael@0: Q++; michael@0: } michael@0: michael@0: if (0) michael@0: { michael@0: FILE *f = fopen("estkf_q.stt", "a"); michael@0: fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q, michael@0: target_norm_bits_per_mb, err_per_mb, err_correction_factor, michael@0: current_spend_ratio, group_iiratio, iiratio_correction_factor, michael@0: (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q); michael@0: fclose(f); michael@0: } michael@0: michael@0: return Q; michael@0: } michael@0: michael@0: extern void vp8_new_framerate(VP8_COMP *cpi, double framerate); michael@0: michael@0: void vp8_init_second_pass(VP8_COMP *cpi) michael@0: { michael@0: FIRSTPASS_STATS this_frame; michael@0: FIRSTPASS_STATS *start_pos; michael@0: michael@0: double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); michael@0: michael@0: zero_stats(&cpi->twopass.total_stats); michael@0: zero_stats(&cpi->twopass.total_left_stats); michael@0: michael@0: if (!cpi->twopass.stats_in_end) michael@0: return; michael@0: michael@0: cpi->twopass.total_stats = *cpi->twopass.stats_in_end; michael@0: cpi->twopass.total_left_stats = cpi->twopass.total_stats; michael@0: michael@0: /* each frame can have a different duration, as the frame rate in the michael@0: * source isn't guaranteed to be constant. The frame rate prior to michael@0: * the first frame encoded in the second pass is a guess. However the michael@0: * sum duration is not. Its calculated based on the actual durations of michael@0: * all frames from the first pass. michael@0: */ michael@0: vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration); michael@0: michael@0: cpi->output_framerate = cpi->framerate; michael@0: cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0) ; michael@0: cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0); michael@0: michael@0: /* Calculate a minimum intra value to be used in determining the IIratio michael@0: * scores used in the second pass. We have this minimum to make sure michael@0: * that clips that are static but "low complexity" in the intra domain michael@0: * are still boosted appropriately for KF/GF/ARF michael@0: */ michael@0: cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; michael@0: cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; michael@0: michael@0: /* Scan the first pass file and calculate an average Intra / Inter error michael@0: * score ratio for the sequence michael@0: */ michael@0: { michael@0: double sum_iiratio = 0.0; michael@0: double IIRatio; michael@0: michael@0: start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ michael@0: michael@0: while (input_stats(cpi, &this_frame) != EOF) michael@0: { michael@0: IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); michael@0: IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; michael@0: sum_iiratio += IIRatio; michael@0: } michael@0: michael@0: cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); michael@0: michael@0: /* Reset file position */ michael@0: reset_fpf_position(cpi, start_pos); michael@0: } michael@0: michael@0: /* Scan the first pass file and calculate a modified total error based michael@0: * upon the bias/power function used to allocate bits michael@0: */ michael@0: { michael@0: start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ michael@0: michael@0: cpi->twopass.modified_error_total = 0.0; michael@0: cpi->twopass.modified_error_used = 0.0; michael@0: michael@0: while (input_stats(cpi, &this_frame) != EOF) michael@0: { michael@0: cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); michael@0: } michael@0: cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; michael@0: michael@0: reset_fpf_position(cpi, start_pos); /* Reset file position */ michael@0: michael@0: } michael@0: } michael@0: michael@0: void vp8_end_second_pass(VP8_COMP *cpi) michael@0: { michael@0: } michael@0: michael@0: /* This function gives and estimate of how badly we believe the prediction michael@0: * quality is decaying from frame to frame. michael@0: */ michael@0: static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) michael@0: { michael@0: double prediction_decay_rate; michael@0: double motion_decay; michael@0: double motion_pct = next_frame->pcnt_motion; michael@0: michael@0: /* Initial basis is the % mbs inter coded */ michael@0: prediction_decay_rate = next_frame->pcnt_inter; michael@0: michael@0: /* High % motion -> somewhat higher decay rate */ michael@0: motion_decay = (1.0 - (motion_pct / 20.0)); michael@0: if (motion_decay < prediction_decay_rate) michael@0: prediction_decay_rate = motion_decay; michael@0: michael@0: /* Adjustment to decay rate based on speed of motion */ michael@0: { michael@0: double this_mv_rabs; michael@0: double this_mv_cabs; michael@0: double distance_factor; michael@0: michael@0: this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); michael@0: this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); michael@0: michael@0: distance_factor = sqrt((this_mv_rabs * this_mv_rabs) + michael@0: (this_mv_cabs * this_mv_cabs)) / 250.0; michael@0: distance_factor = ((distance_factor > 1.0) michael@0: ? 0.0 : (1.0 - distance_factor)); michael@0: if (distance_factor < prediction_decay_rate) michael@0: prediction_decay_rate = distance_factor; michael@0: } michael@0: michael@0: return prediction_decay_rate; michael@0: } michael@0: michael@0: /* Function to test for a condition where a complex transition is followed michael@0: * by a static section. For example in slide shows where there is a fade michael@0: * between slides. This is to help with more optimal kf and gf positioning. michael@0: */ michael@0: static int detect_transition_to_still( michael@0: VP8_COMP *cpi, michael@0: int frame_interval, michael@0: int still_interval, michael@0: double loop_decay_rate, michael@0: double decay_accumulator ) michael@0: { michael@0: int trans_to_still = 0; michael@0: michael@0: /* Break clause to detect very still sections after motion michael@0: * For example a static image after a fade or other transition michael@0: * instead of a clean scene cut. michael@0: */ michael@0: if ( (frame_interval > MIN_GF_INTERVAL) && michael@0: (loop_decay_rate >= 0.999) && michael@0: (decay_accumulator < 0.9) ) michael@0: { michael@0: int j; michael@0: FIRSTPASS_STATS * position = cpi->twopass.stats_in; michael@0: FIRSTPASS_STATS tmp_next_frame; michael@0: double decay_rate; michael@0: michael@0: /* Look ahead a few frames to see if static condition persists... */ michael@0: for ( j = 0; j < still_interval; j++ ) michael@0: { michael@0: if (EOF == input_stats(cpi, &tmp_next_frame)) michael@0: break; michael@0: michael@0: decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame); michael@0: if ( decay_rate < 0.999 ) michael@0: break; michael@0: } michael@0: /* Reset file position */ michael@0: reset_fpf_position(cpi, position); michael@0: michael@0: /* Only if it does do we signal a transition to still */ michael@0: if ( j == still_interval ) michael@0: trans_to_still = 1; michael@0: } michael@0: michael@0: return trans_to_still; michael@0: } michael@0: michael@0: /* This function detects a flash through the high relative pcnt_second_ref michael@0: * score in the frame following a flash frame. The offset passed in should michael@0: * reflect this michael@0: */ michael@0: static int detect_flash( VP8_COMP *cpi, int offset ) michael@0: { michael@0: FIRSTPASS_STATS next_frame; michael@0: michael@0: int flash_detected = 0; michael@0: michael@0: /* Read the frame data. */ michael@0: /* The return is 0 (no flash detected) if not a valid frame */ michael@0: if ( read_frame_stats(cpi, &next_frame, offset) != EOF ) michael@0: { michael@0: /* What we are looking for here is a situation where there is a michael@0: * brief break in prediction (such as a flash) but subsequent frames michael@0: * are reasonably well predicted by an earlier (pre flash) frame. michael@0: * The recovery after a flash is indicated by a high pcnt_second_ref michael@0: * comapred to pcnt_inter. michael@0: */ michael@0: if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) && michael@0: (next_frame.pcnt_second_ref >= 0.5 ) ) michael@0: { michael@0: flash_detected = 1; michael@0: michael@0: /*if (1) michael@0: { michael@0: FILE *f = fopen("flash.stt", "a"); michael@0: fprintf(f, "%8.0f %6.2f %6.2f\n", michael@0: next_frame.frame, michael@0: next_frame.pcnt_inter, michael@0: next_frame.pcnt_second_ref); michael@0: fclose(f); michael@0: }*/ michael@0: } michael@0: } michael@0: michael@0: return flash_detected; michael@0: } michael@0: michael@0: /* Update the motion related elements to the GF arf boost calculation */ michael@0: static void accumulate_frame_motion_stats( michael@0: VP8_COMP *cpi, michael@0: FIRSTPASS_STATS * this_frame, michael@0: double * this_frame_mv_in_out, michael@0: double * mv_in_out_accumulator, michael@0: double * abs_mv_in_out_accumulator, michael@0: double * mv_ratio_accumulator ) michael@0: { michael@0: double this_frame_mvr_ratio; michael@0: double this_frame_mvc_ratio; michael@0: double motion_pct; michael@0: michael@0: /* Accumulate motion stats. */ michael@0: motion_pct = this_frame->pcnt_motion; michael@0: michael@0: /* Accumulate Motion In/Out of frame stats */ michael@0: *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; michael@0: *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; michael@0: *abs_mv_in_out_accumulator += michael@0: fabs(this_frame->mv_in_out_count * motion_pct); michael@0: michael@0: /* Accumulate a measure of how uniform (or conversely how random) michael@0: * the motion field is. (A ratio of absmv / mv) michael@0: */ michael@0: if (motion_pct > 0.05) michael@0: { michael@0: this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / michael@0: DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); michael@0: michael@0: this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / michael@0: DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); michael@0: michael@0: *mv_ratio_accumulator += michael@0: (this_frame_mvr_ratio < this_frame->mvr_abs) michael@0: ? (this_frame_mvr_ratio * motion_pct) michael@0: : this_frame->mvr_abs * motion_pct; michael@0: michael@0: *mv_ratio_accumulator += michael@0: (this_frame_mvc_ratio < this_frame->mvc_abs) michael@0: ? (this_frame_mvc_ratio * motion_pct) michael@0: : this_frame->mvc_abs * motion_pct; michael@0: michael@0: } michael@0: } michael@0: michael@0: /* Calculate a baseline boost number for the current frame. */ michael@0: static double calc_frame_boost( michael@0: VP8_COMP *cpi, michael@0: FIRSTPASS_STATS * this_frame, michael@0: double this_frame_mv_in_out ) michael@0: { michael@0: double frame_boost; michael@0: michael@0: /* Underlying boost factor is based on inter intra error ratio */ michael@0: if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) michael@0: frame_boost = (IIFACTOR * this_frame->intra_error / michael@0: DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); michael@0: else michael@0: frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / michael@0: DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); michael@0: michael@0: /* Increase boost for frames where new data coming into frame michael@0: * (eg zoom out). Slightly reduce boost if there is a net balance michael@0: * of motion out of the frame (zoom in). michael@0: * The range for this_frame_mv_in_out is -1.0 to +1.0 michael@0: */ michael@0: if (this_frame_mv_in_out > 0.0) michael@0: frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); michael@0: /* In extreme case boost is halved */ michael@0: else michael@0: frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); michael@0: michael@0: /* Clip to maximum */ michael@0: if (frame_boost > GF_RMAX) michael@0: frame_boost = GF_RMAX; michael@0: michael@0: return frame_boost; michael@0: } michael@0: michael@0: #if NEW_BOOST michael@0: static int calc_arf_boost( michael@0: VP8_COMP *cpi, michael@0: int offset, michael@0: int f_frames, michael@0: int b_frames, michael@0: int *f_boost, michael@0: int *b_boost ) michael@0: { michael@0: FIRSTPASS_STATS this_frame; michael@0: michael@0: int i; michael@0: double boost_score = 0.0; michael@0: double mv_ratio_accumulator = 0.0; michael@0: double decay_accumulator = 1.0; michael@0: double this_frame_mv_in_out = 0.0; michael@0: double mv_in_out_accumulator = 0.0; michael@0: double abs_mv_in_out_accumulator = 0.0; michael@0: double r; michael@0: int flash_detected = 0; michael@0: michael@0: /* Search forward from the proposed arf/next gf position */ michael@0: for ( i = 0; i < f_frames; i++ ) michael@0: { michael@0: if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) michael@0: break; michael@0: michael@0: /* Update the motion related elements to the boost calculation */ michael@0: accumulate_frame_motion_stats( cpi, &this_frame, michael@0: &this_frame_mv_in_out, &mv_in_out_accumulator, michael@0: &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); michael@0: michael@0: /* Calculate the baseline boost number for this frame */ michael@0: r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); michael@0: michael@0: /* We want to discount the the flash frame itself and the recovery michael@0: * frame that follows as both will have poor scores. michael@0: */ michael@0: flash_detected = detect_flash(cpi, (i+offset)) || michael@0: detect_flash(cpi, (i+offset+1)); michael@0: michael@0: /* Cumulative effect of prediction quality decay */ michael@0: if ( !flash_detected ) michael@0: { michael@0: decay_accumulator = michael@0: decay_accumulator * michael@0: get_prediction_decay_rate(cpi, &this_frame); michael@0: decay_accumulator = michael@0: decay_accumulator < 0.1 ? 0.1 : decay_accumulator; michael@0: } michael@0: boost_score += (decay_accumulator * r); michael@0: michael@0: /* Break out conditions. */ michael@0: if ( (!flash_detected) && michael@0: ((mv_ratio_accumulator > 100.0) || michael@0: (abs_mv_in_out_accumulator > 3.0) || michael@0: (mv_in_out_accumulator < -2.0) ) ) michael@0: { michael@0: break; michael@0: } michael@0: } michael@0: michael@0: *f_boost = (int)(boost_score * 100.0) >> 4; michael@0: michael@0: /* Reset for backward looking loop */ michael@0: boost_score = 0.0; michael@0: mv_ratio_accumulator = 0.0; michael@0: decay_accumulator = 1.0; michael@0: this_frame_mv_in_out = 0.0; michael@0: mv_in_out_accumulator = 0.0; michael@0: abs_mv_in_out_accumulator = 0.0; michael@0: michael@0: /* Search forward from the proposed arf/next gf position */ michael@0: for ( i = -1; i >= -b_frames; i-- ) michael@0: { michael@0: if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) michael@0: break; michael@0: michael@0: /* Update the motion related elements to the boost calculation */ michael@0: accumulate_frame_motion_stats( cpi, &this_frame, michael@0: &this_frame_mv_in_out, &mv_in_out_accumulator, michael@0: &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); michael@0: michael@0: /* Calculate the baseline boost number for this frame */ michael@0: r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); michael@0: michael@0: /* We want to discount the the flash frame itself and the recovery michael@0: * frame that follows as both will have poor scores. michael@0: */ michael@0: flash_detected = detect_flash(cpi, (i+offset)) || michael@0: detect_flash(cpi, (i+offset+1)); michael@0: michael@0: /* Cumulative effect of prediction quality decay */ michael@0: if ( !flash_detected ) michael@0: { michael@0: decay_accumulator = michael@0: decay_accumulator * michael@0: get_prediction_decay_rate(cpi, &this_frame); michael@0: decay_accumulator = michael@0: decay_accumulator < 0.1 ? 0.1 : decay_accumulator; michael@0: } michael@0: michael@0: boost_score += (decay_accumulator * r); michael@0: michael@0: /* Break out conditions. */ michael@0: if ( (!flash_detected) && michael@0: ((mv_ratio_accumulator > 100.0) || michael@0: (abs_mv_in_out_accumulator > 3.0) || michael@0: (mv_in_out_accumulator < -2.0) ) ) michael@0: { michael@0: break; michael@0: } michael@0: } michael@0: *b_boost = (int)(boost_score * 100.0) >> 4; michael@0: michael@0: return (*f_boost + *b_boost); michael@0: } michael@0: #endif michael@0: michael@0: /* Analyse and define a gf/arf group . */ michael@0: static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) michael@0: { michael@0: FIRSTPASS_STATS next_frame; michael@0: FIRSTPASS_STATS *start_pos; michael@0: int i; michael@0: double r; michael@0: double boost_score = 0.0; michael@0: double old_boost_score = 0.0; michael@0: double gf_group_err = 0.0; michael@0: double gf_first_frame_err = 0.0; michael@0: double mod_frame_err = 0.0; michael@0: michael@0: double mv_ratio_accumulator = 0.0; michael@0: double decay_accumulator = 1.0; michael@0: michael@0: double loop_decay_rate = 1.00; /* Starting decay rate */ michael@0: michael@0: double this_frame_mv_in_out = 0.0; michael@0: double mv_in_out_accumulator = 0.0; michael@0: double abs_mv_in_out_accumulator = 0.0; michael@0: double mod_err_per_mb_accumulator = 0.0; michael@0: michael@0: int max_bits = frame_max_bits(cpi); /* Max for a single frame */ michael@0: michael@0: unsigned int allow_alt_ref = michael@0: cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; michael@0: michael@0: int alt_boost = 0; michael@0: int f_boost = 0; michael@0: int b_boost = 0; michael@0: int flash_detected; michael@0: michael@0: cpi->twopass.gf_group_bits = 0; michael@0: cpi->twopass.gf_decay_rate = 0; michael@0: michael@0: vp8_clear_system_state(); michael@0: michael@0: start_pos = cpi->twopass.stats_in; michael@0: michael@0: vpx_memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */ michael@0: michael@0: /* Load stats for the current frame. */ michael@0: mod_frame_err = calculate_modified_err(cpi, this_frame); michael@0: michael@0: /* Note the error of the frame at the start of the group (this will be michael@0: * the GF frame error if we code a normal gf michael@0: */ michael@0: gf_first_frame_err = mod_frame_err; michael@0: michael@0: /* Special treatment if the current frame is a key frame (which is also michael@0: * a gf). If it is then its error score (and hence bit allocation) need michael@0: * to be subtracted out from the calculation for the GF group michael@0: */ michael@0: if (cpi->common.frame_type == KEY_FRAME) michael@0: gf_group_err -= gf_first_frame_err; michael@0: michael@0: /* Scan forward to try and work out how many frames the next gf group michael@0: * should contain and what level of boost is appropriate for the GF michael@0: * or ARF that will be coded with the group michael@0: */ michael@0: i = 0; michael@0: michael@0: while (((i < cpi->twopass.static_scene_max_gf_interval) || michael@0: ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && michael@0: (i < cpi->twopass.frames_to_key)) michael@0: { michael@0: i++; michael@0: michael@0: /* Accumulate error score of frames in this gf group */ michael@0: mod_frame_err = calculate_modified_err(cpi, this_frame); michael@0: michael@0: gf_group_err += mod_frame_err; michael@0: michael@0: mod_err_per_mb_accumulator += michael@0: mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); michael@0: michael@0: if (EOF == input_stats(cpi, &next_frame)) michael@0: break; michael@0: michael@0: /* Test for the case where there is a brief flash but the prediction michael@0: * quality back to an earlier frame is then restored. michael@0: */ michael@0: flash_detected = detect_flash(cpi, 0); michael@0: michael@0: /* Update the motion related elements to the boost calculation */ michael@0: accumulate_frame_motion_stats( cpi, &next_frame, michael@0: &this_frame_mv_in_out, &mv_in_out_accumulator, michael@0: &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); michael@0: michael@0: /* Calculate a baseline boost number for this frame */ michael@0: r = calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ); michael@0: michael@0: /* Cumulative effect of prediction quality decay */ michael@0: if ( !flash_detected ) michael@0: { michael@0: loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); michael@0: decay_accumulator = decay_accumulator * loop_decay_rate; michael@0: decay_accumulator = michael@0: decay_accumulator < 0.1 ? 0.1 : decay_accumulator; michael@0: } michael@0: boost_score += (decay_accumulator * r); michael@0: michael@0: /* Break clause to detect very still sections after motion michael@0: * For example a staic image after a fade or other transition. michael@0: */ michael@0: if ( detect_transition_to_still( cpi, i, 5, michael@0: loop_decay_rate, michael@0: decay_accumulator ) ) michael@0: { michael@0: allow_alt_ref = 0; michael@0: boost_score = old_boost_score; michael@0: break; michael@0: } michael@0: michael@0: /* Break out conditions. */ michael@0: if ( michael@0: /* Break at cpi->max_gf_interval unless almost totally static */ michael@0: (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || michael@0: ( michael@0: /* Dont break out with a very short interval */ michael@0: (i > MIN_GF_INTERVAL) && michael@0: /* Dont break out very close to a key frame */ michael@0: ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && michael@0: ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && michael@0: (!flash_detected) && michael@0: ((mv_ratio_accumulator > 100.0) || michael@0: (abs_mv_in_out_accumulator > 3.0) || michael@0: (mv_in_out_accumulator < -2.0) || michael@0: ((boost_score - old_boost_score) < 2.0)) michael@0: ) ) michael@0: { michael@0: boost_score = old_boost_score; michael@0: break; michael@0: } michael@0: michael@0: vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame)); michael@0: michael@0: old_boost_score = boost_score; michael@0: } michael@0: michael@0: cpi->twopass.gf_decay_rate = michael@0: (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; michael@0: michael@0: /* When using CBR apply additional buffer related upper limits */ michael@0: if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) michael@0: { michael@0: double max_boost; michael@0: michael@0: /* For cbr apply buffer related limits */ michael@0: if (cpi->drop_frames_allowed) michael@0: { michael@0: int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark * michael@0: (cpi->oxcf.optimal_buffer_level / 100); michael@0: michael@0: if (cpi->buffer_level > df_buffer_level) michael@0: max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); michael@0: else michael@0: max_boost = 0.0; michael@0: } michael@0: else if (cpi->buffer_level > 0) michael@0: { michael@0: max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); michael@0: } michael@0: else michael@0: { michael@0: max_boost = 0.0; michael@0: } michael@0: michael@0: if (boost_score > max_boost) michael@0: boost_score = max_boost; michael@0: } michael@0: michael@0: /* Dont allow conventional gf too near the next kf */ michael@0: if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) michael@0: { michael@0: while (i < cpi->twopass.frames_to_key) michael@0: { michael@0: i++; michael@0: michael@0: if (EOF == input_stats(cpi, this_frame)) michael@0: break; michael@0: michael@0: if (i < cpi->twopass.frames_to_key) michael@0: { michael@0: mod_frame_err = calculate_modified_err(cpi, this_frame); michael@0: gf_group_err += mod_frame_err; michael@0: } michael@0: } michael@0: } michael@0: michael@0: cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; michael@0: michael@0: #if NEW_BOOST michael@0: /* Alterrnative boost calculation for alt ref */ michael@0: alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost ); michael@0: #endif michael@0: michael@0: /* Should we use the alternate refernce frame */ michael@0: if (allow_alt_ref && michael@0: (i >= MIN_GF_INTERVAL) && michael@0: /* dont use ARF very near next kf */ michael@0: (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && michael@0: #if NEW_BOOST michael@0: ((next_frame.pcnt_inter > 0.75) || michael@0: (next_frame.pcnt_second_ref > 0.5)) && michael@0: ((mv_in_out_accumulator / (double)i > -0.2) || michael@0: (mv_in_out_accumulator > -2.0)) && michael@0: (b_boost > 100) && michael@0: (f_boost > 100) ) michael@0: #else michael@0: (next_frame.pcnt_inter > 0.75) && michael@0: ((mv_in_out_accumulator / (double)i > -0.2) || michael@0: (mv_in_out_accumulator > -2.0)) && michael@0: (cpi->gfu_boost > 100) && michael@0: (cpi->twopass.gf_decay_rate <= michael@0: (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) ) michael@0: #endif michael@0: { michael@0: int Boost; michael@0: int allocation_chunks; michael@0: int Q = (cpi->oxcf.fixed_q < 0) michael@0: ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; michael@0: int tmp_q; michael@0: int arf_frame_bits = 0; michael@0: int group_bits; michael@0: michael@0: #if NEW_BOOST michael@0: cpi->gfu_boost = alt_boost; michael@0: #endif michael@0: michael@0: /* Estimate the bits to be allocated to the group as a whole */ michael@0: if ((cpi->twopass.kf_group_bits > 0) && michael@0: (cpi->twopass.kf_group_error_left > 0)) michael@0: { michael@0: group_bits = (int)((double)cpi->twopass.kf_group_bits * michael@0: (gf_group_err / (double)cpi->twopass.kf_group_error_left)); michael@0: } michael@0: else michael@0: group_bits = 0; michael@0: michael@0: /* Boost for arf frame */ michael@0: #if NEW_BOOST michael@0: Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; michael@0: #else michael@0: Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); michael@0: #endif michael@0: Boost += (i * 50); michael@0: michael@0: /* Set max and minimum boost and hence minimum allocation */ michael@0: if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) michael@0: Boost = ((cpi->baseline_gf_interval + 1) * 200); michael@0: else if (Boost < 125) michael@0: Boost = 125; michael@0: michael@0: allocation_chunks = (i * 100) + Boost; michael@0: michael@0: /* Normalize Altboost and allocations chunck down to prevent overflow */ michael@0: while (Boost > 1000) michael@0: { michael@0: Boost /= 2; michael@0: allocation_chunks /= 2; michael@0: } michael@0: michael@0: /* Calculate the number of bits to be spent on the arf based on the michael@0: * boost number michael@0: */ michael@0: arf_frame_bits = (int)((double)Boost * (group_bits / michael@0: (double)allocation_chunks)); michael@0: michael@0: /* Estimate if there are enough bits available to make worthwhile use michael@0: * of an arf. michael@0: */ michael@0: tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); michael@0: michael@0: /* Only use an arf if it is likely we will be able to code michael@0: * it at a lower Q than the surrounding frames. michael@0: */ michael@0: if (tmp_q < cpi->worst_quality) michael@0: { michael@0: int half_gf_int; michael@0: int frames_after_arf; michael@0: int frames_bwd = cpi->oxcf.arnr_max_frames - 1; michael@0: int frames_fwd = cpi->oxcf.arnr_max_frames - 1; michael@0: michael@0: cpi->source_alt_ref_pending = 1; michael@0: michael@0: /* michael@0: * For alt ref frames the error score for the end frame of the michael@0: * group (the alt ref frame) should not contribute to the group michael@0: * total and hence the number of bit allocated to the group. michael@0: * Rather it forms part of the next group (it is the GF at the michael@0: * start of the next group) michael@0: * gf_group_err -= mod_frame_err; michael@0: * michael@0: * For alt ref frames alt ref frame is technically part of the michael@0: * GF frame for the next group but we always base the error michael@0: * calculation and bit allocation on the current group of frames. michael@0: * michael@0: * Set the interval till the next gf or arf. michael@0: * For ARFs this is the number of frames to be coded before the michael@0: * future frame that is coded as an ARF. michael@0: * The future frame itself is part of the next group michael@0: */ michael@0: cpi->baseline_gf_interval = i; michael@0: michael@0: /* michael@0: * Define the arnr filter width for this group of frames: michael@0: * We only filter frames that lie within a distance of half michael@0: * the GF interval from the ARF frame. We also have to trap michael@0: * cases where the filter extends beyond the end of clip. michael@0: * Note: this_frame->frame has been updated in the loop michael@0: * so it now points at the ARF frame. michael@0: */ michael@0: half_gf_int = cpi->baseline_gf_interval >> 1; michael@0: frames_after_arf = (int)(cpi->twopass.total_stats.count - michael@0: this_frame->frame - 1); michael@0: michael@0: switch (cpi->oxcf.arnr_type) michael@0: { michael@0: case 1: /* Backward filter */ michael@0: frames_fwd = 0; michael@0: if (frames_bwd > half_gf_int) michael@0: frames_bwd = half_gf_int; michael@0: break; michael@0: michael@0: case 2: /* Forward filter */ michael@0: if (frames_fwd > half_gf_int) michael@0: frames_fwd = half_gf_int; michael@0: if (frames_fwd > frames_after_arf) michael@0: frames_fwd = frames_after_arf; michael@0: frames_bwd = 0; michael@0: break; michael@0: michael@0: case 3: /* Centered filter */ michael@0: default: michael@0: frames_fwd >>= 1; michael@0: if (frames_fwd > frames_after_arf) michael@0: frames_fwd = frames_after_arf; michael@0: if (frames_fwd > half_gf_int) michael@0: frames_fwd = half_gf_int; michael@0: michael@0: frames_bwd = frames_fwd; michael@0: michael@0: /* For even length filter there is one more frame backward michael@0: * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. michael@0: */ michael@0: if (frames_bwd < half_gf_int) michael@0: frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1; michael@0: break; michael@0: } michael@0: michael@0: cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; michael@0: } michael@0: else michael@0: { michael@0: cpi->source_alt_ref_pending = 0; michael@0: cpi->baseline_gf_interval = i; michael@0: } michael@0: } michael@0: else michael@0: { michael@0: cpi->source_alt_ref_pending = 0; michael@0: cpi->baseline_gf_interval = i; michael@0: } michael@0: michael@0: /* michael@0: * Now decide how many bits should be allocated to the GF group as a michael@0: * proportion of those remaining in the kf group. michael@0: * The final key frame group in the clip is treated as a special case michael@0: * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. michael@0: * This is also important for short clips where there may only be one michael@0: * key frame. michael@0: */ michael@0: if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count - michael@0: cpi->common.current_video_frame)) michael@0: { michael@0: cpi->twopass.kf_group_bits = michael@0: (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; michael@0: } michael@0: michael@0: /* Calculate the bits to be allocated to the group as a whole */ michael@0: if ((cpi->twopass.kf_group_bits > 0) && michael@0: (cpi->twopass.kf_group_error_left > 0)) michael@0: { michael@0: cpi->twopass.gf_group_bits = michael@0: (int64_t)(cpi->twopass.kf_group_bits * michael@0: (gf_group_err / cpi->twopass.kf_group_error_left)); michael@0: } michael@0: else michael@0: cpi->twopass.gf_group_bits = 0; michael@0: michael@0: cpi->twopass.gf_group_bits = michael@0: (cpi->twopass.gf_group_bits < 0) michael@0: ? 0 michael@0: : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) michael@0: ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; michael@0: michael@0: /* Clip cpi->twopass.gf_group_bits based on user supplied data rate michael@0: * variability limit (cpi->oxcf.two_pass_vbrmax_section) michael@0: */ michael@0: if (cpi->twopass.gf_group_bits > michael@0: (int64_t)max_bits * cpi->baseline_gf_interval) michael@0: cpi->twopass.gf_group_bits = michael@0: (int64_t)max_bits * cpi->baseline_gf_interval; michael@0: michael@0: /* Reset the file position */ michael@0: reset_fpf_position(cpi, start_pos); michael@0: michael@0: /* Update the record of error used so far (only done once per gf group) */ michael@0: cpi->twopass.modified_error_used += gf_group_err; michael@0: michael@0: /* Assign bits to the arf or gf. */ michael@0: for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { michael@0: int Boost; michael@0: int allocation_chunks; michael@0: int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; michael@0: int gf_bits; michael@0: michael@0: /* For ARF frames */ michael@0: if (cpi->source_alt_ref_pending && i == 0) michael@0: { michael@0: #if NEW_BOOST michael@0: Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; michael@0: #else michael@0: Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); michael@0: #endif michael@0: Boost += (cpi->baseline_gf_interval * 50); michael@0: michael@0: /* Set max and minimum boost and hence minimum allocation */ michael@0: if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) michael@0: Boost = ((cpi->baseline_gf_interval + 1) * 200); michael@0: else if (Boost < 125) michael@0: Boost = 125; michael@0: michael@0: allocation_chunks = michael@0: ((cpi->baseline_gf_interval + 1) * 100) + Boost; michael@0: } michael@0: /* Else for standard golden frames */ michael@0: else michael@0: { michael@0: /* boost based on inter / intra ratio of subsequent frames */ michael@0: Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; michael@0: michael@0: /* Set max and minimum boost and hence minimum allocation */ michael@0: if (Boost > (cpi->baseline_gf_interval * 150)) michael@0: Boost = (cpi->baseline_gf_interval * 150); michael@0: else if (Boost < 125) michael@0: Boost = 125; michael@0: michael@0: allocation_chunks = michael@0: (cpi->baseline_gf_interval * 100) + (Boost - 100); michael@0: } michael@0: michael@0: /* Normalize Altboost and allocations chunck down to prevent overflow */ michael@0: while (Boost > 1000) michael@0: { michael@0: Boost /= 2; michael@0: allocation_chunks /= 2; michael@0: } michael@0: michael@0: /* Calculate the number of bits to be spent on the gf or arf based on michael@0: * the boost number michael@0: */ michael@0: gf_bits = (int)((double)Boost * michael@0: (cpi->twopass.gf_group_bits / michael@0: (double)allocation_chunks)); michael@0: michael@0: /* If the frame that is to be boosted is simpler than the average for michael@0: * the gf/arf group then use an alternative calculation michael@0: * based on the error score of the frame itself michael@0: */ michael@0: if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) michael@0: { michael@0: double alt_gf_grp_bits; michael@0: int alt_gf_bits; michael@0: michael@0: alt_gf_grp_bits = michael@0: (double)cpi->twopass.kf_group_bits * michael@0: (mod_frame_err * (double)cpi->baseline_gf_interval) / michael@0: DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); michael@0: michael@0: alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits / michael@0: (double)allocation_chunks)); michael@0: michael@0: if (gf_bits > alt_gf_bits) michael@0: { michael@0: gf_bits = alt_gf_bits; michael@0: } michael@0: } michael@0: /* Else if it is harder than other frames in the group make sure it at michael@0: * least receives an allocation in keeping with its relative error michael@0: * score, otherwise it may be worse off than an "un-boosted" frame michael@0: */ michael@0: else michael@0: { michael@0: int alt_gf_bits = michael@0: (int)((double)cpi->twopass.kf_group_bits * michael@0: mod_frame_err / michael@0: DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); michael@0: michael@0: if (alt_gf_bits > gf_bits) michael@0: { michael@0: gf_bits = alt_gf_bits; michael@0: } michael@0: } michael@0: michael@0: /* Apply an additional limit for CBR */ michael@0: if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) michael@0: { michael@0: if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) michael@0: cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1); michael@0: } michael@0: michael@0: /* Dont allow a negative value for gf_bits */ michael@0: if (gf_bits < 0) michael@0: gf_bits = 0; michael@0: michael@0: /* Add in minimum for a frame */ michael@0: gf_bits += cpi->min_frame_bandwidth; michael@0: michael@0: if (i == 0) michael@0: { michael@0: cpi->twopass.gf_bits = gf_bits; michael@0: } michael@0: if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) michael@0: { michael@0: /* Per frame bit target for this frame */ michael@0: cpi->per_frame_bandwidth = gf_bits; michael@0: } michael@0: } michael@0: michael@0: { michael@0: /* Adjust KF group bits and error remainin */ michael@0: cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; michael@0: cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; michael@0: michael@0: if (cpi->twopass.kf_group_bits < 0) michael@0: cpi->twopass.kf_group_bits = 0; michael@0: michael@0: /* Note the error score left in the remaining frames of the group. michael@0: * For normal GFs we want to remove the error score for the first michael@0: * frame of the group (except in Key frame case where this has michael@0: * already happened) michael@0: */ michael@0: if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) michael@0: cpi->twopass.gf_group_error_left = (int)(gf_group_err - michael@0: gf_first_frame_err); michael@0: else michael@0: cpi->twopass.gf_group_error_left = (int) gf_group_err; michael@0: michael@0: cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; michael@0: michael@0: if (cpi->twopass.gf_group_bits < 0) michael@0: cpi->twopass.gf_group_bits = 0; michael@0: michael@0: /* This condition could fail if there are two kfs very close together michael@0: * despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the michael@0: * calculation of cpi->twopass.alt_extra_bits. michael@0: */ michael@0: if ( cpi->baseline_gf_interval >= 3 ) michael@0: { michael@0: #if NEW_BOOST michael@0: int boost = (cpi->source_alt_ref_pending) michael@0: ? b_boost : cpi->gfu_boost; michael@0: #else michael@0: int boost = cpi->gfu_boost; michael@0: #endif michael@0: if ( boost >= 150 ) michael@0: { michael@0: int pct_extra; michael@0: michael@0: pct_extra = (boost - 100) / 50; michael@0: pct_extra = (pct_extra > 20) ? 20 : pct_extra; michael@0: michael@0: cpi->twopass.alt_extra_bits = michael@0: (cpi->twopass.gf_group_bits * pct_extra) / 100; michael@0: cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; michael@0: cpi->twopass.alt_extra_bits /= michael@0: ((cpi->baseline_gf_interval-1)>>1); michael@0: } michael@0: else michael@0: cpi->twopass.alt_extra_bits = 0; michael@0: } michael@0: else michael@0: cpi->twopass.alt_extra_bits = 0; michael@0: } michael@0: michael@0: /* Adjustments based on a measure of complexity of the section */ michael@0: if (cpi->common.frame_type != KEY_FRAME) michael@0: { michael@0: FIRSTPASS_STATS sectionstats; michael@0: double Ratio; michael@0: michael@0: zero_stats(§ionstats); michael@0: reset_fpf_position(cpi, start_pos); michael@0: michael@0: for (i = 0 ; i < cpi->baseline_gf_interval ; i++) michael@0: { michael@0: input_stats(cpi, &next_frame); michael@0: accumulate_stats(§ionstats, &next_frame); michael@0: } michael@0: michael@0: avg_stats(§ionstats); michael@0: michael@0: cpi->twopass.section_intra_rating = (unsigned int) michael@0: (sectionstats.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); michael@0: michael@0: Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); michael@0: cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); michael@0: michael@0: if (cpi->twopass.section_max_qfactor < 0.80) michael@0: cpi->twopass.section_max_qfactor = 0.80; michael@0: michael@0: reset_fpf_position(cpi, start_pos); michael@0: } michael@0: } michael@0: michael@0: /* Allocate bits to a normal frame that is neither a gf an arf or a key frame. */ michael@0: static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) michael@0: { michael@0: int target_frame_size; michael@0: michael@0: double modified_err; michael@0: double err_fraction; michael@0: michael@0: int max_bits = frame_max_bits(cpi); /* Max for a single frame */ michael@0: michael@0: /* Calculate modified prediction error used in bit allocation */ michael@0: modified_err = calculate_modified_err(cpi, this_frame); michael@0: michael@0: /* What portion of the remaining GF group error is used by this frame */ michael@0: if (cpi->twopass.gf_group_error_left > 0) michael@0: err_fraction = modified_err / cpi->twopass.gf_group_error_left; michael@0: else michael@0: err_fraction = 0.0; michael@0: michael@0: /* How many of those bits available for allocation should we give it? */ michael@0: target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); michael@0: michael@0: /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) michael@0: * at the top end. michael@0: */ michael@0: if (target_frame_size < 0) michael@0: target_frame_size = 0; michael@0: else michael@0: { michael@0: if (target_frame_size > max_bits) michael@0: target_frame_size = max_bits; michael@0: michael@0: if (target_frame_size > cpi->twopass.gf_group_bits) michael@0: target_frame_size = cpi->twopass.gf_group_bits; michael@0: } michael@0: michael@0: /* Adjust error and bits remaining */ michael@0: cpi->twopass.gf_group_error_left -= (int)modified_err; michael@0: cpi->twopass.gf_group_bits -= target_frame_size; michael@0: michael@0: if (cpi->twopass.gf_group_bits < 0) michael@0: cpi->twopass.gf_group_bits = 0; michael@0: michael@0: /* Add in the minimum number of bits that is set aside for every frame. */ michael@0: target_frame_size += cpi->min_frame_bandwidth; michael@0: michael@0: /* Every other frame gets a few extra bits */ michael@0: if ( (cpi->frames_since_golden & 0x01) && michael@0: (cpi->frames_till_gf_update_due > 0) ) michael@0: { michael@0: target_frame_size += cpi->twopass.alt_extra_bits; michael@0: } michael@0: michael@0: /* Per frame bit target for this frame */ michael@0: cpi->per_frame_bandwidth = target_frame_size; michael@0: } michael@0: michael@0: void vp8_second_pass(VP8_COMP *cpi) michael@0: { michael@0: int tmp_q; michael@0: int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); michael@0: michael@0: FIRSTPASS_STATS this_frame = {0}; michael@0: FIRSTPASS_STATS this_frame_copy; michael@0: michael@0: double this_frame_intra_error; michael@0: double this_frame_coded_error; michael@0: michael@0: int overhead_bits; michael@0: michael@0: if (!cpi->twopass.stats_in) michael@0: { michael@0: return ; michael@0: } michael@0: michael@0: vp8_clear_system_state(); michael@0: michael@0: if (EOF == input_stats(cpi, &this_frame)) michael@0: return; michael@0: michael@0: this_frame_intra_error = this_frame.intra_error; michael@0: this_frame_coded_error = this_frame.coded_error; michael@0: michael@0: /* keyframe and section processing ! */ michael@0: if (cpi->twopass.frames_to_key == 0) michael@0: { michael@0: /* Define next KF group and assign bits to it */ michael@0: vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); michael@0: find_next_key_frame(cpi, &this_frame_copy); michael@0: michael@0: /* Special case: Error error_resilient_mode mode does not make much michael@0: * sense for two pass but with its current meaning but this code is michael@0: * designed to stop outlandish behaviour if someone does set it when michael@0: * using two pass. It effectively disables GF groups. This is michael@0: * temporary code till we decide what should really happen in this michael@0: * case. michael@0: */ michael@0: if (cpi->oxcf.error_resilient_mode) michael@0: { michael@0: cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; michael@0: cpi->twopass.gf_group_error_left = michael@0: (int)cpi->twopass.kf_group_error_left; michael@0: cpi->baseline_gf_interval = cpi->twopass.frames_to_key; michael@0: cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; michael@0: cpi->source_alt_ref_pending = 0; michael@0: } michael@0: michael@0: } michael@0: michael@0: /* Is this a GF / ARF (Note that a KF is always also a GF) */ michael@0: if (cpi->frames_till_gf_update_due == 0) michael@0: { michael@0: /* Define next gf group and assign bits to it */ michael@0: vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); michael@0: define_gf_group(cpi, &this_frame_copy); michael@0: michael@0: /* If we are going to code an altref frame at the end of the group michael@0: * and the current frame is not a key frame.... If the previous michael@0: * group used an arf this frame has already benefited from that arf michael@0: * boost and it should not be given extra bits If the previous michael@0: * group was NOT coded using arf we may want to apply some boost to michael@0: * this GF as well michael@0: */ michael@0: if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) michael@0: { michael@0: /* Assign a standard frames worth of bits from those allocated michael@0: * to the GF group michael@0: */ michael@0: int bak = cpi->per_frame_bandwidth; michael@0: vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); michael@0: assign_std_frame_bits(cpi, &this_frame_copy); michael@0: cpi->per_frame_bandwidth = bak; michael@0: } michael@0: } michael@0: michael@0: /* Otherwise this is an ordinary frame */ michael@0: else michael@0: { michael@0: /* Special case: Error error_resilient_mode mode does not make much michael@0: * sense for two pass but with its current meaning but this code is michael@0: * designed to stop outlandish behaviour if someone does set it michael@0: * when using two pass. It effectively disables GF groups. This is michael@0: * temporary code till we decide what should really happen in this michael@0: * case. michael@0: */ michael@0: if (cpi->oxcf.error_resilient_mode) michael@0: { michael@0: cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; michael@0: michael@0: if (cpi->common.frame_type != KEY_FRAME) michael@0: { michael@0: /* Assign bits from those allocated to the GF group */ michael@0: vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); michael@0: assign_std_frame_bits(cpi, &this_frame_copy); michael@0: } michael@0: } michael@0: else michael@0: { michael@0: /* Assign bits from those allocated to the GF group */ michael@0: vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); michael@0: assign_std_frame_bits(cpi, &this_frame_copy); michael@0: } michael@0: } michael@0: michael@0: /* Keep a globally available copy of this and the next frame's iiratio. */ michael@0: cpi->twopass.this_iiratio = (unsigned int)(this_frame_intra_error / michael@0: DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); michael@0: { michael@0: FIRSTPASS_STATS next_frame; michael@0: if ( lookup_next_frame_stats(cpi, &next_frame) != EOF ) michael@0: { michael@0: cpi->twopass.next_iiratio = (unsigned int)(next_frame.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); michael@0: } michael@0: } michael@0: michael@0: /* Set nominal per second bandwidth for this frame */ michael@0: cpi->target_bandwidth = (int) michael@0: (cpi->per_frame_bandwidth * cpi->output_framerate); michael@0: if (cpi->target_bandwidth < 0) michael@0: cpi->target_bandwidth = 0; michael@0: michael@0: michael@0: /* Account for mv, mode and other overheads. */ michael@0: overhead_bits = (int)estimate_modemvcost( michael@0: cpi, &cpi->twopass.total_left_stats ); michael@0: michael@0: /* Special case code for first frame. */ michael@0: if (cpi->common.current_video_frame == 0) michael@0: { michael@0: cpi->twopass.est_max_qcorrection_factor = 1.0; michael@0: michael@0: /* Set a cq_level in constrained quality mode. */ michael@0: if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY ) michael@0: { michael@0: int est_cq; michael@0: michael@0: est_cq = michael@0: estimate_cq( cpi, michael@0: &cpi->twopass.total_left_stats, michael@0: (int)(cpi->twopass.bits_left / frames_left), michael@0: overhead_bits ); michael@0: michael@0: cpi->cq_target_quality = cpi->oxcf.cq_level; michael@0: if ( est_cq > cpi->cq_target_quality ) michael@0: cpi->cq_target_quality = est_cq; michael@0: } michael@0: michael@0: /* guess at maxq needed in 2nd pass */ michael@0: cpi->twopass.maxq_max_limit = cpi->worst_quality; michael@0: cpi->twopass.maxq_min_limit = cpi->best_quality; michael@0: michael@0: tmp_q = estimate_max_q( michael@0: cpi, michael@0: &cpi->twopass.total_left_stats, michael@0: (int)(cpi->twopass.bits_left / frames_left), michael@0: overhead_bits ); michael@0: michael@0: /* Limit the maxq value returned subsequently. michael@0: * This increases the risk of overspend or underspend if the initial michael@0: * estimate for the clip is bad, but helps prevent excessive michael@0: * variation in Q, especially near the end of a clip michael@0: * where for example a small overspend may cause Q to crash michael@0: */ michael@0: cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality) michael@0: ? (tmp_q + 32) : cpi->worst_quality; michael@0: cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality) michael@0: ? (tmp_q - 32) : cpi->best_quality; michael@0: michael@0: cpi->active_worst_quality = tmp_q; michael@0: cpi->ni_av_qi = tmp_q; michael@0: } michael@0: michael@0: /* The last few frames of a clip almost always have to few or too many michael@0: * bits and for the sake of over exact rate control we dont want to make michael@0: * radical adjustments to the allowed quantizer range just to use up a michael@0: * few surplus bits or get beneath the target rate. michael@0: */ michael@0: else if ( (cpi->common.current_video_frame < michael@0: (((unsigned int)cpi->twopass.total_stats.count * 255)>>8)) && michael@0: ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < michael@0: (unsigned int)cpi->twopass.total_stats.count) ) michael@0: { michael@0: if (frames_left < 1) michael@0: frames_left = 1; michael@0: michael@0: tmp_q = estimate_max_q( michael@0: cpi, michael@0: &cpi->twopass.total_left_stats, michael@0: (int)(cpi->twopass.bits_left / frames_left), michael@0: overhead_bits ); michael@0: michael@0: /* Move active_worst_quality but in a damped way */ michael@0: if (tmp_q > cpi->active_worst_quality) michael@0: cpi->active_worst_quality ++; michael@0: else if (tmp_q < cpi->active_worst_quality) michael@0: cpi->active_worst_quality --; michael@0: michael@0: cpi->active_worst_quality = michael@0: ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; michael@0: } michael@0: michael@0: cpi->twopass.frames_to_key --; michael@0: michael@0: /* Update the total stats remaining sturcture */ michael@0: subtract_stats(&cpi->twopass.total_left_stats, &this_frame ); michael@0: } michael@0: michael@0: michael@0: static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) michael@0: { michael@0: int is_viable_kf = 0; michael@0: michael@0: /* Does the frame satisfy the primary criteria of a key frame michael@0: * If so, then examine how well it predicts subsequent frames michael@0: */ michael@0: if ((this_frame->pcnt_second_ref < 0.10) && michael@0: (next_frame->pcnt_second_ref < 0.10) && michael@0: ((this_frame->pcnt_inter < 0.05) || michael@0: ( michael@0: ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && michael@0: ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && michael@0: ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || michael@0: (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || michael@0: ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) michael@0: ) michael@0: ) michael@0: ) michael@0: ) michael@0: { michael@0: int i; michael@0: FIRSTPASS_STATS *start_pos; michael@0: michael@0: FIRSTPASS_STATS local_next_frame; michael@0: michael@0: double boost_score = 0.0; michael@0: double old_boost_score = 0.0; michael@0: double decay_accumulator = 1.0; michael@0: double next_iiratio; michael@0: michael@0: vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); michael@0: michael@0: /* Note the starting file position so we can reset to it */ michael@0: start_pos = cpi->twopass.stats_in; michael@0: michael@0: /* Examine how well the key frame predicts subsequent frames */ michael@0: for (i = 0 ; i < 16; i++) michael@0: { michael@0: next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ; michael@0: michael@0: if (next_iiratio > RMAX) michael@0: next_iiratio = RMAX; michael@0: michael@0: /* Cumulative effect of decay in prediction quality */ michael@0: if (local_next_frame.pcnt_inter > 0.85) michael@0: decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; michael@0: else michael@0: decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); michael@0: michael@0: /* Keep a running total */ michael@0: boost_score += (decay_accumulator * next_iiratio); michael@0: michael@0: /* Test various breakout clauses */ michael@0: if ((local_next_frame.pcnt_inter < 0.05) || michael@0: (next_iiratio < 1.5) || michael@0: (((local_next_frame.pcnt_inter - michael@0: local_next_frame.pcnt_neutral) < 0.20) && michael@0: (next_iiratio < 3.0)) || michael@0: ((boost_score - old_boost_score) < 0.5) || michael@0: (local_next_frame.intra_error < 200) michael@0: ) michael@0: { michael@0: break; michael@0: } michael@0: michael@0: old_boost_score = boost_score; michael@0: michael@0: /* Get the next frame details */ michael@0: if (EOF == input_stats(cpi, &local_next_frame)) michael@0: break; michael@0: } michael@0: michael@0: /* If there is tolerable prediction for at least the next 3 frames michael@0: * then break out else discard this pottential key frame and move on michael@0: */ michael@0: if (boost_score > 5.0 && (i > 3)) michael@0: is_viable_kf = 1; michael@0: else michael@0: { michael@0: /* Reset the file position */ michael@0: reset_fpf_position(cpi, start_pos); michael@0: michael@0: is_viable_kf = 0; michael@0: } michael@0: } michael@0: michael@0: return is_viable_kf; michael@0: } michael@0: static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) michael@0: { michael@0: int i,j; michael@0: FIRSTPASS_STATS last_frame; michael@0: FIRSTPASS_STATS first_frame; michael@0: FIRSTPASS_STATS next_frame; michael@0: FIRSTPASS_STATS *start_position; michael@0: michael@0: double decay_accumulator = 1.0; michael@0: double boost_score = 0; michael@0: double old_boost_score = 0.0; michael@0: double loop_decay_rate; michael@0: michael@0: double kf_mod_err = 0.0; michael@0: double kf_group_err = 0.0; michael@0: double kf_group_intra_err = 0.0; michael@0: double kf_group_coded_err = 0.0; michael@0: double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}; michael@0: michael@0: vpx_memset(&next_frame, 0, sizeof(next_frame)); michael@0: michael@0: vp8_clear_system_state(); michael@0: start_position = cpi->twopass.stats_in; michael@0: michael@0: cpi->common.frame_type = KEY_FRAME; michael@0: michael@0: /* is this a forced key frame by interval */ michael@0: cpi->this_key_frame_forced = cpi->next_key_frame_forced; michael@0: michael@0: /* Clear the alt ref active flag as this can never be active on a key michael@0: * frame michael@0: */ michael@0: cpi->source_alt_ref_active = 0; michael@0: michael@0: /* Kf is always a gf so clear frames till next gf counter */ michael@0: cpi->frames_till_gf_update_due = 0; michael@0: michael@0: cpi->twopass.frames_to_key = 1; michael@0: michael@0: /* Take a copy of the initial frame details */ michael@0: vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame)); michael@0: michael@0: cpi->twopass.kf_group_bits = 0; michael@0: cpi->twopass.kf_group_error_left = 0; michael@0: michael@0: kf_mod_err = calculate_modified_err(cpi, this_frame); michael@0: michael@0: /* find the next keyframe */ michael@0: i = 0; michael@0: while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) michael@0: { michael@0: /* Accumulate kf group error */ michael@0: kf_group_err += calculate_modified_err(cpi, this_frame); michael@0: michael@0: /* These figures keep intra and coded error counts for all frames michael@0: * including key frames in the group. The effect of the key frame michael@0: * itself can be subtracted out using the first_frame data michael@0: * collected above michael@0: */ michael@0: kf_group_intra_err += this_frame->intra_error; michael@0: kf_group_coded_err += this_frame->coded_error; michael@0: michael@0: /* load a the next frame's stats */ michael@0: vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame)); michael@0: input_stats(cpi, this_frame); michael@0: michael@0: /* Provided that we are not at the end of the file... */ michael@0: if (cpi->oxcf.auto_key michael@0: && lookup_next_frame_stats(cpi, &next_frame) != EOF) michael@0: { michael@0: /* Normal scene cut check */ michael@0: if ( ( i >= MIN_GF_INTERVAL ) && michael@0: test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) ) michael@0: { michael@0: break; michael@0: } michael@0: michael@0: /* How fast is prediction quality decaying */ michael@0: loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); michael@0: michael@0: /* We want to know something about the recent past... rather than michael@0: * as used elsewhere where we are concened with decay in prediction michael@0: * quality since the last GF or KF. michael@0: */ michael@0: recent_loop_decay[i%8] = loop_decay_rate; michael@0: decay_accumulator = 1.0; michael@0: for (j = 0; j < 8; j++) michael@0: { michael@0: decay_accumulator = decay_accumulator * recent_loop_decay[j]; michael@0: } michael@0: michael@0: /* Special check for transition or high motion followed by a michael@0: * static scene. michael@0: */ michael@0: if ( detect_transition_to_still( cpi, i, michael@0: (cpi->key_frame_frequency-i), michael@0: loop_decay_rate, michael@0: decay_accumulator ) ) michael@0: { michael@0: break; michael@0: } michael@0: michael@0: michael@0: /* Step on to the next frame */ michael@0: cpi->twopass.frames_to_key ++; michael@0: michael@0: /* If we don't have a real key frame within the next two michael@0: * forcekeyframeevery intervals then break out of the loop. michael@0: */ michael@0: if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency) michael@0: break; michael@0: } else michael@0: cpi->twopass.frames_to_key ++; michael@0: michael@0: i++; michael@0: } michael@0: michael@0: /* If there is a max kf interval set by the user we must obey it. michael@0: * We already breakout of the loop above at 2x max. michael@0: * This code centers the extra kf if the actual natural michael@0: * interval is between 1x and 2x michael@0: */ michael@0: if (cpi->oxcf.auto_key michael@0: && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency ) michael@0: { michael@0: FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; michael@0: FIRSTPASS_STATS tmp_frame; michael@0: michael@0: cpi->twopass.frames_to_key /= 2; michael@0: michael@0: /* Copy first frame details */ michael@0: vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); michael@0: michael@0: /* Reset to the start of the group */ michael@0: reset_fpf_position(cpi, start_position); michael@0: michael@0: kf_group_err = 0; michael@0: kf_group_intra_err = 0; michael@0: kf_group_coded_err = 0; michael@0: michael@0: /* Rescan to get the correct error data for the forced kf group */ michael@0: for( i = 0; i < cpi->twopass.frames_to_key; i++ ) michael@0: { michael@0: /* Accumulate kf group errors */ michael@0: kf_group_err += calculate_modified_err(cpi, &tmp_frame); michael@0: kf_group_intra_err += tmp_frame.intra_error; michael@0: kf_group_coded_err += tmp_frame.coded_error; michael@0: michael@0: /* Load a the next frame's stats */ michael@0: input_stats(cpi, &tmp_frame); michael@0: } michael@0: michael@0: /* Reset to the start of the group */ michael@0: reset_fpf_position(cpi, current_pos); michael@0: michael@0: cpi->next_key_frame_forced = 1; michael@0: } michael@0: else michael@0: cpi->next_key_frame_forced = 0; michael@0: michael@0: /* Special case for the last frame of the file */ michael@0: if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) michael@0: { michael@0: /* Accumulate kf group error */ michael@0: kf_group_err += calculate_modified_err(cpi, this_frame); michael@0: michael@0: /* These figures keep intra and coded error counts for all frames michael@0: * including key frames in the group. The effect of the key frame michael@0: * itself can be subtracted out using the first_frame data michael@0: * collected above michael@0: */ michael@0: kf_group_intra_err += this_frame->intra_error; michael@0: kf_group_coded_err += this_frame->coded_error; michael@0: } michael@0: michael@0: /* Calculate the number of bits that should be assigned to the kf group. */ michael@0: if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) michael@0: { michael@0: /* Max for a single normal frame (not key frame) */ michael@0: int max_bits = frame_max_bits(cpi); michael@0: michael@0: /* Maximum bits for the kf group */ michael@0: int64_t max_grp_bits; michael@0: michael@0: /* Default allocation based on bits left and relative michael@0: * complexity of the section michael@0: */ michael@0: cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left * michael@0: ( kf_group_err / michael@0: cpi->twopass.modified_error_left )); michael@0: michael@0: /* Clip based on maximum per frame rate defined by the user. */ michael@0: max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; michael@0: if (cpi->twopass.kf_group_bits > max_grp_bits) michael@0: cpi->twopass.kf_group_bits = max_grp_bits; michael@0: michael@0: /* Additional special case for CBR if buffer is getting full. */ michael@0: if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) michael@0: { michael@0: int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; michael@0: int64_t buffer_lvl = cpi->buffer_level; michael@0: michael@0: /* If the buffer is near or above the optimal and this kf group is michael@0: * not being allocated much then increase the allocation a bit. michael@0: */ michael@0: if (buffer_lvl >= opt_buffer_lvl) michael@0: { michael@0: int64_t high_water_mark = (opt_buffer_lvl + michael@0: cpi->oxcf.maximum_buffer_size) >> 1; michael@0: michael@0: int64_t av_group_bits; michael@0: michael@0: /* Av bits per frame * number of frames */ michael@0: av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * michael@0: (int64_t)cpi->twopass.frames_to_key; michael@0: michael@0: /* We are at or above the maximum. */ michael@0: if (cpi->buffer_level >= high_water_mark) michael@0: { michael@0: int64_t min_group_bits; michael@0: michael@0: min_group_bits = av_group_bits + michael@0: (int64_t)(buffer_lvl - michael@0: high_water_mark); michael@0: michael@0: if (cpi->twopass.kf_group_bits < min_group_bits) michael@0: cpi->twopass.kf_group_bits = min_group_bits; michael@0: } michael@0: /* We are above optimal but below the maximum */ michael@0: else if (cpi->twopass.kf_group_bits < av_group_bits) michael@0: { michael@0: int64_t bits_below_av = av_group_bits - michael@0: cpi->twopass.kf_group_bits; michael@0: michael@0: cpi->twopass.kf_group_bits += michael@0: (int64_t)((double)bits_below_av * michael@0: (double)(buffer_lvl - opt_buffer_lvl) / michael@0: (double)(high_water_mark - opt_buffer_lvl)); michael@0: } michael@0: } michael@0: } michael@0: } michael@0: else michael@0: cpi->twopass.kf_group_bits = 0; michael@0: michael@0: /* Reset the first pass file position */ michael@0: reset_fpf_position(cpi, start_position); michael@0: michael@0: /* determine how big to make this keyframe based on how well the michael@0: * subsequent frames use inter blocks michael@0: */ michael@0: decay_accumulator = 1.0; michael@0: boost_score = 0.0; michael@0: loop_decay_rate = 1.00; /* Starting decay rate */ michael@0: michael@0: for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) michael@0: { michael@0: double r; michael@0: michael@0: if (EOF == input_stats(cpi, &next_frame)) michael@0: break; michael@0: michael@0: if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) michael@0: r = (IIKFACTOR2 * next_frame.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); michael@0: else michael@0: r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / michael@0: DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); michael@0: michael@0: if (r > RMAX) michael@0: r = RMAX; michael@0: michael@0: /* How fast is prediction quality decaying */ michael@0: loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); michael@0: michael@0: decay_accumulator = decay_accumulator * loop_decay_rate; michael@0: decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; michael@0: michael@0: boost_score += (decay_accumulator * r); michael@0: michael@0: if ((i > MIN_GF_INTERVAL) && michael@0: ((boost_score - old_boost_score) < 1.0)) michael@0: { michael@0: break; michael@0: } michael@0: michael@0: old_boost_score = boost_score; michael@0: } michael@0: michael@0: if (1) michael@0: { michael@0: FIRSTPASS_STATS sectionstats; michael@0: double Ratio; michael@0: michael@0: zero_stats(§ionstats); michael@0: reset_fpf_position(cpi, start_position); michael@0: michael@0: for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) michael@0: { michael@0: input_stats(cpi, &next_frame); michael@0: accumulate_stats(§ionstats, &next_frame); michael@0: } michael@0: michael@0: avg_stats(§ionstats); michael@0: michael@0: cpi->twopass.section_intra_rating = (unsigned int) michael@0: (sectionstats.intra_error michael@0: / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); michael@0: michael@0: Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); michael@0: cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); michael@0: michael@0: if (cpi->twopass.section_max_qfactor < 0.80) michael@0: cpi->twopass.section_max_qfactor = 0.80; michael@0: } michael@0: michael@0: /* When using CBR apply additional buffer fullness related upper limits */ michael@0: if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) michael@0: { michael@0: double max_boost; michael@0: michael@0: if (cpi->drop_frames_allowed) michael@0: { michael@0: int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark michael@0: * (cpi->oxcf.optimal_buffer_level / 100)); michael@0: michael@0: if (cpi->buffer_level > df_buffer_level) michael@0: max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); michael@0: else michael@0: max_boost = 0.0; michael@0: } michael@0: else if (cpi->buffer_level > 0) michael@0: { michael@0: max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); michael@0: } michael@0: else michael@0: { michael@0: max_boost = 0.0; michael@0: } michael@0: michael@0: if (boost_score > max_boost) michael@0: boost_score = max_boost; michael@0: } michael@0: michael@0: /* Reset the first pass file position */ michael@0: reset_fpf_position(cpi, start_position); michael@0: michael@0: /* Work out how many bits to allocate for the key frame itself */ michael@0: if (1) michael@0: { michael@0: int kf_boost = (int)boost_score; michael@0: int allocation_chunks; michael@0: int Counter = cpi->twopass.frames_to_key; michael@0: int alt_kf_bits; michael@0: YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; michael@0: /* Min boost based on kf interval */ michael@0: #if 0 michael@0: michael@0: while ((kf_boost < 48) && (Counter > 0)) michael@0: { michael@0: Counter -= 2; michael@0: kf_boost ++; michael@0: } michael@0: michael@0: #endif michael@0: michael@0: if (kf_boost < 48) michael@0: { michael@0: kf_boost += ((Counter + 1) >> 1); michael@0: michael@0: if (kf_boost > 48) kf_boost = 48; michael@0: } michael@0: michael@0: /* bigger frame sizes need larger kf boosts, smaller frames smaller michael@0: * boosts... michael@0: */ michael@0: if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) michael@0: kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); michael@0: else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) michael@0: kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); michael@0: michael@0: /* Min KF boost */ michael@0: kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */ michael@0: if (kf_boost < 250) michael@0: kf_boost = 250; michael@0: michael@0: /* michael@0: * We do three calculations for kf size. michael@0: * The first is based on the error score for the whole kf group. michael@0: * The second (optionaly) on the key frames own error if this is michael@0: * smaller than the average for the group. michael@0: * The final one insures that the frame receives at least the michael@0: * allocation it would have received based on its own error score vs michael@0: * the error score remaining michael@0: * Special case if the sequence appears almost totaly static michael@0: * as measured by the decay accumulator. In this case we want to michael@0: * spend almost all of the bits on the key frame. michael@0: * cpi->twopass.frames_to_key-1 because key frame itself is taken michael@0: * care of by kf_boost. michael@0: */ michael@0: if ( decay_accumulator >= 0.99 ) michael@0: { michael@0: allocation_chunks = michael@0: ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; michael@0: } michael@0: else michael@0: { michael@0: allocation_chunks = michael@0: ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; michael@0: } michael@0: michael@0: /* Normalize Altboost and allocations chunck down to prevent overflow */ michael@0: while (kf_boost > 1000) michael@0: { michael@0: kf_boost /= 2; michael@0: allocation_chunks /= 2; michael@0: } michael@0: michael@0: cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; michael@0: michael@0: /* Calculate the number of bits to be spent on the key frame */ michael@0: cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); michael@0: michael@0: /* Apply an additional limit for CBR */ michael@0: if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) michael@0: { michael@0: if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) michael@0: cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2); michael@0: } michael@0: michael@0: /* If the key frame is actually easier than the average for the michael@0: * kf group (which does sometimes happen... eg a blank intro frame) michael@0: * Then use an alternate calculation based on the kf error score michael@0: * which should give a smaller key frame. michael@0: */ michael@0: if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) michael@0: { michael@0: double alt_kf_grp_bits = michael@0: ((double)cpi->twopass.bits_left * michael@0: (kf_mod_err * (double)cpi->twopass.frames_to_key) / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); michael@0: michael@0: alt_kf_bits = (int)((double)kf_boost * michael@0: (alt_kf_grp_bits / (double)allocation_chunks)); michael@0: michael@0: if (cpi->twopass.kf_bits > alt_kf_bits) michael@0: { michael@0: cpi->twopass.kf_bits = alt_kf_bits; michael@0: } michael@0: } michael@0: /* Else if it is much harder than other frames in the group make sure michael@0: * it at least receives an allocation in keeping with its relative michael@0: * error score michael@0: */ michael@0: else michael@0: { michael@0: alt_kf_bits = michael@0: (int)((double)cpi->twopass.bits_left * michael@0: (kf_mod_err / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); michael@0: michael@0: if (alt_kf_bits > cpi->twopass.kf_bits) michael@0: { michael@0: cpi->twopass.kf_bits = alt_kf_bits; michael@0: } michael@0: } michael@0: michael@0: cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; michael@0: /* Add in the minimum frame allowance */ michael@0: cpi->twopass.kf_bits += cpi->min_frame_bandwidth; michael@0: michael@0: /* Peer frame bit target for this frame */ michael@0: cpi->per_frame_bandwidth = cpi->twopass.kf_bits; michael@0: michael@0: /* Convert to a per second bitrate */ michael@0: cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * michael@0: cpi->output_framerate); michael@0: } michael@0: michael@0: /* Note the total error score of the kf group minus the key frame itself */ michael@0: cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); michael@0: michael@0: /* Adjust the count of total modified error left. The count of bits left michael@0: * is adjusted elsewhere based on real coded frame sizes michael@0: */ michael@0: cpi->twopass.modified_error_left -= kf_group_err; michael@0: michael@0: if (cpi->oxcf.allow_spatial_resampling) michael@0: { michael@0: int resample_trigger = 0; michael@0: int last_kf_resampled = 0; michael@0: int kf_q; michael@0: int scale_val = 0; michael@0: int hr, hs, vr, vs; michael@0: int new_width = cpi->oxcf.Width; michael@0: int new_height = cpi->oxcf.Height; michael@0: michael@0: int projected_buffer_level = (int)cpi->buffer_level; michael@0: int tmp_q; michael@0: michael@0: double projected_bits_perframe; michael@0: double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error); michael@0: double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; michael@0: double bits_per_frame; michael@0: double av_bits_per_frame; michael@0: double effective_size_ratio; michael@0: michael@0: if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height)) michael@0: last_kf_resampled = 1; michael@0: michael@0: /* Set back to unscaled by defaults */ michael@0: cpi->common.horiz_scale = NORMAL; michael@0: cpi->common.vert_scale = NORMAL; michael@0: michael@0: /* Calculate Average bits per frame. */ michael@0: av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate); michael@0: michael@0: /* CBR... Use the clip average as the target for deciding resample */ michael@0: if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) michael@0: { michael@0: bits_per_frame = av_bits_per_frame; michael@0: } michael@0: michael@0: /* In VBR we want to avoid downsampling in easy section unless we michael@0: * are under extreme pressure So use the larger of target bitrate michael@0: * for this section or average bitrate for sequence michael@0: */ michael@0: else michael@0: { michael@0: /* This accounts for how hard the section is... */ michael@0: bits_per_frame = (double) michael@0: (cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key); michael@0: michael@0: /* Dont turn to resampling in easy sections just because they michael@0: * have been assigned a small number of bits michael@0: */ michael@0: if (bits_per_frame < av_bits_per_frame) michael@0: bits_per_frame = av_bits_per_frame; michael@0: } michael@0: michael@0: /* bits_per_frame should comply with our minimum */ michael@0: if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100)) michael@0: bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); michael@0: michael@0: /* Work out if spatial resampling is necessary */ michael@0: kf_q = estimate_kf_group_q(cpi, err_per_frame, michael@0: (int)bits_per_frame, group_iiratio); michael@0: michael@0: /* If we project a required Q higher than the maximum allowed Q then michael@0: * make a guess at the actual size of frames in this section michael@0: */ michael@0: projected_bits_perframe = bits_per_frame; michael@0: tmp_q = kf_q; michael@0: michael@0: while (tmp_q > cpi->worst_quality) michael@0: { michael@0: projected_bits_perframe *= 1.04; michael@0: tmp_q--; michael@0: } michael@0: michael@0: /* Guess at buffer level at the end of the section */ michael@0: projected_buffer_level = (int) michael@0: (cpi->buffer_level - (int) michael@0: ((projected_bits_perframe - av_bits_per_frame) * michael@0: cpi->twopass.frames_to_key)); michael@0: michael@0: if (0) michael@0: { michael@0: FILE *f = fopen("Subsamle.stt", "a"); michael@0: fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); michael@0: fclose(f); michael@0: } michael@0: michael@0: /* The trigger for spatial resampling depends on the various michael@0: * parameters such as whether we are streaming (CBR) or VBR. michael@0: */ michael@0: if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) michael@0: { michael@0: /* Trigger resample if we are projected to fall below down michael@0: * sample level or resampled last time and are projected to michael@0: * remain below the up sample level michael@0: */ michael@0: if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) || michael@0: (last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)))) michael@0: resample_trigger = 1; michael@0: else michael@0: resample_trigger = 0; michael@0: } michael@0: else michael@0: { michael@0: int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate)); michael@0: int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; michael@0: michael@0: /* If triggered last time the threshold for triggering again is michael@0: * reduced: michael@0: * michael@0: * Projected Q higher than allowed and Overspend > 5% of total michael@0: * bits michael@0: */ michael@0: if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || michael@0: ((kf_q > cpi->worst_quality) && michael@0: (over_spend > clip_bits / 20))) michael@0: resample_trigger = 1; michael@0: else michael@0: resample_trigger = 0; michael@0: michael@0: } michael@0: michael@0: if (resample_trigger) michael@0: { michael@0: while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) michael@0: { michael@0: scale_val ++; michael@0: michael@0: cpi->common.vert_scale = vscale_lookup[scale_val]; michael@0: cpi->common.horiz_scale = hscale_lookup[scale_val]; michael@0: michael@0: Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); michael@0: Scale2Ratio(cpi->common.vert_scale, &vr, &vs); michael@0: michael@0: new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; michael@0: new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; michael@0: michael@0: /* Reducing the area to 1/4 does not reduce the complexity michael@0: * (err_per_frame) to 1/4... effective_sizeratio attempts michael@0: * to provide a crude correction for this michael@0: */ michael@0: effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height); michael@0: effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; michael@0: michael@0: /* Now try again and see what Q we get with the smaller michael@0: * image size michael@0: */ michael@0: kf_q = estimate_kf_group_q(cpi, michael@0: err_per_frame * effective_size_ratio, michael@0: (int)bits_per_frame, group_iiratio); michael@0: michael@0: if (0) michael@0: { michael@0: FILE *f = fopen("Subsamle.stt", "a"); michael@0: fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); michael@0: fclose(f); michael@0: } michael@0: } michael@0: } michael@0: michael@0: if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height)) michael@0: { michael@0: cpi->common.Width = new_width; michael@0: cpi->common.Height = new_height; michael@0: vp8_alloc_compressor_data(cpi); michael@0: } michael@0: } michael@0: }