michael@0: /*********************************************************************** michael@0: Copyright (c) 2006-2011, Skype Limited. All rights reserved. michael@0: Redistribution and use in source and binary forms, with or without michael@0: modification, are permitted provided that the following conditions michael@0: are met: michael@0: - Redistributions of source code must retain the above copyright notice, michael@0: this list of conditions and the following disclaimer. michael@0: - Redistributions in binary form must reproduce the above copyright michael@0: notice, this list of conditions and the following disclaimer in the michael@0: documentation and/or other materials provided with the distribution. michael@0: - Neither the name of Internet Society, IETF or IETF Trust, nor the michael@0: names of specific contributors, may be used to endorse or promote michael@0: products derived from this software without specific prior written michael@0: permission. michael@0: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" michael@0: AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE michael@0: IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE michael@0: ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE michael@0: LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR michael@0: CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF michael@0: SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS michael@0: INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN michael@0: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) michael@0: ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE michael@0: POSSIBILITY OF SUCH DAMAGE. michael@0: ***********************************************************************/ michael@0: michael@0: #ifdef HAVE_CONFIG_H michael@0: #include "config.h" michael@0: #endif michael@0: michael@0: #include "main_FIX.h" michael@0: #include "stack_alloc.h" michael@0: #include "tuning_parameters.h" michael@0: michael@0: /*****************************/ michael@0: /* Internal function headers */ michael@0: /*****************************/ michael@0: michael@0: typedef struct { michael@0: opus_int32 Q36_part; michael@0: opus_int32 Q48_part; michael@0: } inv_D_t; michael@0: michael@0: /* Factorize square matrix A into LDL form */ michael@0: static OPUS_INLINE void silk_LDL_factorize_FIX( michael@0: opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ michael@0: opus_int M, /* I Size of Matrix */ michael@0: opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ michael@0: inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ michael@0: ); michael@0: michael@0: /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ michael@0: static OPUS_INLINE void silk_LS_SolveFirst_FIX( michael@0: const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ michael@0: opus_int M, /* I Dim of Matrix equation */ michael@0: const opus_int32 *b, /* I b Vector */ michael@0: opus_int32 *x_Q16 /* O x Vector */ michael@0: ); michael@0: michael@0: /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ michael@0: static OPUS_INLINE void silk_LS_SolveLast_FIX( michael@0: const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ michael@0: const opus_int M, /* I Dim of Matrix equation */ michael@0: const opus_int32 *b, /* I b Vector */ michael@0: opus_int32 *x_Q16 /* O x Vector */ michael@0: ); michael@0: michael@0: static OPUS_INLINE void silk_LS_divide_Q16_FIX( michael@0: opus_int32 T[], /* I/O Numenator vector */ michael@0: inv_D_t *inv_D, /* I 1 / D vector */ michael@0: opus_int M /* I dimension */ michael@0: ); michael@0: michael@0: /* Solves Ax = b, assuming A is symmetric */ michael@0: void silk_solve_LDL_FIX( michael@0: opus_int32 *A, /* I Pointer to symetric square matrix A */ michael@0: opus_int M, /* I Size of matrix */ michael@0: const opus_int32 *b, /* I Pointer to b vector */ michael@0: opus_int32 *x_Q16 /* O Pointer to x solution vector */ michael@0: ) michael@0: { michael@0: VARDECL( opus_int32, L_Q16 ); michael@0: opus_int32 Y[ MAX_MATRIX_SIZE ]; michael@0: inv_D_t inv_D[ MAX_MATRIX_SIZE ]; michael@0: SAVE_STACK; michael@0: michael@0: silk_assert( M <= MAX_MATRIX_SIZE ); michael@0: ALLOC( L_Q16, M * M, opus_int32 ); michael@0: michael@0: /*************************************************** michael@0: Factorize A by LDL such that A = L*D*L', michael@0: where L is lower triangular with ones on diagonal michael@0: ****************************************************/ michael@0: silk_LDL_factorize_FIX( A, M, L_Q16, inv_D ); michael@0: michael@0: /**************************************************** michael@0: * substitute D*L'*x = Y. ie: michael@0: L*D*L'*x = b => L*Y = b <=> Y = inv(L)*b michael@0: ******************************************************/ michael@0: silk_LS_SolveFirst_FIX( L_Q16, M, b, Y ); michael@0: michael@0: /**************************************************** michael@0: D*L'*x = Y <=> L'*x = inv(D)*Y, because D is michael@0: diagonal just multiply with 1/d_i michael@0: ****************************************************/ michael@0: silk_LS_divide_Q16_FIX( Y, inv_D, M ); michael@0: michael@0: /**************************************************** michael@0: x = inv(L') * inv(D) * Y michael@0: *****************************************************/ michael@0: silk_LS_SolveLast_FIX( L_Q16, M, Y, x_Q16 ); michael@0: RESTORE_STACK; michael@0: } michael@0: michael@0: static OPUS_INLINE void silk_LDL_factorize_FIX( michael@0: opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ michael@0: opus_int M, /* I Size of Matrix */ michael@0: opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ michael@0: inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ michael@0: ) michael@0: { michael@0: opus_int i, j, k, status, loop_count; michael@0: const opus_int32 *ptr1, *ptr2; michael@0: opus_int32 diag_min_value, tmp_32, err; michael@0: opus_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ]; michael@0: opus_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48; michael@0: michael@0: silk_assert( M <= MAX_MATRIX_SIZE ); michael@0: michael@0: status = 1; michael@0: diag_min_value = silk_max_32( silk_SMMUL( silk_ADD_SAT32( A[ 0 ], A[ silk_SMULBB( M, M ) - 1 ] ), SILK_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 ); michael@0: for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) { michael@0: status = 0; michael@0: for( j = 0; j < M; j++ ) { michael@0: ptr1 = matrix_adr( L_Q16, j, 0, M ); michael@0: tmp_32 = 0; michael@0: for( i = 0; i < j; i++ ) { michael@0: v_Q0[ i ] = silk_SMULWW( D_Q0[ i ], ptr1[ i ] ); /* Q0 */ michael@0: tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 */ michael@0: } michael@0: tmp_32 = silk_SUB32( matrix_ptr( A, j, j, M ), tmp_32 ); michael@0: michael@0: if( tmp_32 < diag_min_value ) { michael@0: tmp_32 = silk_SUB32( silk_SMULBB( loop_count + 1, diag_min_value ), tmp_32 ); michael@0: /* Matrix not positive semi-definite, or ill conditioned */ michael@0: for( i = 0; i < M; i++ ) { michael@0: matrix_ptr( A, i, i, M ) = silk_ADD32( matrix_ptr( A, i, i, M ), tmp_32 ); michael@0: } michael@0: status = 1; michael@0: break; michael@0: } michael@0: D_Q0[ j ] = tmp_32; /* always < max(Correlation) */ michael@0: michael@0: /* two-step division */ michael@0: one_div_diag_Q36 = silk_INVERSE32_varQ( tmp_32, 36 ); /* Q36 */ michael@0: one_div_diag_Q40 = silk_LSHIFT( one_div_diag_Q36, 4 ); /* Q40 */ michael@0: err = silk_SUB32( (opus_int32)1 << 24, silk_SMULWW( tmp_32, one_div_diag_Q40 ) ); /* Q24 */ michael@0: one_div_diag_Q48 = silk_SMULWW( err, one_div_diag_Q40 ); /* Q48 */ michael@0: michael@0: /* Save 1/Ds */ michael@0: inv_D[ j ].Q36_part = one_div_diag_Q36; michael@0: inv_D[ j ].Q48_part = one_div_diag_Q48; michael@0: michael@0: matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */ michael@0: ptr1 = matrix_adr( A, j, 0, M ); michael@0: ptr2 = matrix_adr( L_Q16, j + 1, 0, M ); michael@0: for( i = j + 1; i < M; i++ ) { michael@0: tmp_32 = 0; michael@0: for( k = 0; k < j; k++ ) { michael@0: tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0 */ michael@0: } michael@0: tmp_32 = silk_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correlation) */ michael@0: michael@0: /* tmp_32 / D_Q0[j] : Divide to Q16 */ michael@0: matrix_ptr( L_Q16, i, j, M ) = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), michael@0: silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); michael@0: michael@0: /* go to next column */ michael@0: ptr2 += M; michael@0: } michael@0: } michael@0: } michael@0: michael@0: silk_assert( status == 0 ); michael@0: } michael@0: michael@0: static OPUS_INLINE void silk_LS_divide_Q16_FIX( michael@0: opus_int32 T[], /* I/O Numenator vector */ michael@0: inv_D_t *inv_D, /* I 1 / D vector */ michael@0: opus_int M /* I dimension */ michael@0: ) michael@0: { michael@0: opus_int i; michael@0: opus_int32 tmp_32; michael@0: opus_int32 one_div_diag_Q36, one_div_diag_Q48; michael@0: michael@0: for( i = 0; i < M; i++ ) { michael@0: one_div_diag_Q36 = inv_D[ i ].Q36_part; michael@0: one_div_diag_Q48 = inv_D[ i ].Q48_part; michael@0: michael@0: tmp_32 = T[ i ]; michael@0: T[ i ] = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); michael@0: } michael@0: } michael@0: michael@0: /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ michael@0: static OPUS_INLINE void silk_LS_SolveFirst_FIX( michael@0: const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ michael@0: opus_int M, /* I Dim of Matrix equation */ michael@0: const opus_int32 *b, /* I b Vector */ michael@0: opus_int32 *x_Q16 /* O x Vector */ michael@0: ) michael@0: { michael@0: opus_int i, j; michael@0: const opus_int32 *ptr32; michael@0: opus_int32 tmp_32; michael@0: michael@0: for( i = 0; i < M; i++ ) { michael@0: ptr32 = matrix_adr( L_Q16, i, 0, M ); michael@0: tmp_32 = 0; michael@0: for( j = 0; j < i; j++ ) { michael@0: tmp_32 = silk_SMLAWW( tmp_32, ptr32[ j ], x_Q16[ j ] ); michael@0: } michael@0: x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); michael@0: } michael@0: } michael@0: michael@0: /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ michael@0: static OPUS_INLINE void silk_LS_SolveLast_FIX( michael@0: const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ michael@0: const opus_int M, /* I Dim of Matrix equation */ michael@0: const opus_int32 *b, /* I b Vector */ michael@0: opus_int32 *x_Q16 /* O x Vector */ michael@0: ) michael@0: { michael@0: opus_int i, j; michael@0: const opus_int32 *ptr32; michael@0: opus_int32 tmp_32; michael@0: michael@0: for( i = M - 1; i >= 0; i-- ) { michael@0: ptr32 = matrix_adr( L_Q16, 0, i, M ); michael@0: tmp_32 = 0; michael@0: for( j = M - 1; j > i; j-- ) { michael@0: tmp_32 = silk_SMLAWW( tmp_32, ptr32[ silk_SMULBB( j, M ) ], x_Q16[ j ] ); michael@0: } michael@0: x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); michael@0: } michael@0: }