michael@0: /*********************************************************************** michael@0: Copyright (c) 2006-2011, Skype Limited. All rights reserved. michael@0: Redistribution and use in source and binary forms, with or without michael@0: modification, are permitted provided that the following conditions michael@0: are met: michael@0: - Redistributions of source code must retain the above copyright notice, michael@0: this list of conditions and the following disclaimer. michael@0: - Redistributions in binary form must reproduce the above copyright michael@0: notice, this list of conditions and the following disclaimer in the michael@0: documentation and/or other materials provided with the distribution. michael@0: - Neither the name of Internet Society, IETF or IETF Trust, nor the michael@0: names of specific contributors, may be used to endorse or promote michael@0: products derived from this software without specific prior written michael@0: permission. michael@0: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" michael@0: AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE michael@0: IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE michael@0: ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE michael@0: LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR michael@0: CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF michael@0: SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS michael@0: INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN michael@0: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) michael@0: ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE michael@0: POSSIBILITY OF SUCH DAMAGE. michael@0: ***********************************************************************/ michael@0: michael@0: #ifndef SILK_SIGPROC_FLP_H michael@0: #define SILK_SIGPROC_FLP_H michael@0: michael@0: #include "SigProc_FIX.h" michael@0: #include "float_cast.h" michael@0: #include michael@0: michael@0: #ifdef __cplusplus michael@0: extern "C" michael@0: { michael@0: #endif michael@0: michael@0: /********************************************************************/ michael@0: /* SIGNAL PROCESSING FUNCTIONS */ michael@0: /********************************************************************/ michael@0: michael@0: /* Chirp (bw expand) LP AR filter */ michael@0: void silk_bwexpander_FLP( michael@0: silk_float *ar, /* I/O AR filter to be expanded (without leading 1) */ michael@0: const opus_int d, /* I length of ar */ michael@0: const silk_float chirp /* I chirp factor (typically in range (0..1) ) */ michael@0: ); michael@0: michael@0: /* compute inverse of LPC prediction gain, and */ michael@0: /* test if LPC coefficients are stable (all poles within unit circle) */ michael@0: /* this code is based on silk_FLP_a2k() */ michael@0: silk_float silk_LPC_inverse_pred_gain_FLP( /* O return inverse prediction gain, energy domain */ michael@0: const silk_float *A, /* I prediction coefficients [order] */ michael@0: opus_int32 order /* I prediction order */ michael@0: ); michael@0: michael@0: silk_float silk_schur_FLP( /* O returns residual energy */ michael@0: silk_float refl_coef[], /* O reflection coefficients (length order) */ michael@0: const silk_float auto_corr[], /* I autocorrelation sequence (length order+1) */ michael@0: opus_int order /* I order */ michael@0: ); michael@0: michael@0: void silk_k2a_FLP( michael@0: silk_float *A, /* O prediction coefficients [order] */ michael@0: const silk_float *rc, /* I reflection coefficients [order] */ michael@0: opus_int32 order /* I prediction order */ michael@0: ); michael@0: michael@0: /* Solve the normal equations using the Levinson-Durbin recursion */ michael@0: silk_float silk_levinsondurbin_FLP( /* O prediction error energy */ michael@0: silk_float A[], /* O prediction coefficients [order] */ michael@0: const silk_float corr[], /* I input auto-correlations [order + 1] */ michael@0: const opus_int order /* I prediction order */ michael@0: ); michael@0: michael@0: /* compute autocorrelation */ michael@0: void silk_autocorrelation_FLP( michael@0: silk_float *results, /* O result (length correlationCount) */ michael@0: const silk_float *inputData, /* I input data to correlate */ michael@0: opus_int inputDataSize, /* I length of input */ michael@0: opus_int correlationCount /* I number of correlation taps to compute */ michael@0: ); michael@0: michael@0: opus_int silk_pitch_analysis_core_FLP( /* O Voicing estimate: 0 voiced, 1 unvoiced */ michael@0: const silk_float *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */ michael@0: opus_int *pitch_out, /* O Pitch lag values [nb_subfr] */ michael@0: opus_int16 *lagIndex, /* O Lag Index */ michael@0: opus_int8 *contourIndex, /* O Pitch contour Index */ michael@0: silk_float *LTPCorr, /* I/O Normalized correlation; input: value from previous frame */ michael@0: opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */ michael@0: const silk_float search_thres1, /* I First stage threshold for lag candidates 0 - 1 */ michael@0: const silk_float search_thres2, /* I Final threshold for lag candidates 0 - 1 */ michael@0: const opus_int Fs_kHz, /* I sample frequency (kHz) */ michael@0: const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */ michael@0: const opus_int nb_subfr, /* I Number of 5 ms subframes */ michael@0: int arch /* I Run-time architecture */ michael@0: ); michael@0: michael@0: void silk_insertion_sort_decreasing_FLP( michael@0: silk_float *a, /* I/O Unsorted / Sorted vector */ michael@0: opus_int *idx, /* O Index vector for the sorted elements */ michael@0: const opus_int L, /* I Vector length */ michael@0: const opus_int K /* I Number of correctly sorted positions */ michael@0: ); michael@0: michael@0: /* Compute reflection coefficients from input signal */ michael@0: silk_float silk_burg_modified_FLP( /* O returns residual energy */ michael@0: silk_float A[], /* O prediction coefficients (length order) */ michael@0: const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */ michael@0: const silk_float minInvGain, /* I minimum inverse prediction gain */ michael@0: const opus_int subfr_length, /* I input signal subframe length (incl. D preceding samples) */ michael@0: const opus_int nb_subfr, /* I number of subframes stacked in x */ michael@0: const opus_int D /* I order */ michael@0: ); michael@0: michael@0: /* multiply a vector by a constant */ michael@0: void silk_scale_vector_FLP( michael@0: silk_float *data1, michael@0: silk_float gain, michael@0: opus_int dataSize michael@0: ); michael@0: michael@0: /* copy and multiply a vector by a constant */ michael@0: void silk_scale_copy_vector_FLP( michael@0: silk_float *data_out, michael@0: const silk_float *data_in, michael@0: silk_float gain, michael@0: opus_int dataSize michael@0: ); michael@0: michael@0: /* inner product of two silk_float arrays, with result as double */ michael@0: double silk_inner_product_FLP( michael@0: const silk_float *data1, michael@0: const silk_float *data2, michael@0: opus_int dataSize michael@0: ); michael@0: michael@0: /* sum of squares of a silk_float array, with result as double */ michael@0: double silk_energy_FLP( michael@0: const silk_float *data, michael@0: opus_int dataSize michael@0: ); michael@0: michael@0: /********************************************************************/ michael@0: /* MACROS */ michael@0: /********************************************************************/ michael@0: michael@0: #define PI (3.1415926536f) michael@0: michael@0: #define silk_min_float( a, b ) (((a) < (b)) ? (a) : (b)) michael@0: #define silk_max_float( a, b ) (((a) > (b)) ? (a) : (b)) michael@0: #define silk_abs_float( a ) ((silk_float)fabs(a)) michael@0: michael@0: /* sigmoid function */ michael@0: static OPUS_INLINE silk_float silk_sigmoid( silk_float x ) michael@0: { michael@0: return (silk_float)(1.0 / (1.0 + exp(-x))); michael@0: } michael@0: michael@0: /* floating-point to integer conversion (rounding) */ michael@0: static OPUS_INLINE opus_int32 silk_float2int( silk_float x ) michael@0: { michael@0: return (opus_int32)float2int( x ); michael@0: } michael@0: michael@0: /* floating-point to integer conversion (rounding) */ michael@0: static OPUS_INLINE void silk_float2short_array( michael@0: opus_int16 *out, michael@0: const silk_float *in, michael@0: opus_int32 length michael@0: ) michael@0: { michael@0: opus_int32 k; michael@0: for( k = length - 1; k >= 0; k-- ) { michael@0: out[k] = silk_SAT16( (opus_int32)float2int( in[k] ) ); michael@0: } michael@0: } michael@0: michael@0: /* integer to floating-point conversion */ michael@0: static OPUS_INLINE void silk_short2float_array( michael@0: silk_float *out, michael@0: const opus_int16 *in, michael@0: opus_int32 length michael@0: ) michael@0: { michael@0: opus_int32 k; michael@0: for( k = length - 1; k >= 0; k-- ) { michael@0: out[k] = (silk_float)in[k]; michael@0: } michael@0: } michael@0: michael@0: /* using log2() helps the fixed-point conversion */ michael@0: static OPUS_INLINE silk_float silk_log2( double x ) michael@0: { michael@0: return ( silk_float )( 3.32192809488736 * log10( x ) ); michael@0: } michael@0: michael@0: #ifdef __cplusplus michael@0: } michael@0: #endif michael@0: michael@0: #endif /* SILK_SIGPROC_FLP_H */