michael@0: /*
michael@0: **********************************************************************
michael@0: * Copyright (C) 1999-2011, International Business Machines
michael@0: * Corporation and others. All Rights Reserved.
michael@0: **********************************************************************
michael@0: * Date Name Description
michael@0: * 11/17/99 aliu Creation.
michael@0: **********************************************************************
michael@0: */
michael@0:
michael@0: #include "unicode/utypes.h"
michael@0:
michael@0: #if !UCONFIG_NO_TRANSLITERATION
michael@0:
michael@0: #include "unicode/unifilt.h"
michael@0: #include "unicode/uniset.h"
michael@0: #include "cpdtrans.h"
michael@0: #include "uvector.h"
michael@0: #include "tridpars.h"
michael@0: #include "cmemory.h"
michael@0:
michael@0: // keep in sync with Transliterator
michael@0: //static const UChar ID_SEP = 0x002D; /*-*/
michael@0: static const UChar ID_DELIM = 0x003B; /*;*/
michael@0: static const UChar NEWLINE = 10;
michael@0:
michael@0: static const UChar COLON_COLON[] = {0x3A, 0x3A, 0}; //"::"
michael@0:
michael@0: U_NAMESPACE_BEGIN
michael@0:
michael@0: const UChar CompoundTransliterator::PASS_STRING[] = { 0x0025, 0x0050, 0x0061, 0x0073, 0x0073, 0 }; // "%Pass"
michael@0:
michael@0: UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CompoundTransliterator)
michael@0:
michael@0: /**
michael@0: * Constructs a new compound transliterator given an array of
michael@0: * transliterators. The array of transliterators may be of any
michael@0: * length, including zero or one, however, useful compound
michael@0: * transliterators have at least two components.
michael@0: * @param transliterators array of Transliterator
michael@0: * objects
michael@0: * @param transliteratorCount The number of
michael@0: * Transliterator
objects in transliterators.
michael@0: * @param filter the filter. Any character for which
michael@0: * filter.contains() returns false will not be
michael@0: * altered by this transliterator. If filter is
michael@0: * null then no filtering is applied.
michael@0: */
michael@0: CompoundTransliterator::CompoundTransliterator(
michael@0: Transliterator* const transliterators[],
michael@0: int32_t transliteratorCount,
michael@0: UnicodeFilter* adoptedFilter) :
michael@0: Transliterator(joinIDs(transliterators, transliteratorCount), adoptedFilter),
michael@0: trans(0), count(0), numAnonymousRBTs(0) {
michael@0: setTransliterators(transliterators, transliteratorCount);
michael@0: }
michael@0:
michael@0: /**
michael@0: * Splits an ID of the form "ID;ID;..." into a compound using each
michael@0: * of the IDs.
michael@0: * @param id of above form
michael@0: * @param forward if false, does the list in reverse order, and
michael@0: * takes the inverse of each ID.
michael@0: */
michael@0: CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
michael@0: UTransDirection direction,
michael@0: UnicodeFilter* adoptedFilter,
michael@0: UParseError& /*parseError*/,
michael@0: UErrorCode& status) :
michael@0: Transliterator(id, adoptedFilter),
michael@0: trans(0), numAnonymousRBTs(0) {
michael@0: // TODO add code for parseError...currently unused, but
michael@0: // later may be used by parsing code...
michael@0: init(id, direction, TRUE, status);
michael@0: }
michael@0:
michael@0: CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
michael@0: UParseError& /*parseError*/,
michael@0: UErrorCode& status) :
michael@0: Transliterator(id, 0), // set filter to 0 here!
michael@0: trans(0), numAnonymousRBTs(0) {
michael@0: // TODO add code for parseError...currently unused, but
michael@0: // later may be used by parsing code...
michael@0: init(id, UTRANS_FORWARD, TRUE, status);
michael@0: }
michael@0:
michael@0:
michael@0: /**
michael@0: * Private constructor for use of TransliteratorAlias
michael@0: */
michael@0: CompoundTransliterator::CompoundTransliterator(const UnicodeString& newID,
michael@0: UVector& list,
michael@0: UnicodeFilter* adoptedFilter,
michael@0: int32_t anonymousRBTs,
michael@0: UParseError& /*parseError*/,
michael@0: UErrorCode& status) :
michael@0: Transliterator(newID, adoptedFilter),
michael@0: trans(0), numAnonymousRBTs(anonymousRBTs)
michael@0: {
michael@0: init(list, UTRANS_FORWARD, FALSE, status);
michael@0: }
michael@0:
michael@0: /**
michael@0: * Private constructor for Transliterator from a vector of
michael@0: * transliterators. The caller is responsible for fixing up the
michael@0: * ID.
michael@0: */
michael@0: CompoundTransliterator::CompoundTransliterator(UVector& list,
michael@0: UParseError& /*parseError*/,
michael@0: UErrorCode& status) :
michael@0: Transliterator(UnicodeString(), NULL),
michael@0: trans(0), numAnonymousRBTs(0)
michael@0: {
michael@0: // TODO add code for parseError...currently unused, but
michael@0: // later may be used by parsing code...
michael@0: init(list, UTRANS_FORWARD, FALSE, status);
michael@0: // assume caller will fixup ID
michael@0: }
michael@0:
michael@0: CompoundTransliterator::CompoundTransliterator(UVector& list,
michael@0: int32_t anonymousRBTs,
michael@0: UParseError& /*parseError*/,
michael@0: UErrorCode& status) :
michael@0: Transliterator(UnicodeString(), NULL),
michael@0: trans(0), numAnonymousRBTs(anonymousRBTs)
michael@0: {
michael@0: init(list, UTRANS_FORWARD, FALSE, status);
michael@0: }
michael@0:
michael@0: /**
michael@0: * Finish constructing a transliterator: only to be called by
michael@0: * constructors. Before calling init(), set trans and filter to NULL.
michael@0: * @param id the id containing ';'-separated entries
michael@0: * @param direction either FORWARD or REVERSE
michael@0: * @param idSplitPoint the index into id at which the
michael@0: * adoptedSplitTransliterator should be inserted, if there is one, or
michael@0: * -1 if there is none.
michael@0: * @param adoptedSplitTransliterator a transliterator to be inserted
michael@0: * before the entry at offset idSplitPoint in the id string. May be
michael@0: * NULL to insert no entry.
michael@0: * @param fixReverseID if TRUE, then reconstruct the ID of reverse
michael@0: * entries by calling getID() of component entries. Some constructors
michael@0: * do not require this because they apply a facade ID anyway.
michael@0: * @param status the error code indicating success or failure
michael@0: */
michael@0: void CompoundTransliterator::init(const UnicodeString& id,
michael@0: UTransDirection direction,
michael@0: UBool fixReverseID,
michael@0: UErrorCode& status) {
michael@0: // assert(trans == 0);
michael@0:
michael@0: if (U_FAILURE(status)) {
michael@0: return;
michael@0: }
michael@0:
michael@0: UVector list(status);
michael@0: UnicodeSet* compoundFilter = NULL;
michael@0: UnicodeString regenID;
michael@0: if (!TransliteratorIDParser::parseCompoundID(id, direction,
michael@0: regenID, list, compoundFilter)) {
michael@0: status = U_INVALID_ID;
michael@0: delete compoundFilter;
michael@0: return;
michael@0: }
michael@0:
michael@0: TransliteratorIDParser::instantiateList(list, status);
michael@0:
michael@0: init(list, direction, fixReverseID, status);
michael@0:
michael@0: if (compoundFilter != NULL) {
michael@0: adoptFilter(compoundFilter);
michael@0: }
michael@0: }
michael@0:
michael@0: /**
michael@0: * Finish constructing a transliterator: only to be called by
michael@0: * constructors. Before calling init(), set trans and filter to NULL.
michael@0: * @param list a vector of transliterator objects to be adopted. It
michael@0: * should NOT be empty. The list should be in declared order. That
michael@0: * is, it should be in the FORWARD order; if direction is REVERSE then
michael@0: * the list order will be reversed.
michael@0: * @param direction either FORWARD or REVERSE
michael@0: * @param fixReverseID if TRUE, then reconstruct the ID of reverse
michael@0: * entries by calling getID() of component entries. Some constructors
michael@0: * do not require this because they apply a facade ID anyway.
michael@0: * @param status the error code indicating success or failure
michael@0: */
michael@0: void CompoundTransliterator::init(UVector& list,
michael@0: UTransDirection direction,
michael@0: UBool fixReverseID,
michael@0: UErrorCode& status) {
michael@0: // assert(trans == 0);
michael@0:
michael@0: // Allocate array
michael@0: if (U_SUCCESS(status)) {
michael@0: count = list.size();
michael@0: trans = (Transliterator **)uprv_malloc(count * sizeof(Transliterator *));
michael@0: /* test for NULL */
michael@0: if (trans == 0) {
michael@0: status = U_MEMORY_ALLOCATION_ERROR;
michael@0: return;
michael@0: }
michael@0: }
michael@0:
michael@0: if (U_FAILURE(status) || trans == 0) {
michael@0: // assert(trans == 0);
michael@0: return;
michael@0: }
michael@0:
michael@0: // Move the transliterators from the vector into an array.
michael@0: // Reverse the order if necessary.
michael@0: int32_t i;
michael@0: for (i=0; i 0) {
michael@0: newID.append(ID_DELIM);
michael@0: }
michael@0: newID.append(trans[i]->getID());
michael@0: }
michael@0: setID(newID);
michael@0: }
michael@0:
michael@0: computeMaximumContextLength();
michael@0: }
michael@0:
michael@0: /**
michael@0: * Return the IDs of the given list of transliterators, concatenated
michael@0: * with ID_DELIM delimiting them. Equivalent to the perlish expression
michael@0: * join(ID_DELIM, map($_.getID(), transliterators).
michael@0: */
michael@0: UnicodeString CompoundTransliterator::joinIDs(Transliterator* const transliterators[],
michael@0: int32_t transCount) {
michael@0: UnicodeString id;
michael@0: for (int32_t i=0; i 0) {
michael@0: id.append(ID_DELIM);
michael@0: }
michael@0: id.append(transliterators[i]->getID());
michael@0: }
michael@0: return id; // Return temporary
michael@0: }
michael@0:
michael@0: /**
michael@0: * Copy constructor.
michael@0: */
michael@0: CompoundTransliterator::CompoundTransliterator(const CompoundTransliterator& t) :
michael@0: Transliterator(t), trans(0), count(0), numAnonymousRBTs(-1) {
michael@0: *this = t;
michael@0: }
michael@0:
michael@0: /**
michael@0: * Destructor
michael@0: */
michael@0: CompoundTransliterator::~CompoundTransliterator() {
michael@0: freeTransliterators();
michael@0: }
michael@0:
michael@0: void CompoundTransliterator::freeTransliterators(void) {
michael@0: if (trans != 0) {
michael@0: for (int32_t i=0; i count) {
michael@0: if (trans != NULL) {
michael@0: uprv_free(trans);
michael@0: }
michael@0: trans = (Transliterator **)uprv_malloc(t.count * sizeof(Transliterator *));
michael@0: }
michael@0: count = t.count;
michael@0: if (trans != NULL) {
michael@0: for (i=0; iclone();
michael@0: if (trans[i] == NULL) {
michael@0: failed = TRUE;
michael@0: break;
michael@0: }
michael@0: }
michael@0: }
michael@0:
michael@0: // if memory allocation failed delete backwards trans array
michael@0: if (failed && i > 0) {
michael@0: int32_t n;
michael@0: for (n = i-1; n >= 0; n--) {
michael@0: uprv_free(trans[n]);
michael@0: trans[n] = NULL;
michael@0: }
michael@0: }
michael@0: numAnonymousRBTs = t.numAnonymousRBTs;
michael@0: return *this;
michael@0: }
michael@0:
michael@0: /**
michael@0: * Transliterator API.
michael@0: */
michael@0: Transliterator* CompoundTransliterator::clone(void) const {
michael@0: return new CompoundTransliterator(*this);
michael@0: }
michael@0:
michael@0: /**
michael@0: * Returns the number of transliterators in this chain.
michael@0: * @return number of transliterators in this chain.
michael@0: */
michael@0: int32_t CompoundTransliterator::getCount(void) const {
michael@0: return count;
michael@0: }
michael@0:
michael@0: /**
michael@0: * Returns the transliterator at the given index in this chain.
michael@0: * @param index index into chain, from 0 to getCount() - 1
michael@0: * @return transliterator at the given index
michael@0: */
michael@0: const Transliterator& CompoundTransliterator::getTransliterator(int32_t index) const {
michael@0: return *trans[index];
michael@0: }
michael@0:
michael@0: void CompoundTransliterator::setTransliterators(Transliterator* const transliterators[],
michael@0: int32_t transCount) {
michael@0: Transliterator** a = (Transliterator **)uprv_malloc(transCount * sizeof(Transliterator *));
michael@0: if (a == NULL) {
michael@0: return;
michael@0: }
michael@0: int32_t i = 0;
michael@0: UBool failed = FALSE;
michael@0: for (i=0; iclone();
michael@0: if (a[i] == NULL) {
michael@0: failed = TRUE;
michael@0: break;
michael@0: }
michael@0: }
michael@0: if (failed && i > 0) {
michael@0: int32_t n;
michael@0: for (n = i-1; n >= 0; n--) {
michael@0: uprv_free(a[n]);
michael@0: a[n] = NULL;
michael@0: }
michael@0: return;
michael@0: }
michael@0: adoptTransliterators(a, transCount);
michael@0: }
michael@0:
michael@0: void CompoundTransliterator::adoptTransliterators(Transliterator* adoptedTransliterators[],
michael@0: int32_t transCount) {
michael@0: // First free trans[] and set count to zero. Once this is done,
michael@0: // orphan the filter. Set up the new trans[].
michael@0: freeTransliterators();
michael@0: trans = adoptedTransliterators;
michael@0: count = transCount;
michael@0: computeMaximumContextLength();
michael@0: setID(joinIDs(trans, count));
michael@0: }
michael@0:
michael@0: /**
michael@0: * Append c to buf, unless buf is empty or buf already ends in c.
michael@0: */
michael@0: static void _smartAppend(UnicodeString& buf, UChar c) {
michael@0: if (buf.length() != 0 &&
michael@0: buf.charAt(buf.length() - 1) != c) {
michael@0: buf.append(c);
michael@0: }
michael@0: }
michael@0:
michael@0: UnicodeString& CompoundTransliterator::toRules(UnicodeString& rulesSource,
michael@0: UBool escapeUnprintable) const {
michael@0: // We do NOT call toRules() on our component transliterators, in
michael@0: // general. If we have several rule-based transliterators, this
michael@0: // yields a concatenation of the rules -- not what we want. We do
michael@0: // handle compound RBT transliterators specially -- those for which
michael@0: // compoundRBTIndex >= 0. For the transliterator at compoundRBTIndex,
michael@0: // we do call toRules() recursively.
michael@0: rulesSource.truncate(0);
michael@0: if (numAnonymousRBTs >= 1 && getFilter() != NULL) {
michael@0: // If we are a compound RBT and if we have a global
michael@0: // filter, then emit it at the top.
michael@0: UnicodeString pat;
michael@0: rulesSource.append(COLON_COLON, 2).append(getFilter()->toPattern(pat, escapeUnprintable)).append(ID_DELIM);
michael@0: }
michael@0: for (int32_t i=0; igetID().startsWith(PASS_STRING, 5)) {
michael@0: trans[i]->toRules(rule, escapeUnprintable);
michael@0: if (numAnonymousRBTs > 1 && i > 0 && trans[i - 1]->getID().startsWith(PASS_STRING, 5))
michael@0: rule = UNICODE_STRING_SIMPLE("::Null;") + rule;
michael@0:
michael@0: // we also use toRules() on CompoundTransliterators (which we
michael@0: // check for by looking for a semicolon in the ID)-- this gets
michael@0: // the list of their child transliterators output in the right
michael@0: // format
michael@0: } else if (trans[i]->getID().indexOf(ID_DELIM) >= 0) {
michael@0: trans[i]->toRules(rule, escapeUnprintable);
michael@0:
michael@0: // for everything else, use Transliterator::toRules()
michael@0: } else {
michael@0: trans[i]->Transliterator::toRules(rule, escapeUnprintable);
michael@0: }
michael@0: _smartAppend(rulesSource, NEWLINE);
michael@0: rulesSource.append(rule);
michael@0: _smartAppend(rulesSource, ID_DELIM);
michael@0: }
michael@0: return rulesSource;
michael@0: }
michael@0:
michael@0: /**
michael@0: * Implement Transliterator framework
michael@0: */
michael@0: void CompoundTransliterator::handleGetSourceSet(UnicodeSet& result) const {
michael@0: UnicodeSet set;
michael@0: result.clear();
michael@0: for (int32_t i=0; igetSourceSet(set));
michael@0: // Take the example of Hiragana-Latin. This is really
michael@0: // Hiragana-Katakana; Katakana-Latin. The source set of
michael@0: // these two is roughly [:Hiragana:] and [:Katakana:].
michael@0: // But the source set for the entire transliterator is
michael@0: // actually [:Hiragana:] ONLY -- that is, the first
michael@0: // non-empty source set.
michael@0:
michael@0: // This is a heuristic, and not 100% reliable.
michael@0: if (!result.isEmpty()) {
michael@0: break;
michael@0: }
michael@0: }
michael@0: }
michael@0:
michael@0: /**
michael@0: * Override Transliterator framework
michael@0: */
michael@0: UnicodeSet& CompoundTransliterator::getTargetSet(UnicodeSet& result) const {
michael@0: UnicodeSet set;
michael@0: result.clear();
michael@0: for (int32_t i=0; igetTargetSet(set));
michael@0: }
michael@0: return result;
michael@0: }
michael@0:
michael@0: /**
michael@0: * Implements {@link Transliterator#handleTransliterate}.
michael@0: */
michael@0: void CompoundTransliterator::handleTransliterate(Replaceable& text, UTransPosition& index,
michael@0: UBool incremental) const {
michael@0: /* Call each transliterator with the same contextStart and
michael@0: * start, but with the limit as modified
michael@0: * by preceding transliterators. The start index must be
michael@0: * reset for each transliterator to give each a chance to
michael@0: * transliterate the text. The initial contextStart index is known
michael@0: * to still point to the same place after each transliterator
michael@0: * is called because each transliterator will not change the
michael@0: * text between contextStart and the initial start index.
michael@0: *
michael@0: * IMPORTANT: After the first transliterator, each subsequent
michael@0: * transliterator only gets to transliterate text committed by
michael@0: * preceding transliterators; that is, the start (output
michael@0: * value) of transliterator i becomes the limit (input value)
michael@0: * of transliterator i+1. Finally, the overall limit is fixed
michael@0: * up before we return.
michael@0: *
michael@0: * Assumptions we make here:
michael@0: * (1) contextStart <= start <= limit <= contextLimit <= text.length()
michael@0: * (2) start <= start' <= limit' ;cursor doesn't move back
michael@0: * (3) start <= limit' ;text before cursor unchanged
michael@0: * - start' is the value of start after calling handleKT
michael@0: * - limit' is the value of limit after calling handleKT
michael@0: */
michael@0:
michael@0: /**
michael@0: * Example: 3 transliterators. This example illustrates the
michael@0: * mechanics we need to implement. C, S, and L are the contextStart,
michael@0: * start, and limit. gl is the globalLimit. contextLimit is
michael@0: * equal to limit throughout.
michael@0: *
michael@0: * 1. h-u, changes hex to Unicode
michael@0: *
michael@0: * 4 7 a d 0 4 7 a
michael@0: * abc/u0061/u => abca/u
michael@0: * C S L C S L gl=f->a
michael@0: *
michael@0: * 2. upup, changes "x" to "XX"
michael@0: *
michael@0: * 4 7 a 4 7 a
michael@0: * abca/u => abcAA/u
michael@0: * C SL C S
michael@0: * L gl=a->b
michael@0: * 3. u-h, changes Unicode to hex
michael@0: *
michael@0: * 4 7 a 4 7 a d 0 3
michael@0: * abcAA/u => abc/u0041/u0041/u
michael@0: * C S L C S
michael@0: * L gl=b->15
michael@0: * 4. return
michael@0: *
michael@0: * 4 7 a d 0 3
michael@0: * abc/u0041/u0041/u
michael@0: * C S L
michael@0: */
michael@0:
michael@0: if (count < 1) {
michael@0: index.start = index.limit;
michael@0: return; // Short circuit for empty compound transliterators
michael@0: }
michael@0:
michael@0: // compoundLimit is the limit value for the entire compound
michael@0: // operation. We overwrite index.limit with the previous
michael@0: // index.start. After each transliteration, we update
michael@0: // compoundLimit for insertions or deletions that have happened.
michael@0: int32_t compoundLimit = index.limit;
michael@0:
michael@0: // compoundStart is the start for the entire compound
michael@0: // operation.
michael@0: int32_t compoundStart = index.start;
michael@0:
michael@0: int32_t delta = 0; // delta in length
michael@0:
michael@0: // Give each transliterator a crack at the run of characters.
michael@0: // See comments at the top of the method for more detail.
michael@0: for (int32_t i=0; ifilteredTransliterate(text, index, incremental);
michael@0:
michael@0: // In a properly written transliterator, start == limit after
michael@0: // handleTransliterate() returns when incremental is false.
michael@0: // Catch cases where the subclass doesn't do this, and throw
michael@0: // an exception. (Just pinning start to limit is a bad idea,
michael@0: // because what's probably happening is that the subclass
michael@0: // isn't transliterating all the way to the end, and it should
michael@0: // in non-incremental mode.)
michael@0: if (!incremental && index.start != index.limit) {
michael@0: // We can't throw an exception, so just fudge things
michael@0: index.start = index.limit;
michael@0: }
michael@0:
michael@0: // Cumulative delta for insertions/deletions
michael@0: delta += index.limit - limit;
michael@0:
michael@0: if (incremental) {
michael@0: // In the incremental case, only allow subsequent
michael@0: // transliterators to modify what has already been
michael@0: // completely processed by prior transliterators. In the
michael@0: // non-incrmental case, allow each transliterator to
michael@0: // process the entire text.
michael@0: index.limit = index.start;
michael@0: }
michael@0: }
michael@0:
michael@0: compoundLimit += delta;
michael@0:
michael@0: // Start is good where it is -- where the last transliterator left
michael@0: // it. Limit needs to be put back where it was, modulo
michael@0: // adjustments for deletions/insertions.
michael@0: index.limit = compoundLimit;
michael@0: }
michael@0:
michael@0: /**
michael@0: * Sets the length of the longest context required by this transliterator.
michael@0: * This is preceding context.
michael@0: */
michael@0: void CompoundTransliterator::computeMaximumContextLength(void) {
michael@0: int32_t max = 0;
michael@0: for (int32_t i=0; igetMaximumContextLength();
michael@0: if (len > max) {
michael@0: max = len;
michael@0: }
michael@0: }
michael@0: setMaximumContextLength(max);
michael@0: }
michael@0:
michael@0: U_NAMESPACE_END
michael@0:
michael@0: #endif /* #if !UCONFIG_NO_TRANSLITERATION */
michael@0:
michael@0: /* eof */