michael@0: /* michael@0: * Copyright (c) 2010 The WebM project authors. All Rights Reserved. michael@0: * michael@0: * Use of this source code is governed by a BSD-style license michael@0: * that can be found in the LICENSE file in the root of the source michael@0: * tree. An additional intellectual property rights grant can be found michael@0: * in the file PATENTS. All contributing project authors may michael@0: * be found in the AUTHORS file in the root of the source tree. michael@0: */ michael@0: michael@0: #include michael@0: #include michael@0: #include michael@0: #include "vp9/encoder/vp9_block.h" michael@0: #include "vp9/encoder/vp9_onyx_int.h" michael@0: #include "vp9/encoder/vp9_variance.h" michael@0: #include "vp9/encoder/vp9_encodeintra.h" michael@0: #include "vp9/encoder/vp9_mcomp.h" michael@0: #include "vp9/encoder/vp9_firstpass.h" michael@0: #include "vpx_scale/vpx_scale.h" michael@0: #include "vp9/encoder/vp9_encodeframe.h" michael@0: #include "vp9/encoder/vp9_encodemb.h" michael@0: #include "vp9/common/vp9_extend.h" michael@0: #include "vp9/common/vp9_systemdependent.h" michael@0: #include "vpx_mem/vpx_mem.h" michael@0: #include "vpx_scale/yv12config.h" michael@0: #include "vp9/encoder/vp9_quantize.h" michael@0: #include "vp9/encoder/vp9_rdopt.h" michael@0: #include "vp9/encoder/vp9_ratectrl.h" michael@0: #include "vp9/common/vp9_quant_common.h" michael@0: #include "vp9/common/vp9_entropymv.h" michael@0: #include "vp9/encoder/vp9_encodemv.h" michael@0: #include "vp9/encoder/vp9_vaq.h" michael@0: #include "./vpx_scale_rtcd.h" michael@0: // TODO(jkoleszar): for setup_dst_planes michael@0: #include "vp9/common/vp9_reconinter.h" michael@0: michael@0: #define OUTPUT_FPF 0 michael@0: michael@0: #define IIFACTOR 12.5 michael@0: #define IIKFACTOR1 12.5 michael@0: #define IIKFACTOR2 15.0 michael@0: #define RMAX 512.0 michael@0: #define GF_RMAX 96.0 michael@0: #define ERR_DIVISOR 150.0 michael@0: #define MIN_DECAY_FACTOR 0.1 michael@0: michael@0: #define KF_MB_INTRA_MIN 150 michael@0: #define GF_MB_INTRA_MIN 100 michael@0: michael@0: #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001) michael@0: michael@0: #define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 michael@0: #define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 michael@0: michael@0: static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) { michael@0: YV12_BUFFER_CONFIG temp = *a; michael@0: *a = *b; michael@0: *b = temp; michael@0: } michael@0: michael@0: static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame); michael@0: michael@0: static int select_cq_level(int qindex) { michael@0: int ret_val = QINDEX_RANGE - 1; michael@0: int i; michael@0: michael@0: double target_q = (vp9_convert_qindex_to_q(qindex) * 0.5847) + 1.0; michael@0: michael@0: for (i = 0; i < QINDEX_RANGE; i++) { michael@0: if (target_q <= vp9_convert_qindex_to_q(i)) { michael@0: ret_val = i; michael@0: break; michael@0: } michael@0: } michael@0: michael@0: return ret_val; michael@0: } michael@0: michael@0: michael@0: // Resets the first pass file to the given position using a relative seek from michael@0: // the current position. michael@0: static void reset_fpf_position(VP9_COMP *cpi, FIRSTPASS_STATS *position) { michael@0: cpi->twopass.stats_in = position; michael@0: } michael@0: michael@0: static int lookup_next_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) { michael@0: if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) michael@0: return EOF; michael@0: michael@0: *next_frame = *cpi->twopass.stats_in; michael@0: return 1; michael@0: } michael@0: michael@0: // Read frame stats at an offset from the current position michael@0: static int read_frame_stats(VP9_COMP *cpi, michael@0: FIRSTPASS_STATS *frame_stats, michael@0: int offset) { michael@0: FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in; michael@0: michael@0: // Check legality of offset michael@0: if (offset >= 0) { michael@0: if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) michael@0: return EOF; michael@0: } else if (offset < 0) { michael@0: if (&fps_ptr[offset] < cpi->twopass.stats_in_start) michael@0: return EOF; michael@0: } michael@0: michael@0: *frame_stats = fps_ptr[offset]; michael@0: return 1; michael@0: } michael@0: michael@0: static int input_stats(VP9_COMP *cpi, FIRSTPASS_STATS *fps) { michael@0: if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) michael@0: return EOF; michael@0: michael@0: *fps = *cpi->twopass.stats_in; michael@0: cpi->twopass.stats_in = michael@0: (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); michael@0: return 1; michael@0: } michael@0: michael@0: static void output_stats(const VP9_COMP *cpi, michael@0: struct vpx_codec_pkt_list *pktlist, michael@0: FIRSTPASS_STATS *stats) { michael@0: struct vpx_codec_cx_pkt pkt; michael@0: pkt.kind = VPX_CODEC_STATS_PKT; michael@0: pkt.data.twopass_stats.buf = stats; michael@0: pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); michael@0: vpx_codec_pkt_list_add(pktlist, &pkt); michael@0: michael@0: // TEMP debug code michael@0: #if OUTPUT_FPF michael@0: michael@0: { michael@0: FILE *fpfile; michael@0: fpfile = fopen("firstpass.stt", "a"); michael@0: michael@0: fprintf(stdout, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f" michael@0: "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" michael@0: "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n", michael@0: stats->frame, michael@0: stats->intra_error, michael@0: stats->coded_error, michael@0: stats->sr_coded_error, michael@0: stats->ssim_weighted_pred_err, michael@0: stats->pcnt_inter, michael@0: stats->pcnt_motion, michael@0: stats->pcnt_second_ref, michael@0: stats->pcnt_neutral, michael@0: stats->MVr, michael@0: stats->mvr_abs, michael@0: stats->MVc, michael@0: stats->mvc_abs, michael@0: stats->MVrv, michael@0: stats->MVcv, michael@0: stats->mv_in_out_count, michael@0: stats->new_mv_count, michael@0: stats->count, michael@0: stats->duration); michael@0: fclose(fpfile); michael@0: } michael@0: #endif michael@0: } michael@0: michael@0: static void zero_stats(FIRSTPASS_STATS *section) { michael@0: section->frame = 0.0; michael@0: section->intra_error = 0.0; michael@0: section->coded_error = 0.0; michael@0: section->sr_coded_error = 0.0; michael@0: section->ssim_weighted_pred_err = 0.0; michael@0: section->pcnt_inter = 0.0; michael@0: section->pcnt_motion = 0.0; michael@0: section->pcnt_second_ref = 0.0; michael@0: section->pcnt_neutral = 0.0; michael@0: section->MVr = 0.0; michael@0: section->mvr_abs = 0.0; michael@0: section->MVc = 0.0; michael@0: section->mvc_abs = 0.0; michael@0: section->MVrv = 0.0; michael@0: section->MVcv = 0.0; michael@0: section->mv_in_out_count = 0.0; michael@0: section->new_mv_count = 0.0; michael@0: section->count = 0.0; michael@0: section->duration = 1.0; michael@0: } michael@0: michael@0: static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { michael@0: section->frame += frame->frame; michael@0: section->intra_error += frame->intra_error; michael@0: section->coded_error += frame->coded_error; michael@0: section->sr_coded_error += frame->sr_coded_error; michael@0: section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; michael@0: section->pcnt_inter += frame->pcnt_inter; michael@0: section->pcnt_motion += frame->pcnt_motion; michael@0: section->pcnt_second_ref += frame->pcnt_second_ref; michael@0: section->pcnt_neutral += frame->pcnt_neutral; michael@0: section->MVr += frame->MVr; michael@0: section->mvr_abs += frame->mvr_abs; michael@0: section->MVc += frame->MVc; michael@0: section->mvc_abs += frame->mvc_abs; michael@0: section->MVrv += frame->MVrv; michael@0: section->MVcv += frame->MVcv; michael@0: section->mv_in_out_count += frame->mv_in_out_count; michael@0: section->new_mv_count += frame->new_mv_count; michael@0: section->count += frame->count; michael@0: section->duration += frame->duration; michael@0: } michael@0: michael@0: static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { michael@0: section->frame -= frame->frame; michael@0: section->intra_error -= frame->intra_error; michael@0: section->coded_error -= frame->coded_error; michael@0: section->sr_coded_error -= frame->sr_coded_error; michael@0: section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; michael@0: section->pcnt_inter -= frame->pcnt_inter; michael@0: section->pcnt_motion -= frame->pcnt_motion; michael@0: section->pcnt_second_ref -= frame->pcnt_second_ref; michael@0: section->pcnt_neutral -= frame->pcnt_neutral; michael@0: section->MVr -= frame->MVr; michael@0: section->mvr_abs -= frame->mvr_abs; michael@0: section->MVc -= frame->MVc; michael@0: section->mvc_abs -= frame->mvc_abs; michael@0: section->MVrv -= frame->MVrv; michael@0: section->MVcv -= frame->MVcv; michael@0: section->mv_in_out_count -= frame->mv_in_out_count; michael@0: section->new_mv_count -= frame->new_mv_count; michael@0: section->count -= frame->count; michael@0: section->duration -= frame->duration; michael@0: } michael@0: michael@0: static void avg_stats(FIRSTPASS_STATS *section) { michael@0: if (section->count < 1.0) michael@0: return; michael@0: michael@0: section->intra_error /= section->count; michael@0: section->coded_error /= section->count; michael@0: section->sr_coded_error /= section->count; michael@0: section->ssim_weighted_pred_err /= section->count; michael@0: section->pcnt_inter /= section->count; michael@0: section->pcnt_second_ref /= section->count; michael@0: section->pcnt_neutral /= section->count; michael@0: section->pcnt_motion /= section->count; michael@0: section->MVr /= section->count; michael@0: section->mvr_abs /= section->count; michael@0: section->MVc /= section->count; michael@0: section->mvc_abs /= section->count; michael@0: section->MVrv /= section->count; michael@0: section->MVcv /= section->count; michael@0: section->mv_in_out_count /= section->count; michael@0: section->duration /= section->count; michael@0: } michael@0: michael@0: // Calculate a modified Error used in distributing bits between easier and michael@0: // harder frames. michael@0: static double calculate_modified_err(VP9_COMP *cpi, michael@0: FIRSTPASS_STATS *this_frame) { michael@0: const FIRSTPASS_STATS *const stats = &cpi->twopass.total_stats; michael@0: const double av_err = stats->ssim_weighted_pred_err / stats->count; michael@0: const double this_err = this_frame->ssim_weighted_pred_err; michael@0: return av_err * pow(this_err / DOUBLE_DIVIDE_CHECK(av_err), michael@0: this_err > av_err ? POW1 : POW2); michael@0: } michael@0: michael@0: static const double weight_table[256] = { michael@0: 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, michael@0: 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, michael@0: 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, michael@0: 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, michael@0: 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, michael@0: 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, michael@0: 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, michael@0: 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, michael@0: 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, michael@0: 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, michael@0: 1.000000, 1.000000, 1.000000, 1.000000 michael@0: }; michael@0: michael@0: static double simple_weight(YV12_BUFFER_CONFIG *source) { michael@0: int i, j; michael@0: michael@0: uint8_t *src = source->y_buffer; michael@0: double sum_weights = 0.0; michael@0: michael@0: // Loop through the Y plane examining levels and creating a weight for michael@0: // the image. michael@0: i = source->y_height; michael@0: do { michael@0: j = source->y_width; michael@0: do { michael@0: sum_weights += weight_table[ *src]; michael@0: src++; michael@0: } while (--j); michael@0: src -= source->y_width; michael@0: src += source->y_stride; michael@0: } while (--i); michael@0: michael@0: sum_weights /= (source->y_height * source->y_width); michael@0: michael@0: return sum_weights; michael@0: } michael@0: michael@0: michael@0: // This function returns the current per frame maximum bitrate target. michael@0: static int frame_max_bits(VP9_COMP *cpi) { michael@0: // Max allocation for a single frame based on the max section guidelines michael@0: // passed in and how many bits are left. michael@0: // For VBR base this on the bits and frames left plus the michael@0: // two_pass_vbrmax_section rate passed in by the user. michael@0: const double max_bits = (1.0 * cpi->twopass.bits_left / michael@0: (cpi->twopass.total_stats.count - cpi->common.current_video_frame)) * michael@0: (cpi->oxcf.two_pass_vbrmax_section / 100.0); michael@0: michael@0: // Trap case where we are out of bits. michael@0: return MAX((int)max_bits, 0); michael@0: } michael@0: michael@0: void vp9_init_first_pass(VP9_COMP *cpi) { michael@0: zero_stats(&cpi->twopass.total_stats); michael@0: } michael@0: michael@0: void vp9_end_first_pass(VP9_COMP *cpi) { michael@0: output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); michael@0: } michael@0: michael@0: static void zz_motion_search(VP9_COMP *cpi, MACROBLOCK *x, michael@0: YV12_BUFFER_CONFIG *recon_buffer, michael@0: int *best_motion_err, int recon_yoffset) { michael@0: MACROBLOCKD *const xd = &x->e_mbd; michael@0: michael@0: // Set up pointers for this macro block recon buffer michael@0: xd->plane[0].pre[0].buf = recon_buffer->y_buffer + recon_yoffset; michael@0: michael@0: switch (xd->mi_8x8[0]->mbmi.sb_type) { michael@0: case BLOCK_8X8: michael@0: vp9_mse8x8(x->plane[0].src.buf, x->plane[0].src.stride, michael@0: xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride, michael@0: (unsigned int *)(best_motion_err)); michael@0: break; michael@0: case BLOCK_16X8: michael@0: vp9_mse16x8(x->plane[0].src.buf, x->plane[0].src.stride, michael@0: xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride, michael@0: (unsigned int *)(best_motion_err)); michael@0: break; michael@0: case BLOCK_8X16: michael@0: vp9_mse8x16(x->plane[0].src.buf, x->plane[0].src.stride, michael@0: xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride, michael@0: (unsigned int *)(best_motion_err)); michael@0: break; michael@0: default: michael@0: vp9_mse16x16(x->plane[0].src.buf, x->plane[0].src.stride, michael@0: xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride, michael@0: (unsigned int *)(best_motion_err)); michael@0: break; michael@0: } michael@0: } michael@0: michael@0: static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, michael@0: int_mv *ref_mv, MV *best_mv, michael@0: YV12_BUFFER_CONFIG *recon_buffer, michael@0: int *best_motion_err, int recon_yoffset) { michael@0: MACROBLOCKD *const xd = &x->e_mbd; michael@0: int num00; michael@0: michael@0: int_mv tmp_mv; michael@0: int_mv ref_mv_full; michael@0: michael@0: int tmp_err; michael@0: int step_param = 3; michael@0: int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; michael@0: int n; michael@0: vp9_variance_fn_ptr_t v_fn_ptr = michael@0: cpi->fn_ptr[xd->mi_8x8[0]->mbmi.sb_type]; michael@0: int new_mv_mode_penalty = 256; michael@0: michael@0: int sr = 0; michael@0: int quart_frm = MIN(cpi->common.width, cpi->common.height); michael@0: michael@0: // refine the motion search range accroding to the frame dimension michael@0: // for first pass test michael@0: while ((quart_frm << sr) < MAX_FULL_PEL_VAL) michael@0: sr++; michael@0: if (sr) michael@0: sr--; michael@0: michael@0: step_param += sr; michael@0: further_steps -= sr; michael@0: michael@0: // override the default variance function to use MSE michael@0: switch (xd->mi_8x8[0]->mbmi.sb_type) { michael@0: case BLOCK_8X8: michael@0: v_fn_ptr.vf = vp9_mse8x8; michael@0: break; michael@0: case BLOCK_16X8: michael@0: v_fn_ptr.vf = vp9_mse16x8; michael@0: break; michael@0: case BLOCK_8X16: michael@0: v_fn_ptr.vf = vp9_mse8x16; michael@0: break; michael@0: default: michael@0: v_fn_ptr.vf = vp9_mse16x16; michael@0: break; michael@0: } michael@0: michael@0: // Set up pointers for this macro block recon buffer michael@0: xd->plane[0].pre[0].buf = recon_buffer->y_buffer + recon_yoffset; michael@0: michael@0: // Initial step/diamond search centred on best mv michael@0: tmp_mv.as_int = 0; michael@0: ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3; michael@0: ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3; michael@0: tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv, step_param, michael@0: x->sadperbit16, &num00, &v_fn_ptr, michael@0: x->nmvjointcost, michael@0: x->mvcost, ref_mv); michael@0: if (tmp_err < INT_MAX - new_mv_mode_penalty) michael@0: tmp_err += new_mv_mode_penalty; michael@0: michael@0: if (tmp_err < *best_motion_err) { michael@0: *best_motion_err = tmp_err; michael@0: best_mv->row = tmp_mv.as_mv.row; michael@0: best_mv->col = tmp_mv.as_mv.col; michael@0: } michael@0: michael@0: // Further step/diamond searches as necessary michael@0: n = num00; michael@0: num00 = 0; michael@0: michael@0: while (n < further_steps) { michael@0: n++; michael@0: michael@0: if (num00) { michael@0: num00--; michael@0: } else { michael@0: tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv, michael@0: step_param + n, x->sadperbit16, michael@0: &num00, &v_fn_ptr, michael@0: x->nmvjointcost, michael@0: x->mvcost, ref_mv); michael@0: if (tmp_err < INT_MAX - new_mv_mode_penalty) michael@0: tmp_err += new_mv_mode_penalty; michael@0: michael@0: if (tmp_err < *best_motion_err) { michael@0: *best_motion_err = tmp_err; michael@0: best_mv->row = tmp_mv.as_mv.row; michael@0: best_mv->col = tmp_mv.as_mv.col; michael@0: } michael@0: } michael@0: } michael@0: } michael@0: michael@0: void vp9_first_pass(VP9_COMP *cpi) { michael@0: int mb_row, mb_col; michael@0: MACROBLOCK *const x = &cpi->mb; michael@0: VP9_COMMON *const cm = &cpi->common; michael@0: MACROBLOCKD *const xd = &x->e_mbd; michael@0: TileInfo tile; michael@0: struct macroblock_plane *const p = x->plane; michael@0: struct macroblockd_plane *const pd = xd->plane; michael@0: PICK_MODE_CONTEXT *ctx = &x->sb64_context; michael@0: int i; michael@0: michael@0: int recon_yoffset, recon_uvoffset; michael@0: const int lst_yv12_idx = cm->ref_frame_map[cpi->lst_fb_idx]; michael@0: const int gld_yv12_idx = cm->ref_frame_map[cpi->gld_fb_idx]; michael@0: YV12_BUFFER_CONFIG *const lst_yv12 = &cm->yv12_fb[lst_yv12_idx]; michael@0: YV12_BUFFER_CONFIG *const gld_yv12 = &cm->yv12_fb[gld_yv12_idx]; michael@0: YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); michael@0: const int recon_y_stride = lst_yv12->y_stride; michael@0: const int recon_uv_stride = lst_yv12->uv_stride; michael@0: int64_t intra_error = 0; michael@0: int64_t coded_error = 0; michael@0: int64_t sr_coded_error = 0; michael@0: michael@0: int sum_mvr = 0, sum_mvc = 0; michael@0: int sum_mvr_abs = 0, sum_mvc_abs = 0; michael@0: int sum_mvrs = 0, sum_mvcs = 0; michael@0: int mvcount = 0; michael@0: int intercount = 0; michael@0: int second_ref_count = 0; michael@0: int intrapenalty = 256; michael@0: int neutral_count = 0; michael@0: int new_mv_count = 0; michael@0: int sum_in_vectors = 0; michael@0: uint32_t lastmv_as_int = 0; michael@0: michael@0: int_mv zero_ref_mv; michael@0: michael@0: zero_ref_mv.as_int = 0; michael@0: michael@0: vp9_clear_system_state(); // __asm emms; michael@0: michael@0: vp9_setup_src_planes(x, cpi->Source, 0, 0); michael@0: setup_pre_planes(xd, 0, lst_yv12, 0, 0, NULL); michael@0: setup_dst_planes(xd, new_yv12, 0, 0); michael@0: michael@0: xd->mi_8x8 = cm->mi_grid_visible; michael@0: // required for vp9_frame_init_quantizer michael@0: xd->mi_8x8[0] = cm->mi; michael@0: michael@0: setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); michael@0: michael@0: vp9_frame_init_quantizer(cpi); michael@0: michael@0: for (i = 0; i < MAX_MB_PLANE; ++i) { michael@0: p[i].coeff = ctx->coeff_pbuf[i][1]; michael@0: pd[i].qcoeff = ctx->qcoeff_pbuf[i][1]; michael@0: pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; michael@0: pd[i].eobs = ctx->eobs_pbuf[i][1]; michael@0: } michael@0: x->skip_recode = 0; michael@0: michael@0: michael@0: // Initialise the MV cost table to the defaults michael@0: // if( cm->current_video_frame == 0) michael@0: // if ( 0 ) michael@0: { michael@0: vp9_init_mv_probs(cm); michael@0: vp9_initialize_rd_consts(cpi); michael@0: } michael@0: michael@0: // tiling is ignored in the first pass michael@0: vp9_tile_init(&tile, cm, 0, 0); michael@0: michael@0: // for each macroblock row in image michael@0: for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { michael@0: int_mv best_ref_mv; michael@0: michael@0: best_ref_mv.as_int = 0; michael@0: michael@0: // reset above block coeffs michael@0: xd->up_available = (mb_row != 0); michael@0: recon_yoffset = (mb_row * recon_y_stride * 16); michael@0: recon_uvoffset = (mb_row * recon_uv_stride * 8); michael@0: michael@0: // Set up limit values for motion vectors to prevent them extending michael@0: // outside the UMV borders michael@0: x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); michael@0: x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) michael@0: + BORDER_MV_PIXELS_B16; michael@0: michael@0: // for each macroblock col in image michael@0: for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { michael@0: int this_error; michael@0: int gf_motion_error = INT_MAX; michael@0: int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); michael@0: double error_weight; michael@0: michael@0: vp9_clear_system_state(); // __asm emms; michael@0: error_weight = 1.0; // avoid uninitialized warnings michael@0: michael@0: xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; michael@0: xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; michael@0: xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; michael@0: xd->left_available = (mb_col != 0); michael@0: michael@0: if (mb_col * 2 + 1 < cm->mi_cols) { michael@0: if (mb_row * 2 + 1 < cm->mi_rows) { michael@0: xd->mi_8x8[0]->mbmi.sb_type = BLOCK_16X16; michael@0: } else { michael@0: xd->mi_8x8[0]->mbmi.sb_type = BLOCK_16X8; michael@0: } michael@0: } else { michael@0: if (mb_row * 2 + 1 < cm->mi_rows) { michael@0: xd->mi_8x8[0]->mbmi.sb_type = BLOCK_8X16; michael@0: } else { michael@0: xd->mi_8x8[0]->mbmi.sb_type = BLOCK_8X8; michael@0: } michael@0: } michael@0: xd->mi_8x8[0]->mbmi.ref_frame[0] = INTRA_FRAME; michael@0: set_mi_row_col(xd, &tile, michael@0: mb_row << 1, michael@0: num_8x8_blocks_high_lookup[xd->mi_8x8[0]->mbmi.sb_type], michael@0: mb_col << 1, michael@0: num_8x8_blocks_wide_lookup[xd->mi_8x8[0]->mbmi.sb_type], michael@0: cm->mi_rows, cm->mi_cols); michael@0: michael@0: if (cpi->oxcf.aq_mode == VARIANCE_AQ) { michael@0: int energy = vp9_block_energy(cpi, x, xd->mi_8x8[0]->mbmi.sb_type); michael@0: error_weight = vp9_vaq_inv_q_ratio(energy); michael@0: } michael@0: michael@0: // do intra 16x16 prediction michael@0: this_error = vp9_encode_intra(x, use_dc_pred); michael@0: if (cpi->oxcf.aq_mode == VARIANCE_AQ) { michael@0: vp9_clear_system_state(); // __asm emms; michael@0: this_error *= error_weight; michael@0: } michael@0: michael@0: // intrapenalty below deals with situations where the intra and inter michael@0: // error scores are very low (eg a plain black frame). michael@0: // We do not have special cases in first pass for 0,0 and nearest etc so michael@0: // all inter modes carry an overhead cost estimate for the mv. michael@0: // When the error score is very low this causes us to pick all or lots of michael@0: // INTRA modes and throw lots of key frames. michael@0: // This penalty adds a cost matching that of a 0,0 mv to the intra case. michael@0: this_error += intrapenalty; michael@0: michael@0: // Cumulative intra error total michael@0: intra_error += (int64_t)this_error; michael@0: michael@0: // Set up limit values for motion vectors to prevent them extending michael@0: // outside the UMV borders. michael@0: x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); michael@0: x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) michael@0: + BORDER_MV_PIXELS_B16; michael@0: michael@0: // Other than for the first frame do a motion search michael@0: if (cm->current_video_frame > 0) { michael@0: int tmp_err; michael@0: int motion_error = INT_MAX; michael@0: int_mv mv, tmp_mv; michael@0: michael@0: // Simple 0,0 motion with no mv overhead michael@0: zz_motion_search(cpi, x, lst_yv12, &motion_error, recon_yoffset); michael@0: mv.as_int = tmp_mv.as_int = 0; michael@0: michael@0: // Test last reference frame using the previous best mv as the michael@0: // starting point (best reference) for the search michael@0: first_pass_motion_search(cpi, x, &best_ref_mv, michael@0: &mv.as_mv, lst_yv12, michael@0: &motion_error, recon_yoffset); michael@0: if (cpi->oxcf.aq_mode == VARIANCE_AQ) { michael@0: vp9_clear_system_state(); // __asm emms; michael@0: motion_error *= error_weight; michael@0: } michael@0: michael@0: // If the current best reference mv is not centered on 0,0 then do a 0,0 michael@0: // based search as well. michael@0: if (best_ref_mv.as_int) { michael@0: tmp_err = INT_MAX; michael@0: first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv, michael@0: lst_yv12, &tmp_err, recon_yoffset); michael@0: if (cpi->oxcf.aq_mode == VARIANCE_AQ) { michael@0: vp9_clear_system_state(); // __asm emms; michael@0: tmp_err *= error_weight; michael@0: } michael@0: michael@0: if (tmp_err < motion_error) { michael@0: motion_error = tmp_err; michael@0: mv.as_int = tmp_mv.as_int; michael@0: } michael@0: } michael@0: michael@0: // Experimental search in an older reference frame michael@0: if (cm->current_video_frame > 1) { michael@0: // Simple 0,0 motion with no mv overhead michael@0: zz_motion_search(cpi, x, gld_yv12, michael@0: &gf_motion_error, recon_yoffset); michael@0: michael@0: first_pass_motion_search(cpi, x, &zero_ref_mv, michael@0: &tmp_mv.as_mv, gld_yv12, michael@0: &gf_motion_error, recon_yoffset); michael@0: if (cpi->oxcf.aq_mode == VARIANCE_AQ) { michael@0: vp9_clear_system_state(); // __asm emms; michael@0: gf_motion_error *= error_weight; michael@0: } michael@0: michael@0: if ((gf_motion_error < motion_error) && michael@0: (gf_motion_error < this_error)) { michael@0: second_ref_count++; michael@0: } michael@0: michael@0: // Reset to last frame as reference buffer michael@0: xd->plane[0].pre[0].buf = lst_yv12->y_buffer + recon_yoffset; michael@0: xd->plane[1].pre[0].buf = lst_yv12->u_buffer + recon_uvoffset; michael@0: xd->plane[2].pre[0].buf = lst_yv12->v_buffer + recon_uvoffset; michael@0: michael@0: // In accumulating a score for the older reference frame michael@0: // take the best of the motion predicted score and michael@0: // the intra coded error (just as will be done for) michael@0: // accumulation of "coded_error" for the last frame. michael@0: if (gf_motion_error < this_error) michael@0: sr_coded_error += gf_motion_error; michael@0: else michael@0: sr_coded_error += this_error; michael@0: } else { michael@0: sr_coded_error += motion_error; michael@0: } michael@0: /* Intra assumed best */ michael@0: best_ref_mv.as_int = 0; michael@0: michael@0: if (motion_error <= this_error) { michael@0: // Keep a count of cases where the inter and intra were michael@0: // very close and very low. This helps with scene cut michael@0: // detection for example in cropped clips with black bars michael@0: // at the sides or top and bottom. michael@0: if ((((this_error - intrapenalty) * 9) <= michael@0: (motion_error * 10)) && michael@0: (this_error < (2 * intrapenalty))) { michael@0: neutral_count++; michael@0: } michael@0: michael@0: mv.as_mv.row *= 8; michael@0: mv.as_mv.col *= 8; michael@0: this_error = motion_error; michael@0: vp9_set_mbmode_and_mvs(x, NEWMV, &mv); michael@0: xd->mi_8x8[0]->mbmi.tx_size = TX_4X4; michael@0: xd->mi_8x8[0]->mbmi.ref_frame[0] = LAST_FRAME; michael@0: xd->mi_8x8[0]->mbmi.ref_frame[1] = NONE; michael@0: vp9_build_inter_predictors_sby(xd, mb_row << 1, michael@0: mb_col << 1, michael@0: xd->mi_8x8[0]->mbmi.sb_type); michael@0: vp9_encode_sby(x, xd->mi_8x8[0]->mbmi.sb_type); michael@0: sum_mvr += mv.as_mv.row; michael@0: sum_mvr_abs += abs(mv.as_mv.row); michael@0: sum_mvc += mv.as_mv.col; michael@0: sum_mvc_abs += abs(mv.as_mv.col); michael@0: sum_mvrs += mv.as_mv.row * mv.as_mv.row; michael@0: sum_mvcs += mv.as_mv.col * mv.as_mv.col; michael@0: intercount++; michael@0: michael@0: best_ref_mv.as_int = mv.as_int; michael@0: michael@0: // Was the vector non-zero michael@0: if (mv.as_int) { michael@0: mvcount++; michael@0: michael@0: // Was it different from the last non zero vector michael@0: if (mv.as_int != lastmv_as_int) michael@0: new_mv_count++; michael@0: lastmv_as_int = mv.as_int; michael@0: michael@0: // Does the Row vector point inwards or outwards michael@0: if (mb_row < cm->mb_rows / 2) { michael@0: if (mv.as_mv.row > 0) michael@0: sum_in_vectors--; michael@0: else if (mv.as_mv.row < 0) michael@0: sum_in_vectors++; michael@0: } else if (mb_row > cm->mb_rows / 2) { michael@0: if (mv.as_mv.row > 0) michael@0: sum_in_vectors++; michael@0: else if (mv.as_mv.row < 0) michael@0: sum_in_vectors--; michael@0: } michael@0: michael@0: // Does the Row vector point inwards or outwards michael@0: if (mb_col < cm->mb_cols / 2) { michael@0: if (mv.as_mv.col > 0) michael@0: sum_in_vectors--; michael@0: else if (mv.as_mv.col < 0) michael@0: sum_in_vectors++; michael@0: } else if (mb_col > cm->mb_cols / 2) { michael@0: if (mv.as_mv.col > 0) michael@0: sum_in_vectors++; michael@0: else if (mv.as_mv.col < 0) michael@0: sum_in_vectors--; michael@0: } michael@0: } michael@0: } michael@0: } else { michael@0: sr_coded_error += (int64_t)this_error; michael@0: } michael@0: coded_error += (int64_t)this_error; michael@0: michael@0: // adjust to the next column of macroblocks michael@0: x->plane[0].src.buf += 16; michael@0: x->plane[1].src.buf += 8; michael@0: x->plane[2].src.buf += 8; michael@0: michael@0: recon_yoffset += 16; michael@0: recon_uvoffset += 8; michael@0: } michael@0: michael@0: // adjust to the next row of mbs michael@0: x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; michael@0: x->plane[1].src.buf += 8 * x->plane[1].src.stride - 8 * cm->mb_cols; michael@0: x->plane[2].src.buf += 8 * x->plane[1].src.stride - 8 * cm->mb_cols; michael@0: michael@0: vp9_clear_system_state(); // __asm emms; michael@0: } michael@0: michael@0: vp9_clear_system_state(); // __asm emms; michael@0: { michael@0: double weight = 0.0; michael@0: michael@0: FIRSTPASS_STATS fps; michael@0: michael@0: fps.frame = cm->current_video_frame; michael@0: fps.intra_error = (double)(intra_error >> 8); michael@0: fps.coded_error = (double)(coded_error >> 8); michael@0: fps.sr_coded_error = (double)(sr_coded_error >> 8); michael@0: weight = simple_weight(cpi->Source); michael@0: michael@0: michael@0: if (weight < 0.1) michael@0: weight = 0.1; michael@0: michael@0: fps.ssim_weighted_pred_err = fps.coded_error * weight; michael@0: michael@0: fps.pcnt_inter = 0.0; michael@0: fps.pcnt_motion = 0.0; michael@0: fps.MVr = 0.0; michael@0: fps.mvr_abs = 0.0; michael@0: fps.MVc = 0.0; michael@0: fps.mvc_abs = 0.0; michael@0: fps.MVrv = 0.0; michael@0: fps.MVcv = 0.0; michael@0: fps.mv_in_out_count = 0.0; michael@0: fps.new_mv_count = 0.0; michael@0: fps.count = 1.0; michael@0: michael@0: fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; michael@0: fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; michael@0: fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; michael@0: michael@0: if (mvcount > 0) { michael@0: fps.MVr = (double)sum_mvr / (double)mvcount; michael@0: fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; michael@0: fps.MVc = (double)sum_mvc / (double)mvcount; michael@0: fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; michael@0: fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / michael@0: (double)mvcount; michael@0: fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / michael@0: (double)mvcount; michael@0: fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); michael@0: fps.new_mv_count = new_mv_count; michael@0: michael@0: fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; michael@0: } michael@0: michael@0: // TODO(paulwilkins): Handle the case when duration is set to 0, or michael@0: // something less than the full time between subsequent values of michael@0: // cpi->source_time_stamp. michael@0: fps.duration = (double)(cpi->source->ts_end michael@0: - cpi->source->ts_start); michael@0: michael@0: // don't want to do output stats with a stack variable! michael@0: cpi->twopass.this_frame_stats = fps; michael@0: output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); michael@0: accumulate_stats(&cpi->twopass.total_stats, &fps); michael@0: } michael@0: michael@0: // Copy the previous Last Frame back into gf and and arf buffers if michael@0: // the prediction is good enough... but also dont allow it to lag too far michael@0: if ((cpi->twopass.sr_update_lag > 3) || michael@0: ((cm->current_video_frame > 0) && michael@0: (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && michael@0: ((cpi->twopass.this_frame_stats.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > michael@0: 2.0))) { michael@0: vp8_yv12_copy_frame(lst_yv12, gld_yv12); michael@0: cpi->twopass.sr_update_lag = 1; michael@0: } else { michael@0: cpi->twopass.sr_update_lag++; michael@0: } michael@0: // swap frame pointers so last frame refers to the frame we just compressed michael@0: swap_yv12(lst_yv12, new_yv12); michael@0: michael@0: vp9_extend_frame_borders(lst_yv12, cm->subsampling_x, cm->subsampling_y); michael@0: michael@0: // Special case for the first frame. Copy into the GF buffer as a second michael@0: // reference. michael@0: if (cm->current_video_frame == 0) michael@0: vp8_yv12_copy_frame(lst_yv12, gld_yv12); michael@0: michael@0: // use this to see what the first pass reconstruction looks like michael@0: if (0) { michael@0: char filename[512]; michael@0: FILE *recon_file; michael@0: snprintf(filename, sizeof(filename), "enc%04d.yuv", michael@0: (int)cm->current_video_frame); michael@0: michael@0: if (cm->current_video_frame == 0) michael@0: recon_file = fopen(filename, "wb"); michael@0: else michael@0: recon_file = fopen(filename, "ab"); michael@0: michael@0: (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); michael@0: fclose(recon_file); michael@0: } michael@0: michael@0: cm->current_video_frame++; michael@0: } michael@0: michael@0: // Estimate a cost per mb attributable to overheads such as the coding of michael@0: // modes and motion vectors. michael@0: // Currently simplistic in its assumptions for testing. michael@0: // michael@0: michael@0: michael@0: static double bitcost(double prob) { michael@0: return -(log(prob) / log(2.0)); michael@0: } michael@0: michael@0: static int64_t estimate_modemvcost(VP9_COMP *cpi, michael@0: FIRSTPASS_STATS *fpstats) { michael@0: #if 0 michael@0: int mv_cost; michael@0: int mode_cost; michael@0: michael@0: double av_pct_inter = fpstats->pcnt_inter / fpstats->count; michael@0: double av_pct_motion = fpstats->pcnt_motion / fpstats->count; michael@0: double av_intra = (1.0 - av_pct_inter); michael@0: michael@0: double zz_cost; michael@0: double motion_cost; michael@0: double intra_cost; michael@0: michael@0: zz_cost = bitcost(av_pct_inter - av_pct_motion); michael@0: motion_cost = bitcost(av_pct_motion); michael@0: intra_cost = bitcost(av_intra); michael@0: michael@0: // Estimate of extra bits per mv overhead for mbs michael@0: // << 9 is the normalization to the (bits * 512) used in vp9_bits_per_mb michael@0: mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; michael@0: michael@0: // Crude estimate of overhead cost from modes michael@0: // << 9 is the normalization to (bits * 512) used in vp9_bits_per_mb michael@0: mode_cost = michael@0: (int)((((av_pct_inter - av_pct_motion) * zz_cost) + michael@0: (av_pct_motion * motion_cost) + michael@0: (av_intra * intra_cost)) * cpi->common.MBs) << 9; michael@0: michael@0: // return mv_cost + mode_cost; michael@0: // TODO(paulwilkins): Fix overhead costs for extended Q range. michael@0: #endif michael@0: return 0; michael@0: } michael@0: michael@0: static double calc_correction_factor(double err_per_mb, michael@0: double err_divisor, michael@0: double pt_low, michael@0: double pt_high, michael@0: int q) { michael@0: const double error_term = err_per_mb / err_divisor; michael@0: michael@0: // Adjustment based on actual quantizer to power term. michael@0: const double power_term = MIN(vp9_convert_qindex_to_q(q) * 0.01 + pt_low, michael@0: pt_high); michael@0: michael@0: // Calculate correction factor michael@0: if (power_term < 1.0) michael@0: assert(error_term >= 0.0); michael@0: michael@0: return fclamp(pow(error_term, power_term), 0.05, 5.0); michael@0: } michael@0: michael@0: // Given a current maxQ value sets a range for future values. michael@0: // PGW TODO.. michael@0: // This code removes direct dependency on QIndex to determine the range michael@0: // (now uses the actual quantizer) but has not been tuned. michael@0: static void adjust_maxq_qrange(VP9_COMP *cpi) { michael@0: int i; michael@0: // Set the max corresponding to cpi->avg_q * 2.0 michael@0: double q = cpi->avg_q * 2.0; michael@0: cpi->twopass.maxq_max_limit = cpi->worst_quality; michael@0: for (i = cpi->best_quality; i <= cpi->worst_quality; i++) { michael@0: cpi->twopass.maxq_max_limit = i; michael@0: if (vp9_convert_qindex_to_q(i) >= q) michael@0: break; michael@0: } michael@0: michael@0: // Set the min corresponding to cpi->avg_q * 0.5 michael@0: q = cpi->avg_q * 0.5; michael@0: cpi->twopass.maxq_min_limit = cpi->best_quality; michael@0: for (i = cpi->worst_quality; i >= cpi->best_quality; i--) { michael@0: cpi->twopass.maxq_min_limit = i; michael@0: if (vp9_convert_qindex_to_q(i) <= q) michael@0: break; michael@0: } michael@0: } michael@0: michael@0: static int estimate_max_q(VP9_COMP *cpi, michael@0: FIRSTPASS_STATS *fpstats, michael@0: int section_target_bandwitdh) { michael@0: int q; michael@0: int num_mbs = cpi->common.MBs; michael@0: int target_norm_bits_per_mb; michael@0: michael@0: double section_err = fpstats->coded_error / fpstats->count; michael@0: double sr_correction; michael@0: double err_per_mb = section_err / num_mbs; michael@0: double err_correction_factor; michael@0: double speed_correction = 1.0; michael@0: michael@0: if (section_target_bandwitdh <= 0) michael@0: return cpi->twopass.maxq_max_limit; // Highest value allowed michael@0: michael@0: target_norm_bits_per_mb = section_target_bandwitdh < (1 << 20) michael@0: ? (512 * section_target_bandwitdh) / num_mbs michael@0: : 512 * (section_target_bandwitdh / num_mbs); michael@0: michael@0: // Look at the drop in prediction quality between the last frame michael@0: // and the GF buffer (which contained an older frame). michael@0: if (fpstats->sr_coded_error > fpstats->coded_error) { michael@0: double sr_err_diff = (fpstats->sr_coded_error - fpstats->coded_error) / michael@0: (fpstats->count * cpi->common.MBs); michael@0: sr_correction = fclamp(pow(sr_err_diff / 32.0, 0.25), 0.75, 1.25); michael@0: } else { michael@0: sr_correction = 0.75; michael@0: } michael@0: michael@0: // Calculate a corrective factor based on a rolling ratio of bits spent michael@0: // vs target bits michael@0: if (cpi->rolling_target_bits > 0 && michael@0: cpi->active_worst_quality < cpi->worst_quality) { michael@0: double rolling_ratio = (double)cpi->rolling_actual_bits / michael@0: (double)cpi->rolling_target_bits; michael@0: michael@0: if (rolling_ratio < 0.95) michael@0: cpi->twopass.est_max_qcorrection_factor -= 0.005; michael@0: else if (rolling_ratio > 1.05) michael@0: cpi->twopass.est_max_qcorrection_factor += 0.005; michael@0: michael@0: cpi->twopass.est_max_qcorrection_factor = fclamp( michael@0: cpi->twopass.est_max_qcorrection_factor, 0.1, 10.0); michael@0: } michael@0: michael@0: // Corrections for higher compression speed settings michael@0: // (reduced compression expected) michael@0: // FIXME(jimbankoski): Once we settle on vp9 speed features we need to michael@0: // change this code. michael@0: if (cpi->compressor_speed == 1) michael@0: speed_correction = cpi->oxcf.cpu_used <= 5 ? michael@0: 1.04 + (/*cpi->oxcf.cpu_used*/0 * 0.04) : michael@0: 1.25; michael@0: michael@0: // Try and pick a max Q that will be high enough to encode the michael@0: // content at the given rate. michael@0: for (q = cpi->twopass.maxq_min_limit; q < cpi->twopass.maxq_max_limit; q++) { michael@0: int bits_per_mb_at_this_q; michael@0: michael@0: err_correction_factor = calc_correction_factor(err_per_mb, michael@0: ERR_DIVISOR, 0.4, 0.90, q) * michael@0: sr_correction * speed_correction * michael@0: cpi->twopass.est_max_qcorrection_factor; michael@0: michael@0: bits_per_mb_at_this_q = vp9_bits_per_mb(INTER_FRAME, q, michael@0: err_correction_factor); michael@0: michael@0: if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) michael@0: break; michael@0: } michael@0: michael@0: // Restriction on active max q for constrained quality mode. michael@0: if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && michael@0: q < cpi->cq_target_quality) michael@0: q = cpi->cq_target_quality; michael@0: michael@0: // Adjust maxq_min_limit and maxq_max_limit limits based on michael@0: // average q observed in clip for non kf/gf/arf frames michael@0: // Give average a chance to settle though. michael@0: // PGW TODO.. This code is broken for the extended Q range michael@0: if (cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8) && michael@0: cpi->ni_frames > 25) michael@0: adjust_maxq_qrange(cpi); michael@0: michael@0: return q; michael@0: } michael@0: michael@0: // For cq mode estimate a cq level that matches the observed michael@0: // complexity and data rate. michael@0: static int estimate_cq(VP9_COMP *cpi, michael@0: FIRSTPASS_STATS *fpstats, michael@0: int section_target_bandwitdh) { michael@0: int q; michael@0: int num_mbs = cpi->common.MBs; michael@0: int target_norm_bits_per_mb; michael@0: michael@0: double section_err = (fpstats->coded_error / fpstats->count); michael@0: double err_per_mb = section_err / num_mbs; michael@0: double err_correction_factor; michael@0: double sr_err_diff; michael@0: double sr_correction; michael@0: double speed_correction = 1.0; michael@0: double clip_iiratio; michael@0: double clip_iifactor; michael@0: michael@0: target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) michael@0: ? (512 * section_target_bandwitdh) / num_mbs michael@0: : 512 * (section_target_bandwitdh / num_mbs); michael@0: michael@0: michael@0: // Corrections for higher compression speed settings michael@0: // (reduced compression expected) michael@0: if (cpi->compressor_speed == 1) { michael@0: if (cpi->oxcf.cpu_used <= 5) michael@0: speed_correction = 1.04 + (/*cpi->oxcf.cpu_used*/ 0 * 0.04); michael@0: else michael@0: speed_correction = 1.25; michael@0: } michael@0: michael@0: // Look at the drop in prediction quality between the last frame michael@0: // and the GF buffer (which contained an older frame). michael@0: if (fpstats->sr_coded_error > fpstats->coded_error) { michael@0: sr_err_diff = michael@0: (fpstats->sr_coded_error - fpstats->coded_error) / michael@0: (fpstats->count * cpi->common.MBs); michael@0: sr_correction = (sr_err_diff / 32.0); michael@0: sr_correction = pow(sr_correction, 0.25); michael@0: if (sr_correction < 0.75) michael@0: sr_correction = 0.75; michael@0: else if (sr_correction > 1.25) michael@0: sr_correction = 1.25; michael@0: } else { michael@0: sr_correction = 0.75; michael@0: } michael@0: michael@0: // II ratio correction factor for clip as a whole michael@0: clip_iiratio = cpi->twopass.total_stats.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); michael@0: clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); michael@0: if (clip_iifactor < 0.80) michael@0: clip_iifactor = 0.80; michael@0: michael@0: // Try and pick a Q that can encode the content at the given rate. michael@0: for (q = 0; q < MAXQ; q++) { michael@0: int bits_per_mb_at_this_q; michael@0: michael@0: // Error per MB based correction factor michael@0: err_correction_factor = michael@0: calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, q) * michael@0: sr_correction * speed_correction * clip_iifactor; michael@0: michael@0: bits_per_mb_at_this_q = michael@0: vp9_bits_per_mb(INTER_FRAME, q, err_correction_factor); michael@0: michael@0: if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) michael@0: break; michael@0: } michael@0: michael@0: // Clip value to range "best allowed to (worst allowed - 1)" michael@0: q = select_cq_level(q); michael@0: if (q >= cpi->worst_quality) michael@0: q = cpi->worst_quality - 1; michael@0: if (q < cpi->best_quality) michael@0: q = cpi->best_quality; michael@0: michael@0: return q; michael@0: } michael@0: michael@0: extern void vp9_new_framerate(VP9_COMP *cpi, double framerate); michael@0: michael@0: void vp9_init_second_pass(VP9_COMP *cpi) { michael@0: FIRSTPASS_STATS this_frame; michael@0: FIRSTPASS_STATS *start_pos; michael@0: michael@0: double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate; michael@0: double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * michael@0: cpi->oxcf.two_pass_vbrmin_section / 100); michael@0: michael@0: if (two_pass_min_rate < lower_bounds_min_rate) michael@0: two_pass_min_rate = lower_bounds_min_rate; michael@0: michael@0: zero_stats(&cpi->twopass.total_stats); michael@0: zero_stats(&cpi->twopass.total_left_stats); michael@0: michael@0: if (!cpi->twopass.stats_in_end) michael@0: return; michael@0: michael@0: cpi->twopass.total_stats = *cpi->twopass.stats_in_end; michael@0: cpi->twopass.total_left_stats = cpi->twopass.total_stats; michael@0: michael@0: // each frame can have a different duration, as the frame rate in the source michael@0: // isn't guaranteed to be constant. The frame rate prior to the first frame michael@0: // encoded in the second pass is a guess. However the sum duration is not. michael@0: // Its calculated based on the actual durations of all frames from the first michael@0: // pass. michael@0: vp9_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / michael@0: cpi->twopass.total_stats.duration); michael@0: michael@0: cpi->output_framerate = cpi->oxcf.framerate; michael@0: cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * michael@0: cpi->oxcf.target_bandwidth / 10000000.0); michael@0: cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * michael@0: two_pass_min_rate / 10000000.0); michael@0: michael@0: // Calculate a minimum intra value to be used in determining the IIratio michael@0: // scores used in the second pass. We have this minimum to make sure michael@0: // that clips that are static but "low complexity" in the intra domain michael@0: // are still boosted appropriately for KF/GF/ARF michael@0: cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; michael@0: cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; michael@0: michael@0: // This variable monitors how far behind the second ref update is lagging michael@0: cpi->twopass.sr_update_lag = 1; michael@0: michael@0: // Scan the first pass file and calculate an average Intra / Inter error score michael@0: // ratio for the sequence. michael@0: { michael@0: double sum_iiratio = 0.0; michael@0: double IIRatio; michael@0: michael@0: start_pos = cpi->twopass.stats_in; // Note the starting "file" position. michael@0: michael@0: while (input_stats(cpi, &this_frame) != EOF) { michael@0: IIRatio = this_frame.intra_error michael@0: / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); michael@0: IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; michael@0: sum_iiratio += IIRatio; michael@0: } michael@0: michael@0: cpi->twopass.avg_iiratio = sum_iiratio / michael@0: DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); michael@0: michael@0: // Reset file position michael@0: reset_fpf_position(cpi, start_pos); michael@0: } michael@0: michael@0: // Scan the first pass file and calculate a modified total error based upon michael@0: // the bias/power function used to allocate bits. michael@0: { michael@0: start_pos = cpi->twopass.stats_in; // Note starting "file" position michael@0: michael@0: cpi->twopass.modified_error_total = 0.0; michael@0: cpi->twopass.modified_error_used = 0.0; michael@0: michael@0: while (input_stats(cpi, &this_frame) != EOF) { michael@0: cpi->twopass.modified_error_total += michael@0: calculate_modified_err(cpi, &this_frame); michael@0: } michael@0: cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; michael@0: michael@0: reset_fpf_position(cpi, start_pos); // Reset file position michael@0: } michael@0: } michael@0: michael@0: void vp9_end_second_pass(VP9_COMP *cpi) { michael@0: } michael@0: michael@0: // This function gives and estimate of how badly we believe michael@0: // the prediction quality is decaying from frame to frame. michael@0: static double get_prediction_decay_rate(VP9_COMP *cpi, michael@0: FIRSTPASS_STATS *next_frame) { michael@0: double prediction_decay_rate; michael@0: double second_ref_decay; michael@0: double mb_sr_err_diff; michael@0: michael@0: // Initial basis is the % mbs inter coded michael@0: prediction_decay_rate = next_frame->pcnt_inter; michael@0: michael@0: // Look at the observed drop in prediction quality between the last frame michael@0: // and the GF buffer (which contains an older frame). michael@0: mb_sr_err_diff = (next_frame->sr_coded_error - next_frame->coded_error) / michael@0: cpi->common.MBs; michael@0: if (mb_sr_err_diff <= 512.0) { michael@0: second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0); michael@0: second_ref_decay = pow(second_ref_decay, 0.5); michael@0: if (second_ref_decay < 0.85) michael@0: second_ref_decay = 0.85; michael@0: else if (second_ref_decay > 1.0) michael@0: second_ref_decay = 1.0; michael@0: } else { michael@0: second_ref_decay = 0.85; michael@0: } michael@0: michael@0: if (second_ref_decay < prediction_decay_rate) michael@0: prediction_decay_rate = second_ref_decay; michael@0: michael@0: return prediction_decay_rate; michael@0: } michael@0: michael@0: // Function to test for a condition where a complex transition is followed michael@0: // by a static section. For example in slide shows where there is a fade michael@0: // between slides. This is to help with more optimal kf and gf positioning. michael@0: static int detect_transition_to_still( michael@0: VP9_COMP *cpi, michael@0: int frame_interval, michael@0: int still_interval, michael@0: double loop_decay_rate, michael@0: double last_decay_rate) { michael@0: int trans_to_still = 0; michael@0: michael@0: // Break clause to detect very still sections after motion michael@0: // For example a static image after a fade or other transition michael@0: // instead of a clean scene cut. michael@0: if (frame_interval > MIN_GF_INTERVAL && michael@0: loop_decay_rate >= 0.999 && michael@0: last_decay_rate < 0.9) { michael@0: int j; michael@0: FIRSTPASS_STATS *position = cpi->twopass.stats_in; michael@0: FIRSTPASS_STATS tmp_next_frame; michael@0: double zz_inter; michael@0: michael@0: // Look ahead a few frames to see if static condition michael@0: // persists... michael@0: for (j = 0; j < still_interval; j++) { michael@0: if (EOF == input_stats(cpi, &tmp_next_frame)) michael@0: break; michael@0: michael@0: zz_inter = michael@0: (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion); michael@0: if (zz_inter < 0.999) michael@0: break; michael@0: } michael@0: // Reset file position michael@0: reset_fpf_position(cpi, position); michael@0: michael@0: // Only if it does do we signal a transition to still michael@0: if (j == still_interval) michael@0: trans_to_still = 1; michael@0: } michael@0: michael@0: return trans_to_still; michael@0: } michael@0: michael@0: // This function detects a flash through the high relative pcnt_second_ref michael@0: // score in the frame following a flash frame. The offset passed in should michael@0: // reflect this michael@0: static int detect_flash(VP9_COMP *cpi, int offset) { michael@0: FIRSTPASS_STATS next_frame; michael@0: michael@0: int flash_detected = 0; michael@0: michael@0: // Read the frame data. michael@0: // The return is FALSE (no flash detected) if not a valid frame michael@0: if (read_frame_stats(cpi, &next_frame, offset) != EOF) { michael@0: // What we are looking for here is a situation where there is a michael@0: // brief break in prediction (such as a flash) but subsequent frames michael@0: // are reasonably well predicted by an earlier (pre flash) frame. michael@0: // The recovery after a flash is indicated by a high pcnt_second_ref michael@0: // comapred to pcnt_inter. michael@0: if (next_frame.pcnt_second_ref > next_frame.pcnt_inter && michael@0: next_frame.pcnt_second_ref >= 0.5) michael@0: flash_detected = 1; michael@0: } michael@0: michael@0: return flash_detected; michael@0: } michael@0: michael@0: // Update the motion related elements to the GF arf boost calculation michael@0: static void accumulate_frame_motion_stats( michael@0: FIRSTPASS_STATS *this_frame, michael@0: double *this_frame_mv_in_out, michael@0: double *mv_in_out_accumulator, michael@0: double *abs_mv_in_out_accumulator, michael@0: double *mv_ratio_accumulator) { michael@0: // double this_frame_mv_in_out; michael@0: double this_frame_mvr_ratio; michael@0: double this_frame_mvc_ratio; michael@0: double motion_pct; michael@0: michael@0: // Accumulate motion stats. michael@0: motion_pct = this_frame->pcnt_motion; michael@0: michael@0: // Accumulate Motion In/Out of frame stats michael@0: *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; michael@0: *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; michael@0: *abs_mv_in_out_accumulator += michael@0: fabs(this_frame->mv_in_out_count * motion_pct); michael@0: michael@0: // Accumulate a measure of how uniform (or conversely how random) michael@0: // the motion field is. (A ratio of absmv / mv) michael@0: if (motion_pct > 0.05) { michael@0: this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / michael@0: DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); michael@0: michael@0: this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / michael@0: DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); michael@0: michael@0: *mv_ratio_accumulator += michael@0: (this_frame_mvr_ratio < this_frame->mvr_abs) michael@0: ? (this_frame_mvr_ratio * motion_pct) michael@0: : this_frame->mvr_abs * motion_pct; michael@0: michael@0: *mv_ratio_accumulator += michael@0: (this_frame_mvc_ratio < this_frame->mvc_abs) michael@0: ? (this_frame_mvc_ratio * motion_pct) michael@0: : this_frame->mvc_abs * motion_pct; michael@0: } michael@0: } michael@0: michael@0: // Calculate a baseline boost number for the current frame. michael@0: static double calc_frame_boost( michael@0: VP9_COMP *cpi, michael@0: FIRSTPASS_STATS *this_frame, michael@0: double this_frame_mv_in_out) { michael@0: double frame_boost; michael@0: michael@0: // Underlying boost factor is based on inter intra error ratio michael@0: if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) michael@0: frame_boost = (IIFACTOR * this_frame->intra_error / michael@0: DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); michael@0: else michael@0: frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / michael@0: DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); michael@0: michael@0: // Increase boost for frames where new data coming into frame michael@0: // (eg zoom out). Slightly reduce boost if there is a net balance michael@0: // of motion out of the frame (zoom in). michael@0: // The range for this_frame_mv_in_out is -1.0 to +1.0 michael@0: if (this_frame_mv_in_out > 0.0) michael@0: frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); michael@0: // In extreme case boost is halved michael@0: else michael@0: frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); michael@0: michael@0: // Clip to maximum michael@0: if (frame_boost > GF_RMAX) michael@0: frame_boost = GF_RMAX; michael@0: michael@0: return frame_boost; michael@0: } michael@0: michael@0: static int calc_arf_boost(VP9_COMP *cpi, int offset, michael@0: int f_frames, int b_frames, michael@0: int *f_boost, int *b_boost) { michael@0: FIRSTPASS_STATS this_frame; michael@0: michael@0: int i; michael@0: double boost_score = 0.0; michael@0: double mv_ratio_accumulator = 0.0; michael@0: double decay_accumulator = 1.0; michael@0: double this_frame_mv_in_out = 0.0; michael@0: double mv_in_out_accumulator = 0.0; michael@0: double abs_mv_in_out_accumulator = 0.0; michael@0: int arf_boost; michael@0: int flash_detected = 0; michael@0: michael@0: // Search forward from the proposed arf/next gf position michael@0: for (i = 0; i < f_frames; i++) { michael@0: if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) michael@0: break; michael@0: michael@0: // Update the motion related elements to the boost calculation michael@0: accumulate_frame_motion_stats(&this_frame, michael@0: &this_frame_mv_in_out, &mv_in_out_accumulator, michael@0: &abs_mv_in_out_accumulator, michael@0: &mv_ratio_accumulator); michael@0: michael@0: // We want to discount the flash frame itself and the recovery michael@0: // frame that follows as both will have poor scores. michael@0: flash_detected = detect_flash(cpi, (i + offset)) || michael@0: detect_flash(cpi, (i + offset + 1)); michael@0: michael@0: // Cumulative effect of prediction quality decay michael@0: if (!flash_detected) { michael@0: decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame); michael@0: decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR michael@0: ? MIN_DECAY_FACTOR : decay_accumulator; michael@0: } michael@0: michael@0: boost_score += (decay_accumulator * michael@0: calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); michael@0: } michael@0: michael@0: *f_boost = (int)boost_score; michael@0: michael@0: // Reset for backward looking loop michael@0: boost_score = 0.0; michael@0: mv_ratio_accumulator = 0.0; michael@0: decay_accumulator = 1.0; michael@0: this_frame_mv_in_out = 0.0; michael@0: mv_in_out_accumulator = 0.0; michael@0: abs_mv_in_out_accumulator = 0.0; michael@0: michael@0: // Search backward towards last gf position michael@0: for (i = -1; i >= -b_frames; i--) { michael@0: if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) michael@0: break; michael@0: michael@0: // Update the motion related elements to the boost calculation michael@0: accumulate_frame_motion_stats(&this_frame, michael@0: &this_frame_mv_in_out, &mv_in_out_accumulator, michael@0: &abs_mv_in_out_accumulator, michael@0: &mv_ratio_accumulator); michael@0: michael@0: // We want to discount the the flash frame itself and the recovery michael@0: // frame that follows as both will have poor scores. michael@0: flash_detected = detect_flash(cpi, (i + offset)) || michael@0: detect_flash(cpi, (i + offset + 1)); michael@0: michael@0: // Cumulative effect of prediction quality decay michael@0: if (!flash_detected) { michael@0: decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame); michael@0: decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR michael@0: ? MIN_DECAY_FACTOR : decay_accumulator; michael@0: } michael@0: michael@0: boost_score += (decay_accumulator * michael@0: calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); michael@0: } michael@0: *b_boost = (int)boost_score; michael@0: michael@0: arf_boost = (*f_boost + *b_boost); michael@0: if (arf_boost < ((b_frames + f_frames) * 20)) michael@0: arf_boost = ((b_frames + f_frames) * 20); michael@0: michael@0: return arf_boost; michael@0: } michael@0: michael@0: #if CONFIG_MULTIPLE_ARF michael@0: // Work out the frame coding order for a GF or an ARF group. michael@0: // The current implementation codes frames in their natural order for a michael@0: // GF group, and inserts additional ARFs into an ARF group using a michael@0: // binary split approach. michael@0: // NOTE: this function is currently implemented recursively. michael@0: static void schedule_frames(VP9_COMP *cpi, const int start, const int end, michael@0: const int arf_idx, const int gf_or_arf_group, michael@0: const int level) { michael@0: int i, abs_end, half_range; michael@0: int *cfo = cpi->frame_coding_order; michael@0: int idx = cpi->new_frame_coding_order_period; michael@0: michael@0: // If (end < 0) an ARF should be coded at position (-end). michael@0: assert(start >= 0); michael@0: michael@0: // printf("start:%d end:%d\n", start, end); michael@0: michael@0: // GF Group: code frames in logical order. michael@0: if (gf_or_arf_group == 0) { michael@0: assert(end >= start); michael@0: for (i = start; i <= end; ++i) { michael@0: cfo[idx] = i; michael@0: cpi->arf_buffer_idx[idx] = arf_idx; michael@0: cpi->arf_weight[idx] = -1; michael@0: ++idx; michael@0: } michael@0: cpi->new_frame_coding_order_period = idx; michael@0: return; michael@0: } michael@0: michael@0: // ARF Group: work out the ARF schedule. michael@0: // Mark ARF frames as negative. michael@0: if (end < 0) { michael@0: // printf("start:%d end:%d\n", -end, -end); michael@0: // ARF frame is at the end of the range. michael@0: cfo[idx] = end; michael@0: // What ARF buffer does this ARF use as predictor. michael@0: cpi->arf_buffer_idx[idx] = (arf_idx > 2) ? (arf_idx - 1) : 2; michael@0: cpi->arf_weight[idx] = level; michael@0: ++idx; michael@0: abs_end = -end; michael@0: } else { michael@0: abs_end = end; michael@0: } michael@0: michael@0: half_range = (abs_end - start) >> 1; michael@0: michael@0: // ARFs may not be adjacent, they must be separated by at least michael@0: // MIN_GF_INTERVAL non-ARF frames. michael@0: if ((start + MIN_GF_INTERVAL) >= (abs_end - MIN_GF_INTERVAL)) { michael@0: // printf("start:%d end:%d\n", start, abs_end); michael@0: // Update the coding order and active ARF. michael@0: for (i = start; i <= abs_end; ++i) { michael@0: cfo[idx] = i; michael@0: cpi->arf_buffer_idx[idx] = arf_idx; michael@0: cpi->arf_weight[idx] = -1; michael@0: ++idx; michael@0: } michael@0: cpi->new_frame_coding_order_period = idx; michael@0: } else { michael@0: // Place a new ARF at the mid-point of the range. michael@0: cpi->new_frame_coding_order_period = idx; michael@0: schedule_frames(cpi, start, -(start + half_range), arf_idx + 1, michael@0: gf_or_arf_group, level + 1); michael@0: schedule_frames(cpi, start + half_range + 1, abs_end, arf_idx, michael@0: gf_or_arf_group, level + 1); michael@0: } michael@0: } michael@0: michael@0: #define FIXED_ARF_GROUP_SIZE 16 michael@0: michael@0: void define_fixed_arf_period(VP9_COMP *cpi) { michael@0: int i; michael@0: int max_level = INT_MIN; michael@0: michael@0: assert(cpi->multi_arf_enabled); michael@0: assert(cpi->oxcf.lag_in_frames >= FIXED_ARF_GROUP_SIZE); michael@0: michael@0: // Save the weight of the last frame in the sequence before next michael@0: // sequence pattern overwrites it. michael@0: cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number]; michael@0: assert(cpi->this_frame_weight >= 0); michael@0: michael@0: // Initialize frame coding order variables. michael@0: cpi->new_frame_coding_order_period = 0; michael@0: cpi->next_frame_in_order = 0; michael@0: cpi->arf_buffered = 0; michael@0: vp9_zero(cpi->frame_coding_order); michael@0: vp9_zero(cpi->arf_buffer_idx); michael@0: vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight)); michael@0: michael@0: if (cpi->twopass.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) { michael@0: // Setup a GF group close to the keyframe. michael@0: cpi->source_alt_ref_pending = 0; michael@0: cpi->baseline_gf_interval = cpi->twopass.frames_to_key; michael@0: schedule_frames(cpi, 0, (cpi->baseline_gf_interval - 1), 2, 0, 0); michael@0: } else { michael@0: // Setup a fixed period ARF group. michael@0: cpi->source_alt_ref_pending = 1; michael@0: cpi->baseline_gf_interval = FIXED_ARF_GROUP_SIZE; michael@0: schedule_frames(cpi, 0, -(cpi->baseline_gf_interval - 1), 2, 1, 0); michael@0: } michael@0: michael@0: // Replace level indicator of -1 with correct level. michael@0: for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { michael@0: if (cpi->arf_weight[i] > max_level) { michael@0: max_level = cpi->arf_weight[i]; michael@0: } michael@0: } michael@0: ++max_level; michael@0: for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { michael@0: if (cpi->arf_weight[i] == -1) { michael@0: cpi->arf_weight[i] = max_level; michael@0: } michael@0: } michael@0: cpi->max_arf_level = max_level; michael@0: #if 0 michael@0: printf("\nSchedule: "); michael@0: for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { michael@0: printf("%4d ", cpi->frame_coding_order[i]); michael@0: } michael@0: printf("\n"); michael@0: printf("ARFref: "); michael@0: for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { michael@0: printf("%4d ", cpi->arf_buffer_idx[i]); michael@0: } michael@0: printf("\n"); michael@0: printf("Weight: "); michael@0: for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { michael@0: printf("%4d ", cpi->arf_weight[i]); michael@0: } michael@0: printf("\n"); michael@0: #endif michael@0: } michael@0: #endif michael@0: michael@0: // Analyse and define a gf/arf group. michael@0: static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { michael@0: FIRSTPASS_STATS next_frame = { 0 }; michael@0: FIRSTPASS_STATS *start_pos; michael@0: int i; michael@0: double boost_score = 0.0; michael@0: double old_boost_score = 0.0; michael@0: double gf_group_err = 0.0; michael@0: double gf_first_frame_err = 0.0; michael@0: double mod_frame_err = 0.0; michael@0: michael@0: double mv_ratio_accumulator = 0.0; michael@0: double decay_accumulator = 1.0; michael@0: double zero_motion_accumulator = 1.0; michael@0: michael@0: double loop_decay_rate = 1.00; // Starting decay rate michael@0: double last_loop_decay_rate = 1.00; michael@0: michael@0: double this_frame_mv_in_out = 0.0; michael@0: double mv_in_out_accumulator = 0.0; michael@0: double abs_mv_in_out_accumulator = 0.0; michael@0: double mv_ratio_accumulator_thresh; michael@0: int max_bits = frame_max_bits(cpi); // Max for a single frame michael@0: michael@0: unsigned int allow_alt_ref = michael@0: cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; michael@0: michael@0: int f_boost = 0; michael@0: int b_boost = 0; michael@0: int flash_detected; michael@0: int active_max_gf_interval; michael@0: michael@0: cpi->twopass.gf_group_bits = 0; michael@0: michael@0: vp9_clear_system_state(); // __asm emms; michael@0: michael@0: start_pos = cpi->twopass.stats_in; michael@0: michael@0: // Load stats for the current frame. michael@0: mod_frame_err = calculate_modified_err(cpi, this_frame); michael@0: michael@0: // Note the error of the frame at the start of the group (this will be michael@0: // the GF frame error if we code a normal gf michael@0: gf_first_frame_err = mod_frame_err; michael@0: michael@0: // Special treatment if the current frame is a key frame (which is also michael@0: // a gf). If it is then its error score (and hence bit allocation) need michael@0: // to be subtracted out from the calculation for the GF group michael@0: if (cpi->common.frame_type == KEY_FRAME) michael@0: gf_group_err -= gf_first_frame_err; michael@0: michael@0: // Motion breakout threshold for loop below depends on image size. michael@0: mv_ratio_accumulator_thresh = (cpi->common.width + cpi->common.height) / 10.0; michael@0: michael@0: // Work out a maximum interval for the GF. michael@0: // If the image appears completely static we can extend beyond this. michael@0: // The value chosen depends on the active Q range. At low Q we have michael@0: // bits to spare and are better with a smaller interval and smaller boost. michael@0: // At high Q when there are few bits to spare we are better with a longer michael@0: // interval to spread the cost of the GF. michael@0: active_max_gf_interval = michael@0: 12 + ((int)vp9_convert_qindex_to_q(cpi->active_worst_quality) >> 5); michael@0: michael@0: if (active_max_gf_interval > cpi->max_gf_interval) michael@0: active_max_gf_interval = cpi->max_gf_interval; michael@0: michael@0: i = 0; michael@0: while (((i < cpi->twopass.static_scene_max_gf_interval) || michael@0: ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && michael@0: (i < cpi->twopass.frames_to_key)) { michael@0: i++; // Increment the loop counter michael@0: michael@0: // Accumulate error score of frames in this gf group michael@0: mod_frame_err = calculate_modified_err(cpi, this_frame); michael@0: gf_group_err += mod_frame_err; michael@0: michael@0: if (EOF == input_stats(cpi, &next_frame)) michael@0: break; michael@0: michael@0: // Test for the case where there is a brief flash but the prediction michael@0: // quality back to an earlier frame is then restored. michael@0: flash_detected = detect_flash(cpi, 0); michael@0: michael@0: // Update the motion related elements to the boost calculation michael@0: accumulate_frame_motion_stats(&next_frame, michael@0: &this_frame_mv_in_out, &mv_in_out_accumulator, michael@0: &abs_mv_in_out_accumulator, michael@0: &mv_ratio_accumulator); michael@0: michael@0: // Cumulative effect of prediction quality decay michael@0: if (!flash_detected) { michael@0: last_loop_decay_rate = loop_decay_rate; michael@0: loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); michael@0: decay_accumulator = decay_accumulator * loop_decay_rate; michael@0: michael@0: // Monitor for static sections. michael@0: if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < michael@0: zero_motion_accumulator) { michael@0: zero_motion_accumulator = michael@0: (next_frame.pcnt_inter - next_frame.pcnt_motion); michael@0: } michael@0: michael@0: // Break clause to detect very still sections after motion michael@0: // (for example a static image after a fade or other transition). michael@0: if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, michael@0: last_loop_decay_rate)) { michael@0: allow_alt_ref = 0; michael@0: break; michael@0: } michael@0: } michael@0: michael@0: // Calculate a boost number for this frame michael@0: boost_score += michael@0: (decay_accumulator * michael@0: calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out)); michael@0: michael@0: // Break out conditions. michael@0: if ( michael@0: // Break at cpi->max_gf_interval unless almost totally static michael@0: (i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) || michael@0: ( michael@0: // Don't break out with a very short interval michael@0: (i > MIN_GF_INTERVAL) && michael@0: // Don't break out very close to a key frame michael@0: ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && michael@0: ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) && michael@0: (!flash_detected) && michael@0: ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || michael@0: (abs_mv_in_out_accumulator > 3.0) || michael@0: (mv_in_out_accumulator < -2.0) || michael@0: ((boost_score - old_boost_score) < IIFACTOR)))) { michael@0: boost_score = old_boost_score; michael@0: break; michael@0: } michael@0: michael@0: *this_frame = next_frame; michael@0: michael@0: old_boost_score = boost_score; michael@0: } michael@0: michael@0: cpi->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0); michael@0: michael@0: // Don't allow a gf too near the next kf michael@0: if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { michael@0: while (i < cpi->twopass.frames_to_key) { michael@0: i++; michael@0: michael@0: if (EOF == input_stats(cpi, this_frame)) michael@0: break; michael@0: michael@0: if (i < cpi->twopass.frames_to_key) { michael@0: mod_frame_err = calculate_modified_err(cpi, this_frame); michael@0: gf_group_err += mod_frame_err; michael@0: } michael@0: } michael@0: } michael@0: michael@0: // Set the interval until the next gf or arf. michael@0: cpi->baseline_gf_interval = i; michael@0: michael@0: #if CONFIG_MULTIPLE_ARF michael@0: if (cpi->multi_arf_enabled) { michael@0: // Initialize frame coding order variables. michael@0: cpi->new_frame_coding_order_period = 0; michael@0: cpi->next_frame_in_order = 0; michael@0: cpi->arf_buffered = 0; michael@0: vp9_zero(cpi->frame_coding_order); michael@0: vp9_zero(cpi->arf_buffer_idx); michael@0: vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight)); michael@0: } michael@0: #endif michael@0: michael@0: // Should we use the alternate reference frame michael@0: if (allow_alt_ref && michael@0: (i < cpi->oxcf.lag_in_frames) && michael@0: (i >= MIN_GF_INTERVAL) && michael@0: // dont use ARF very near next kf michael@0: (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && michael@0: ((next_frame.pcnt_inter > 0.75) || michael@0: (next_frame.pcnt_second_ref > 0.5)) && michael@0: ((mv_in_out_accumulator / (double)i > -0.2) || michael@0: (mv_in_out_accumulator > -2.0)) && michael@0: (boost_score > 100)) { michael@0: // Alternative boost calculation for alt ref michael@0: cpi->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, michael@0: &b_boost); michael@0: cpi->source_alt_ref_pending = 1; michael@0: michael@0: #if CONFIG_MULTIPLE_ARF michael@0: // Set the ARF schedule. michael@0: if (cpi->multi_arf_enabled) { michael@0: schedule_frames(cpi, 0, -(cpi->baseline_gf_interval - 1), 2, 1, 0); michael@0: } michael@0: #endif michael@0: } else { michael@0: cpi->gfu_boost = (int)boost_score; michael@0: cpi->source_alt_ref_pending = 0; michael@0: #if CONFIG_MULTIPLE_ARF michael@0: // Set the GF schedule. michael@0: if (cpi->multi_arf_enabled) { michael@0: schedule_frames(cpi, 0, cpi->baseline_gf_interval - 1, 2, 0, 0); michael@0: assert(cpi->new_frame_coding_order_period == cpi->baseline_gf_interval); michael@0: } michael@0: #endif michael@0: } michael@0: michael@0: #if CONFIG_MULTIPLE_ARF michael@0: if (cpi->multi_arf_enabled && (cpi->common.frame_type != KEY_FRAME)) { michael@0: int max_level = INT_MIN; michael@0: // Replace level indicator of -1 with correct level. michael@0: for (i = 0; i < cpi->frame_coding_order_period; ++i) { michael@0: if (cpi->arf_weight[i] > max_level) { michael@0: max_level = cpi->arf_weight[i]; michael@0: } michael@0: } michael@0: ++max_level; michael@0: for (i = 0; i < cpi->frame_coding_order_period; ++i) { michael@0: if (cpi->arf_weight[i] == -1) { michael@0: cpi->arf_weight[i] = max_level; michael@0: } michael@0: } michael@0: cpi->max_arf_level = max_level; michael@0: } michael@0: #if 0 michael@0: if (cpi->multi_arf_enabled) { michael@0: printf("\nSchedule: "); michael@0: for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { michael@0: printf("%4d ", cpi->frame_coding_order[i]); michael@0: } michael@0: printf("\n"); michael@0: printf("ARFref: "); michael@0: for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { michael@0: printf("%4d ", cpi->arf_buffer_idx[i]); michael@0: } michael@0: printf("\n"); michael@0: printf("Weight: "); michael@0: for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { michael@0: printf("%4d ", cpi->arf_weight[i]); michael@0: } michael@0: printf("\n"); michael@0: } michael@0: #endif michael@0: #endif michael@0: michael@0: // Now decide how many bits should be allocated to the GF group as a michael@0: // proportion of those remaining in the kf group. michael@0: // The final key frame group in the clip is treated as a special case michael@0: // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. michael@0: // This is also important for short clips where there may only be one michael@0: // key frame. michael@0: if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count - michael@0: cpi->common.current_video_frame)) { michael@0: cpi->twopass.kf_group_bits = michael@0: (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; michael@0: } michael@0: michael@0: // Calculate the bits to be allocated to the group as a whole michael@0: if ((cpi->twopass.kf_group_bits > 0) && michael@0: (cpi->twopass.kf_group_error_left > 0)) { michael@0: cpi->twopass.gf_group_bits = michael@0: (int64_t)(cpi->twopass.kf_group_bits * michael@0: (gf_group_err / cpi->twopass.kf_group_error_left)); michael@0: } else { michael@0: cpi->twopass.gf_group_bits = 0; michael@0: } michael@0: cpi->twopass.gf_group_bits = michael@0: (cpi->twopass.gf_group_bits < 0) michael@0: ? 0 michael@0: : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) michael@0: ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; michael@0: michael@0: // Clip cpi->twopass.gf_group_bits based on user supplied data rate michael@0: // variability limit (cpi->oxcf.two_pass_vbrmax_section) michael@0: if (cpi->twopass.gf_group_bits > michael@0: (int64_t)max_bits * cpi->baseline_gf_interval) michael@0: cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval; michael@0: michael@0: // Reset the file position michael@0: reset_fpf_position(cpi, start_pos); michael@0: michael@0: // Update the record of error used so far (only done once per gf group) michael@0: cpi->twopass.modified_error_used += gf_group_err; michael@0: michael@0: // Assign bits to the arf or gf. michael@0: for (i = 0; michael@0: i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); michael@0: ++i) { michael@0: int allocation_chunks; michael@0: int q = cpi->oxcf.fixed_q < 0 ? cpi->last_q[INTER_FRAME] michael@0: : cpi->oxcf.fixed_q; michael@0: int gf_bits; michael@0: michael@0: int boost = (cpi->gfu_boost * vp9_gfboost_qadjust(q)) / 100; michael@0: michael@0: // Set max and minimum boost and hence minimum allocation michael@0: boost = clamp(boost, 125, (cpi->baseline_gf_interval + 1) * 200); michael@0: michael@0: if (cpi->source_alt_ref_pending && i == 0) michael@0: allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + boost; michael@0: else michael@0: allocation_chunks = (cpi->baseline_gf_interval * 100) + (boost - 100); michael@0: michael@0: // Prevent overflow michael@0: if (boost > 1023) { michael@0: int divisor = boost >> 10; michael@0: boost /= divisor; michael@0: allocation_chunks /= divisor; michael@0: } michael@0: michael@0: // Calculate the number of bits to be spent on the gf or arf based on michael@0: // the boost number michael@0: gf_bits = (int)((double)boost * (cpi->twopass.gf_group_bits / michael@0: (double)allocation_chunks)); michael@0: michael@0: // If the frame that is to be boosted is simpler than the average for michael@0: // the gf/arf group then use an alternative calculation michael@0: // based on the error score of the frame itself michael@0: if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { michael@0: double alt_gf_grp_bits = michael@0: (double)cpi->twopass.kf_group_bits * michael@0: (mod_frame_err * (double)cpi->baseline_gf_interval) / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left); michael@0: michael@0: int alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits / michael@0: (double)allocation_chunks)); michael@0: michael@0: if (gf_bits > alt_gf_bits) michael@0: gf_bits = alt_gf_bits; michael@0: } else { michael@0: // If it is harder than other frames in the group make sure it at michael@0: // least receives an allocation in keeping with its relative error michael@0: // score, otherwise it may be worse off than an "un-boosted" frame. michael@0: int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits * michael@0: mod_frame_err / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left)); michael@0: michael@0: if (alt_gf_bits > gf_bits) michael@0: gf_bits = alt_gf_bits; michael@0: } michael@0: michael@0: // Dont allow a negative value for gf_bits michael@0: if (gf_bits < 0) michael@0: gf_bits = 0; michael@0: michael@0: // Add in minimum for a frame michael@0: gf_bits += cpi->min_frame_bandwidth; michael@0: michael@0: if (i == 0) { michael@0: cpi->twopass.gf_bits = gf_bits; michael@0: } michael@0: if (i == 1 || (!cpi->source_alt_ref_pending michael@0: && (cpi->common.frame_type != KEY_FRAME))) { michael@0: // Per frame bit target for this frame michael@0: cpi->per_frame_bandwidth = gf_bits; michael@0: } michael@0: } michael@0: michael@0: { michael@0: // Adjust KF group bits and error remaining michael@0: cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; michael@0: cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; michael@0: michael@0: if (cpi->twopass.kf_group_bits < 0) michael@0: cpi->twopass.kf_group_bits = 0; michael@0: michael@0: // Note the error score left in the remaining frames of the group. michael@0: // For normal GFs we want to remove the error score for the first frame michael@0: // of the group (except in Key frame case where this has already michael@0: // happened) michael@0: if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) michael@0: cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err michael@0: - gf_first_frame_err); michael@0: else michael@0: cpi->twopass.gf_group_error_left = (int64_t)gf_group_err; michael@0: michael@0: cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits michael@0: - cpi->min_frame_bandwidth; michael@0: michael@0: if (cpi->twopass.gf_group_bits < 0) michael@0: cpi->twopass.gf_group_bits = 0; michael@0: michael@0: // This condition could fail if there are two kfs very close together michael@0: // despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the michael@0: // calculation of alt_extra_bits. michael@0: if (cpi->baseline_gf_interval >= 3) { michael@0: const int boost = cpi->source_alt_ref_pending ? b_boost : cpi->gfu_boost; michael@0: michael@0: if (boost >= 150) { michael@0: int alt_extra_bits; michael@0: int pct_extra = (boost - 100) / 50; michael@0: pct_extra = (pct_extra > 20) ? 20 : pct_extra; michael@0: michael@0: alt_extra_bits = (int)((cpi->twopass.gf_group_bits * pct_extra) / 100); michael@0: cpi->twopass.gf_group_bits -= alt_extra_bits; michael@0: } michael@0: } michael@0: } michael@0: michael@0: if (cpi->common.frame_type != KEY_FRAME) { michael@0: FIRSTPASS_STATS sectionstats; michael@0: michael@0: zero_stats(§ionstats); michael@0: reset_fpf_position(cpi, start_pos); michael@0: michael@0: for (i = 0; i < cpi->baseline_gf_interval; i++) { michael@0: input_stats(cpi, &next_frame); michael@0: accumulate_stats(§ionstats, &next_frame); michael@0: } michael@0: michael@0: avg_stats(§ionstats); michael@0: michael@0: cpi->twopass.section_intra_rating = (int) michael@0: (sectionstats.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); michael@0: michael@0: reset_fpf_position(cpi, start_pos); michael@0: } michael@0: } michael@0: michael@0: // Allocate bits to a normal frame that is neither a gf an arf or a key frame. michael@0: static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { michael@0: int target_frame_size; michael@0: michael@0: double modified_err; michael@0: double err_fraction; michael@0: michael@0: // Max for a single frame. michael@0: int max_bits = frame_max_bits(cpi); michael@0: michael@0: // Calculate modified prediction error used in bit allocation. michael@0: modified_err = calculate_modified_err(cpi, this_frame); michael@0: michael@0: if (cpi->twopass.gf_group_error_left > 0) michael@0: // What portion of the remaining GF group error is used by this frame. michael@0: err_fraction = modified_err / cpi->twopass.gf_group_error_left; michael@0: else michael@0: err_fraction = 0.0; michael@0: michael@0: // How many of those bits available for allocation should we give it? michael@0: target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); michael@0: michael@0: // Clip target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at michael@0: // the top end. michael@0: if (target_frame_size < 0) { michael@0: target_frame_size = 0; michael@0: } else { michael@0: if (target_frame_size > max_bits) michael@0: target_frame_size = max_bits; michael@0: michael@0: if (target_frame_size > cpi->twopass.gf_group_bits) michael@0: target_frame_size = (int)cpi->twopass.gf_group_bits; michael@0: } michael@0: michael@0: // Adjust error and bits remaining. michael@0: cpi->twopass.gf_group_error_left -= (int64_t)modified_err; michael@0: cpi->twopass.gf_group_bits -= target_frame_size; michael@0: michael@0: if (cpi->twopass.gf_group_bits < 0) michael@0: cpi->twopass.gf_group_bits = 0; michael@0: michael@0: // Add in the minimum number of bits that is set aside for every frame. michael@0: target_frame_size += cpi->min_frame_bandwidth; michael@0: michael@0: // Per frame bit target for this frame. michael@0: cpi->per_frame_bandwidth = target_frame_size; michael@0: } michael@0: michael@0: // Make a damped adjustment to the active max q. michael@0: static int adjust_active_maxq(int old_maxqi, int new_maxqi) { michael@0: int i; michael@0: const double old_q = vp9_convert_qindex_to_q(old_maxqi); michael@0: const double new_q = vp9_convert_qindex_to_q(new_maxqi); michael@0: const double target_q = ((old_q * 7.0) + new_q) / 8.0; michael@0: michael@0: if (target_q > old_q) { michael@0: for (i = old_maxqi; i <= new_maxqi; i++) michael@0: if (vp9_convert_qindex_to_q(i) >= target_q) michael@0: return i; michael@0: } else { michael@0: for (i = old_maxqi; i >= new_maxqi; i--) michael@0: if (vp9_convert_qindex_to_q(i) <= target_q) michael@0: return i; michael@0: } michael@0: michael@0: return new_maxqi; michael@0: } michael@0: michael@0: void vp9_second_pass(VP9_COMP *cpi) { michael@0: int tmp_q; michael@0: int frames_left = (int)(cpi->twopass.total_stats.count - michael@0: cpi->common.current_video_frame); michael@0: michael@0: FIRSTPASS_STATS this_frame; michael@0: FIRSTPASS_STATS this_frame_copy; michael@0: michael@0: double this_frame_intra_error; michael@0: double this_frame_coded_error; michael@0: michael@0: if (!cpi->twopass.stats_in) michael@0: return; michael@0: michael@0: vp9_clear_system_state(); michael@0: michael@0: if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { michael@0: cpi->active_worst_quality = cpi->oxcf.cq_level; michael@0: } else { michael@0: // Special case code for first frame. michael@0: if (cpi->common.current_video_frame == 0) { michael@0: int section_target_bandwidth = michael@0: (int)(cpi->twopass.bits_left / frames_left); michael@0: cpi->twopass.est_max_qcorrection_factor = 1.0; michael@0: michael@0: // Set a cq_level in constrained quality mode. michael@0: // Commenting this code out for now since it does not seem to be michael@0: // working well. michael@0: /* michael@0: if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { michael@0: int est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats, michael@0: section_target_bandwidth); michael@0: michael@0: if (est_cq > cpi->cq_target_quality) michael@0: cpi->cq_target_quality = est_cq; michael@0: else michael@0: cpi->cq_target_quality = cpi->oxcf.cq_level; michael@0: } michael@0: */ michael@0: michael@0: // guess at maxq needed in 2nd pass michael@0: cpi->twopass.maxq_max_limit = cpi->worst_quality; michael@0: cpi->twopass.maxq_min_limit = cpi->best_quality; michael@0: michael@0: tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, michael@0: section_target_bandwidth); michael@0: michael@0: cpi->active_worst_quality = tmp_q; michael@0: cpi->ni_av_qi = tmp_q; michael@0: cpi->avg_q = vp9_convert_qindex_to_q(tmp_q); michael@0: michael@0: // Limit the maxq value returned subsequently. michael@0: // This increases the risk of overspend or underspend if the initial michael@0: // estimate for the clip is bad, but helps prevent excessive michael@0: // variation in Q, especially near the end of a clip michael@0: // where for example a small overspend may cause Q to crash michael@0: adjust_maxq_qrange(cpi); michael@0: } michael@0: michael@0: // The last few frames of a clip almost always have to few or too many michael@0: // bits and for the sake of over exact rate control we dont want to make michael@0: // radical adjustments to the allowed quantizer range just to use up a michael@0: // few surplus bits or get beneath the target rate. michael@0: else if ((cpi->common.current_video_frame < michael@0: (((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) && michael@0: ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < michael@0: (unsigned int)cpi->twopass.total_stats.count)) { michael@0: int section_target_bandwidth = michael@0: (int)(cpi->twopass.bits_left / frames_left); michael@0: if (frames_left < 1) michael@0: frames_left = 1; michael@0: michael@0: tmp_q = estimate_max_q( michael@0: cpi, michael@0: &cpi->twopass.total_left_stats, michael@0: section_target_bandwidth); michael@0: michael@0: // Make a damped adjustment to active max Q michael@0: cpi->active_worst_quality = michael@0: adjust_active_maxq(cpi->active_worst_quality, tmp_q); michael@0: } michael@0: } michael@0: vp9_zero(this_frame); michael@0: if (EOF == input_stats(cpi, &this_frame)) michael@0: return; michael@0: michael@0: this_frame_intra_error = this_frame.intra_error; michael@0: this_frame_coded_error = this_frame.coded_error; michael@0: michael@0: // keyframe and section processing ! michael@0: if (cpi->twopass.frames_to_key == 0) { michael@0: // Define next KF group and assign bits to it michael@0: this_frame_copy = this_frame; michael@0: find_next_key_frame(cpi, &this_frame_copy); michael@0: } michael@0: michael@0: // Is this a GF / ARF (Note that a KF is always also a GF) michael@0: if (cpi->frames_till_gf_update_due == 0) { michael@0: // Define next gf group and assign bits to it michael@0: this_frame_copy = this_frame; michael@0: michael@0: cpi->gf_zeromotion_pct = 0; michael@0: michael@0: #if CONFIG_MULTIPLE_ARF michael@0: if (cpi->multi_arf_enabled) { michael@0: define_fixed_arf_period(cpi); michael@0: } else { michael@0: #endif michael@0: define_gf_group(cpi, &this_frame_copy); michael@0: #if CONFIG_MULTIPLE_ARF michael@0: } michael@0: #endif michael@0: michael@0: if (cpi->gf_zeromotion_pct > 995) { michael@0: // As long as max_thresh for encode breakout is small enough, it is ok michael@0: // to enable it for no-show frame, i.e. set enable_encode_breakout to 2. michael@0: if (!cpi->common.show_frame) michael@0: cpi->enable_encode_breakout = 0; michael@0: else michael@0: cpi->enable_encode_breakout = 2; michael@0: } michael@0: michael@0: // If we are going to code an altref frame at the end of the group michael@0: // and the current frame is not a key frame.... michael@0: // If the previous group used an arf this frame has already benefited michael@0: // from that arf boost and it should not be given extra bits michael@0: // If the previous group was NOT coded using arf we may want to apply michael@0: // some boost to this GF as well michael@0: if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { michael@0: // Assign a standard frames worth of bits from those allocated michael@0: // to the GF group michael@0: int bak = cpi->per_frame_bandwidth; michael@0: this_frame_copy = this_frame; michael@0: assign_std_frame_bits(cpi, &this_frame_copy); michael@0: cpi->per_frame_bandwidth = bak; michael@0: } michael@0: } else { michael@0: // Otherwise this is an ordinary frame michael@0: // Assign bits from those allocated to the GF group michael@0: this_frame_copy = this_frame; michael@0: assign_std_frame_bits(cpi, &this_frame_copy); michael@0: } michael@0: michael@0: // Keep a globally available copy of this and the next frame's iiratio. michael@0: cpi->twopass.this_iiratio = (int)(this_frame_intra_error / michael@0: DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); michael@0: { michael@0: FIRSTPASS_STATS next_frame; michael@0: if (lookup_next_frame_stats(cpi, &next_frame) != EOF) { michael@0: cpi->twopass.next_iiratio = (int)(next_frame.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); michael@0: } michael@0: } michael@0: michael@0: // Set nominal per second bandwidth for this frame michael@0: cpi->target_bandwidth = (int)(cpi->per_frame_bandwidth michael@0: * cpi->output_framerate); michael@0: if (cpi->target_bandwidth < 0) michael@0: cpi->target_bandwidth = 0; michael@0: michael@0: cpi->twopass.frames_to_key--; michael@0: michael@0: // Update the total stats remaining structure michael@0: subtract_stats(&cpi->twopass.total_left_stats, &this_frame); michael@0: } michael@0: michael@0: static int test_candidate_kf(VP9_COMP *cpi, michael@0: FIRSTPASS_STATS *last_frame, michael@0: FIRSTPASS_STATS *this_frame, michael@0: FIRSTPASS_STATS *next_frame) { michael@0: int is_viable_kf = 0; michael@0: michael@0: // Does the frame satisfy the primary criteria of a key frame michael@0: // If so, then examine how well it predicts subsequent frames michael@0: if ((this_frame->pcnt_second_ref < 0.10) && michael@0: (next_frame->pcnt_second_ref < 0.10) && michael@0: ((this_frame->pcnt_inter < 0.05) || michael@0: (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) && michael@0: ((this_frame->intra_error / michael@0: DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && michael@0: ((fabs(last_frame->coded_error - this_frame->coded_error) / michael@0: DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > michael@0: .40) || michael@0: (fabs(last_frame->intra_error - this_frame->intra_error) / michael@0: DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > michael@0: .40) || michael@0: ((next_frame->intra_error / michael@0: DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) { michael@0: int i; michael@0: FIRSTPASS_STATS *start_pos; michael@0: michael@0: FIRSTPASS_STATS local_next_frame; michael@0: michael@0: double boost_score = 0.0; michael@0: double old_boost_score = 0.0; michael@0: double decay_accumulator = 1.0; michael@0: double next_iiratio; michael@0: michael@0: local_next_frame = *next_frame; michael@0: michael@0: // Note the starting file position so we can reset to it michael@0: start_pos = cpi->twopass.stats_in; michael@0: michael@0: // Examine how well the key frame predicts subsequent frames michael@0: for (i = 0; i < 16; i++) { michael@0: next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); michael@0: michael@0: if (next_iiratio > RMAX) michael@0: next_iiratio = RMAX; michael@0: michael@0: // Cumulative effect of decay in prediction quality michael@0: if (local_next_frame.pcnt_inter > 0.85) michael@0: decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; michael@0: else michael@0: decay_accumulator = michael@0: decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); michael@0: michael@0: // decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; michael@0: michael@0: // Keep a running total michael@0: boost_score += (decay_accumulator * next_iiratio); michael@0: michael@0: // Test various breakout clauses michael@0: if ((local_next_frame.pcnt_inter < 0.05) || michael@0: (next_iiratio < 1.5) || michael@0: (((local_next_frame.pcnt_inter - michael@0: local_next_frame.pcnt_neutral) < 0.20) && michael@0: (next_iiratio < 3.0)) || michael@0: ((boost_score - old_boost_score) < 3.0) || michael@0: (local_next_frame.intra_error < 200) michael@0: ) { michael@0: break; michael@0: } michael@0: michael@0: old_boost_score = boost_score; michael@0: michael@0: // Get the next frame details michael@0: if (EOF == input_stats(cpi, &local_next_frame)) michael@0: break; michael@0: } michael@0: michael@0: // If there is tolerable prediction for at least the next 3 frames then michael@0: // break out else discard this potential key frame and move on michael@0: if (boost_score > 30.0 && (i > 3)) { michael@0: is_viable_kf = 1; michael@0: } else { michael@0: // Reset the file position michael@0: reset_fpf_position(cpi, start_pos); michael@0: michael@0: is_viable_kf = 0; michael@0: } michael@0: } michael@0: michael@0: return is_viable_kf; michael@0: } michael@0: static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { michael@0: int i, j; michael@0: FIRSTPASS_STATS last_frame; michael@0: FIRSTPASS_STATS first_frame; michael@0: FIRSTPASS_STATS next_frame; michael@0: FIRSTPASS_STATS *start_position; michael@0: michael@0: double decay_accumulator = 1.0; michael@0: double zero_motion_accumulator = 1.0; michael@0: double boost_score = 0; michael@0: double loop_decay_rate; michael@0: michael@0: double kf_mod_err = 0.0; michael@0: double kf_group_err = 0.0; michael@0: double kf_group_intra_err = 0.0; michael@0: double kf_group_coded_err = 0.0; michael@0: double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; michael@0: michael@0: vp9_zero(next_frame); michael@0: michael@0: vp9_clear_system_state(); // __asm emms; michael@0: start_position = cpi->twopass.stats_in; michael@0: michael@0: cpi->common.frame_type = KEY_FRAME; michael@0: michael@0: // is this a forced key frame by interval michael@0: cpi->this_key_frame_forced = cpi->next_key_frame_forced; michael@0: michael@0: // Clear the alt ref active flag as this can never be active on a key frame michael@0: cpi->source_alt_ref_active = 0; michael@0: michael@0: // Kf is always a gf so clear frames till next gf counter michael@0: cpi->frames_till_gf_update_due = 0; michael@0: michael@0: cpi->twopass.frames_to_key = 1; michael@0: michael@0: // Take a copy of the initial frame details michael@0: first_frame = *this_frame; michael@0: michael@0: cpi->twopass.kf_group_bits = 0; // Total bits available to kf group michael@0: cpi->twopass.kf_group_error_left = 0; // Group modified error score. michael@0: michael@0: kf_mod_err = calculate_modified_err(cpi, this_frame); michael@0: michael@0: // find the next keyframe michael@0: i = 0; michael@0: while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { michael@0: // Accumulate kf group error michael@0: kf_group_err += calculate_modified_err(cpi, this_frame); michael@0: michael@0: // These figures keep intra and coded error counts for all frames including michael@0: // key frames in the group. The effect of the key frame itself can be michael@0: // subtracted out using the first_frame data collected above. michael@0: kf_group_intra_err += this_frame->intra_error; michael@0: kf_group_coded_err += this_frame->coded_error; michael@0: michael@0: // load a the next frame's stats michael@0: last_frame = *this_frame; michael@0: input_stats(cpi, this_frame); michael@0: michael@0: // Provided that we are not at the end of the file... michael@0: if (cpi->oxcf.auto_key michael@0: && lookup_next_frame_stats(cpi, &next_frame) != EOF) { michael@0: // Normal scene cut check michael@0: if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) michael@0: break; michael@0: michael@0: michael@0: // How fast is prediction quality decaying michael@0: loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); michael@0: michael@0: // We want to know something about the recent past... rather than michael@0: // as used elsewhere where we are concened with decay in prediction michael@0: // quality since the last GF or KF. michael@0: recent_loop_decay[i % 8] = loop_decay_rate; michael@0: decay_accumulator = 1.0; michael@0: for (j = 0; j < 8; j++) michael@0: decay_accumulator *= recent_loop_decay[j]; michael@0: michael@0: // Special check for transition or high motion followed by a michael@0: // to a static scene. michael@0: if (detect_transition_to_still(cpi, i, cpi->key_frame_frequency - i, michael@0: loop_decay_rate, decay_accumulator)) michael@0: break; michael@0: michael@0: // Step on to the next frame michael@0: cpi->twopass.frames_to_key++; michael@0: michael@0: // If we don't have a real key frame within the next two michael@0: // forcekeyframeevery intervals then break out of the loop. michael@0: if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) michael@0: break; michael@0: } else { michael@0: cpi->twopass.frames_to_key++; michael@0: } michael@0: i++; michael@0: } michael@0: michael@0: // If there is a max kf interval set by the user we must obey it. michael@0: // We already breakout of the loop above at 2x max. michael@0: // This code centers the extra kf if the actual natural michael@0: // interval is between 1x and 2x michael@0: if (cpi->oxcf.auto_key michael@0: && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) { michael@0: FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; michael@0: FIRSTPASS_STATS tmp_frame; michael@0: michael@0: cpi->twopass.frames_to_key /= 2; michael@0: michael@0: // Copy first frame details michael@0: tmp_frame = first_frame; michael@0: michael@0: // Reset to the start of the group michael@0: reset_fpf_position(cpi, start_position); michael@0: michael@0: kf_group_err = 0; michael@0: kf_group_intra_err = 0; michael@0: kf_group_coded_err = 0; michael@0: michael@0: // Rescan to get the correct error data for the forced kf group michael@0: for (i = 0; i < cpi->twopass.frames_to_key; i++) { michael@0: // Accumulate kf group errors michael@0: kf_group_err += calculate_modified_err(cpi, &tmp_frame); michael@0: kf_group_intra_err += tmp_frame.intra_error; michael@0: kf_group_coded_err += tmp_frame.coded_error; michael@0: michael@0: // Load a the next frame's stats michael@0: input_stats(cpi, &tmp_frame); michael@0: } michael@0: michael@0: // Reset to the start of the group michael@0: reset_fpf_position(cpi, current_pos); michael@0: michael@0: cpi->next_key_frame_forced = 1; michael@0: } else { michael@0: cpi->next_key_frame_forced = 0; michael@0: } michael@0: // Special case for the last frame of the file michael@0: if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { michael@0: // Accumulate kf group error michael@0: kf_group_err += calculate_modified_err(cpi, this_frame); michael@0: michael@0: // These figures keep intra and coded error counts for all frames including michael@0: // key frames in the group. The effect of the key frame itself can be michael@0: // subtracted out using the first_frame data collected above. michael@0: kf_group_intra_err += this_frame->intra_error; michael@0: kf_group_coded_err += this_frame->coded_error; michael@0: } michael@0: michael@0: // Calculate the number of bits that should be assigned to the kf group. michael@0: if ((cpi->twopass.bits_left > 0) && michael@0: (cpi->twopass.modified_error_left > 0.0)) { michael@0: // Max for a single normal frame (not key frame) michael@0: int max_bits = frame_max_bits(cpi); michael@0: michael@0: // Maximum bits for the kf group michael@0: int64_t max_grp_bits; michael@0: michael@0: // Default allocation based on bits left and relative michael@0: // complexity of the section michael@0: cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left * michael@0: (kf_group_err / michael@0: cpi->twopass.modified_error_left)); michael@0: michael@0: // Clip based on maximum per frame rate defined by the user. michael@0: max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; michael@0: if (cpi->twopass.kf_group_bits > max_grp_bits) michael@0: cpi->twopass.kf_group_bits = max_grp_bits; michael@0: } else { michael@0: cpi->twopass.kf_group_bits = 0; michael@0: } michael@0: // Reset the first pass file position michael@0: reset_fpf_position(cpi, start_position); michael@0: michael@0: // Determine how big to make this keyframe based on how well the subsequent michael@0: // frames use inter blocks. michael@0: decay_accumulator = 1.0; michael@0: boost_score = 0.0; michael@0: loop_decay_rate = 1.00; // Starting decay rate michael@0: michael@0: // Scan through the kf group collating various stats. michael@0: for (i = 0; i < cpi->twopass.frames_to_key; i++) { michael@0: double r; michael@0: michael@0: if (EOF == input_stats(cpi, &next_frame)) michael@0: break; michael@0: michael@0: // Monitor for static sections. michael@0: if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < michael@0: zero_motion_accumulator) { michael@0: zero_motion_accumulator = michael@0: (next_frame.pcnt_inter - next_frame.pcnt_motion); michael@0: } michael@0: michael@0: // For the first few frames collect data to decide kf boost. michael@0: if (i <= (cpi->max_gf_interval * 2)) { michael@0: if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) michael@0: r = (IIKFACTOR2 * next_frame.intra_error / michael@0: DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); michael@0: else michael@0: r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / michael@0: DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); michael@0: michael@0: if (r > RMAX) michael@0: r = RMAX; michael@0: michael@0: // How fast is prediction quality decaying michael@0: if (!detect_flash(cpi, 0)) { michael@0: loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); michael@0: decay_accumulator = decay_accumulator * loop_decay_rate; michael@0: decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR michael@0: ? MIN_DECAY_FACTOR : decay_accumulator; michael@0: } michael@0: michael@0: boost_score += (decay_accumulator * r); michael@0: } michael@0: } michael@0: michael@0: { michael@0: FIRSTPASS_STATS sectionstats; michael@0: michael@0: zero_stats(§ionstats); michael@0: reset_fpf_position(cpi, start_position); michael@0: michael@0: for (i = 0; i < cpi->twopass.frames_to_key; i++) { michael@0: input_stats(cpi, &next_frame); michael@0: accumulate_stats(§ionstats, &next_frame); michael@0: } michael@0: michael@0: avg_stats(§ionstats); michael@0: michael@0: cpi->twopass.section_intra_rating = (int) michael@0: (sectionstats.intra_error michael@0: / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); michael@0: } michael@0: michael@0: // Reset the first pass file position michael@0: reset_fpf_position(cpi, start_position); michael@0: michael@0: // Work out how many bits to allocate for the key frame itself michael@0: if (1) { michael@0: int kf_boost = (int)boost_score; michael@0: int allocation_chunks; michael@0: int alt_kf_bits; michael@0: michael@0: if (kf_boost < (cpi->twopass.frames_to_key * 3)) michael@0: kf_boost = (cpi->twopass.frames_to_key * 3); michael@0: michael@0: if (kf_boost < 300) // Min KF boost michael@0: kf_boost = 300; michael@0: michael@0: // Make a note of baseline boost and the zero motion michael@0: // accumulator value for use elsewhere. michael@0: cpi->kf_boost = kf_boost; michael@0: cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); michael@0: michael@0: // We do three calculations for kf size. michael@0: // The first is based on the error score for the whole kf group. michael@0: // The second (optionaly) on the key frames own error if this is michael@0: // smaller than the average for the group. michael@0: // The final one insures that the frame receives at least the michael@0: // allocation it would have received based on its own error score vs michael@0: // the error score remaining michael@0: // Special case if the sequence appears almost totaly static michael@0: // In this case we want to spend almost all of the bits on the michael@0: // key frame. michael@0: // cpi->twopass.frames_to_key-1 because key frame itself is taken michael@0: // care of by kf_boost. michael@0: if (zero_motion_accumulator >= 0.99) { michael@0: allocation_chunks = michael@0: ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; michael@0: } else { michael@0: allocation_chunks = michael@0: ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; michael@0: } michael@0: michael@0: // Prevent overflow michael@0: if (kf_boost > 1028) { michael@0: int divisor = kf_boost >> 10; michael@0: kf_boost /= divisor; michael@0: allocation_chunks /= divisor; michael@0: } michael@0: michael@0: cpi->twopass.kf_group_bits = michael@0: (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; michael@0: michael@0: // Calculate the number of bits to be spent on the key frame michael@0: cpi->twopass.kf_bits = michael@0: (int)((double)kf_boost * michael@0: ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); michael@0: michael@0: // If the key frame is actually easier than the average for the michael@0: // kf group (which does sometimes happen... eg a blank intro frame) michael@0: // Then use an alternate calculation based on the kf error score michael@0: // which should give a smaller key frame. michael@0: if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { michael@0: double alt_kf_grp_bits = michael@0: ((double)cpi->twopass.bits_left * michael@0: (kf_mod_err * (double)cpi->twopass.frames_to_key) / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); michael@0: michael@0: alt_kf_bits = (int)((double)kf_boost * michael@0: (alt_kf_grp_bits / (double)allocation_chunks)); michael@0: michael@0: if (cpi->twopass.kf_bits > alt_kf_bits) { michael@0: cpi->twopass.kf_bits = alt_kf_bits; michael@0: } michael@0: } else { michael@0: // Else if it is much harder than other frames in the group make sure michael@0: // it at least receives an allocation in keeping with its relative michael@0: // error score michael@0: alt_kf_bits = michael@0: (int)((double)cpi->twopass.bits_left * michael@0: (kf_mod_err / michael@0: DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); michael@0: michael@0: if (alt_kf_bits > cpi->twopass.kf_bits) { michael@0: cpi->twopass.kf_bits = alt_kf_bits; michael@0: } michael@0: } michael@0: michael@0: cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; michael@0: // Add in the minimum frame allowance michael@0: cpi->twopass.kf_bits += cpi->min_frame_bandwidth; michael@0: michael@0: // Peer frame bit target for this frame michael@0: cpi->per_frame_bandwidth = cpi->twopass.kf_bits; michael@0: // Convert to a per second bitrate michael@0: cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * michael@0: cpi->output_framerate); michael@0: } michael@0: michael@0: // Note the total error score of the kf group minus the key frame itself michael@0: cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); michael@0: michael@0: // Adjust the count of total modified error left. michael@0: // The count of bits left is adjusted elsewhere based on real coded frame michael@0: // sizes. michael@0: cpi->twopass.modified_error_left -= kf_group_err; michael@0: }