michael@0: /* This Source Code Form is subject to the terms of the Mozilla Public michael@0: * License, v. 2.0. If a copy of the MPL was not distributed with this michael@0: * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ michael@0: michael@0: #include "ec2.h" michael@0: #include "mp_gf2m.h" michael@0: #include "mp_gf2m-priv.h" michael@0: #include "mpi.h" michael@0: #include "mpi-priv.h" michael@0: #include michael@0: michael@0: /* Fast reduction for polynomials over a 163-bit curve. Assumes reduction michael@0: * polynomial with terms {163, 7, 6, 3, 0}. */ michael@0: mp_err michael@0: ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth) michael@0: { michael@0: mp_err res = MP_OKAY; michael@0: mp_digit *u, z; michael@0: michael@0: if (a != r) { michael@0: MP_CHECKOK(mp_copy(a, r)); michael@0: } michael@0: #ifdef ECL_SIXTY_FOUR_BIT michael@0: if (MP_USED(r) < 6) { michael@0: MP_CHECKOK(s_mp_pad(r, 6)); michael@0: } michael@0: u = MP_DIGITS(r); michael@0: MP_USED(r) = 6; michael@0: michael@0: /* u[5] only has 6 significant bits */ michael@0: z = u[5]; michael@0: u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29); michael@0: z = u[4]; michael@0: u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35); michael@0: u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29); michael@0: z = u[3]; michael@0: u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35); michael@0: u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29); michael@0: z = u[2] >> 35; /* z only has 29 significant bits */ michael@0: u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z; michael@0: /* clear bits above 163 */ michael@0: u[5] = u[4] = u[3] = 0; michael@0: u[2] ^= z << 35; michael@0: #else michael@0: if (MP_USED(r) < 11) { michael@0: MP_CHECKOK(s_mp_pad(r, 11)); michael@0: } michael@0: u = MP_DIGITS(r); michael@0: MP_USED(r) = 11; michael@0: michael@0: /* u[11] only has 6 significant bits */ michael@0: z = u[10]; michael@0: u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); michael@0: u[4] ^= (z << 29); michael@0: z = u[9]; michael@0: u[5] ^= (z >> 28) ^ (z >> 29); michael@0: u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); michael@0: u[3] ^= (z << 29); michael@0: z = u[8]; michael@0: u[4] ^= (z >> 28) ^ (z >> 29); michael@0: u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); michael@0: u[2] ^= (z << 29); michael@0: z = u[7]; michael@0: u[3] ^= (z >> 28) ^ (z >> 29); michael@0: u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); michael@0: u[1] ^= (z << 29); michael@0: z = u[6]; michael@0: u[2] ^= (z >> 28) ^ (z >> 29); michael@0: u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); michael@0: u[0] ^= (z << 29); michael@0: z = u[5] >> 3; /* z only has 29 significant bits */ michael@0: u[1] ^= (z >> 25) ^ (z >> 26); michael@0: u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z; michael@0: /* clear bits above 163 */ michael@0: u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0; michael@0: u[5] ^= z << 3; michael@0: #endif michael@0: s_mp_clamp(r); michael@0: michael@0: CLEANUP: michael@0: return res; michael@0: } michael@0: michael@0: /* Fast squaring for polynomials over a 163-bit curve. Assumes reduction michael@0: * polynomial with terms {163, 7, 6, 3, 0}. */ michael@0: mp_err michael@0: ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) michael@0: { michael@0: mp_err res = MP_OKAY; michael@0: mp_digit *u, *v; michael@0: michael@0: v = MP_DIGITS(a); michael@0: michael@0: #ifdef ECL_SIXTY_FOUR_BIT michael@0: if (MP_USED(a) < 3) { michael@0: return mp_bsqrmod(a, meth->irr_arr, r); michael@0: } michael@0: if (MP_USED(r) < 6) { michael@0: MP_CHECKOK(s_mp_pad(r, 6)); michael@0: } michael@0: MP_USED(r) = 6; michael@0: #else michael@0: if (MP_USED(a) < 6) { michael@0: return mp_bsqrmod(a, meth->irr_arr, r); michael@0: } michael@0: if (MP_USED(r) < 12) { michael@0: MP_CHECKOK(s_mp_pad(r, 12)); michael@0: } michael@0: MP_USED(r) = 12; michael@0: #endif michael@0: u = MP_DIGITS(r); michael@0: michael@0: #ifdef ECL_THIRTY_TWO_BIT michael@0: u[11] = gf2m_SQR1(v[5]); michael@0: u[10] = gf2m_SQR0(v[5]); michael@0: u[9] = gf2m_SQR1(v[4]); michael@0: u[8] = gf2m_SQR0(v[4]); michael@0: u[7] = gf2m_SQR1(v[3]); michael@0: u[6] = gf2m_SQR0(v[3]); michael@0: #endif michael@0: u[5] = gf2m_SQR1(v[2]); michael@0: u[4] = gf2m_SQR0(v[2]); michael@0: u[3] = gf2m_SQR1(v[1]); michael@0: u[2] = gf2m_SQR0(v[1]); michael@0: u[1] = gf2m_SQR1(v[0]); michael@0: u[0] = gf2m_SQR0(v[0]); michael@0: return ec_GF2m_163_mod(r, r, meth); michael@0: michael@0: CLEANUP: michael@0: return res; michael@0: } michael@0: michael@0: /* Fast multiplication for polynomials over a 163-bit curve. Assumes michael@0: * reduction polynomial with terms {163, 7, 6, 3, 0}. */ michael@0: mp_err michael@0: ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r, michael@0: const GFMethod *meth) michael@0: { michael@0: mp_err res = MP_OKAY; michael@0: mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0; michael@0: michael@0: #ifdef ECL_THIRTY_TWO_BIT michael@0: mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0; michael@0: mp_digit rm[6]; michael@0: #endif michael@0: michael@0: if (a == b) { michael@0: return ec_GF2m_163_sqr(a, r, meth); michael@0: } else { michael@0: switch (MP_USED(a)) { michael@0: #ifdef ECL_THIRTY_TWO_BIT michael@0: case 6: michael@0: a5 = MP_DIGIT(a, 5); michael@0: case 5: michael@0: a4 = MP_DIGIT(a, 4); michael@0: case 4: michael@0: a3 = MP_DIGIT(a, 3); michael@0: #endif michael@0: case 3: michael@0: a2 = MP_DIGIT(a, 2); michael@0: case 2: michael@0: a1 = MP_DIGIT(a, 1); michael@0: default: michael@0: a0 = MP_DIGIT(a, 0); michael@0: } michael@0: switch (MP_USED(b)) { michael@0: #ifdef ECL_THIRTY_TWO_BIT michael@0: case 6: michael@0: b5 = MP_DIGIT(b, 5); michael@0: case 5: michael@0: b4 = MP_DIGIT(b, 4); michael@0: case 4: michael@0: b3 = MP_DIGIT(b, 3); michael@0: #endif michael@0: case 3: michael@0: b2 = MP_DIGIT(b, 2); michael@0: case 2: michael@0: b1 = MP_DIGIT(b, 1); michael@0: default: michael@0: b0 = MP_DIGIT(b, 0); michael@0: } michael@0: #ifdef ECL_SIXTY_FOUR_BIT michael@0: MP_CHECKOK(s_mp_pad(r, 6)); michael@0: s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0); michael@0: MP_USED(r) = 6; michael@0: s_mp_clamp(r); michael@0: #else michael@0: MP_CHECKOK(s_mp_pad(r, 12)); michael@0: s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3); michael@0: s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0); michael@0: s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1, michael@0: b3 ^ b0); michael@0: rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11); michael@0: rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10); michael@0: rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9); michael@0: rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8); michael@0: rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7); michael@0: rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6); michael@0: MP_DIGIT(r, 8) ^= rm[5]; michael@0: MP_DIGIT(r, 7) ^= rm[4]; michael@0: MP_DIGIT(r, 6) ^= rm[3]; michael@0: MP_DIGIT(r, 5) ^= rm[2]; michael@0: MP_DIGIT(r, 4) ^= rm[1]; michael@0: MP_DIGIT(r, 3) ^= rm[0]; michael@0: MP_USED(r) = 12; michael@0: s_mp_clamp(r); michael@0: #endif michael@0: return ec_GF2m_163_mod(r, r, meth); michael@0: } michael@0: michael@0: CLEANUP: michael@0: return res; michael@0: } michael@0: michael@0: /* Wire in fast field arithmetic for 163-bit curves. */ michael@0: mp_err michael@0: ec_group_set_gf2m163(ECGroup *group, ECCurveName name) michael@0: { michael@0: group->meth->field_mod = &ec_GF2m_163_mod; michael@0: group->meth->field_mul = &ec_GF2m_163_mul; michael@0: group->meth->field_sqr = &ec_GF2m_163_sqr; michael@0: return MP_OKAY; michael@0: }