diff -r 000000000000 -r 6474c204b198 browser/devtools/tilt/tilt-math.js --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/browser/devtools/tilt/tilt-math.js Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,2322 @@ +/* -*- Mode: javascript; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ +"use strict"; + +const {Cu} = require("chrome"); + +let TiltUtils = require("devtools/tilt/tilt-utils"); + +/** + * Module containing high performance matrix and vector operations for WebGL. + * Inspired by glMatrix, version 0.9.6, (c) 2011 Brandon Jones. + */ + +let EPSILON = 0.01; +exports.EPSILON = EPSILON; + +const PI_OVER_180 = Math.PI / 180; +const INV_PI_OVER_180 = 180 / Math.PI; +const FIFTEEN_OVER_225 = 15 / 225; +const ONE_OVER_255 = 1 / 255; + +/** + * vec3 - 3 Dimensional Vector. + */ +let vec3 = { + + /** + * Creates a new instance of a vec3 using the Float32Array type. + * Any array containing at least 3 numeric elements can serve as a vec3. + * + * @param {Array} aVec + * optional, vec3 containing values to initialize with + * + * @return {Array} a new instance of a vec3 + */ + create: function V3_create(aVec) + { + let dest = new Float32Array(3); + + if (aVec) { + vec3.set(aVec, dest); + } else { + vec3.zero(dest); + } + return dest; + }, + + /** + * Copies the values of one vec3 to another. + * + * @param {Array} aVec + * vec3 containing values to copy + * @param {Array} aDest + * vec3 receiving copied values + * + * @return {Array} the destination vec3 receiving copied values + */ + set: function V3_set(aVec, aDest) + { + aDest[0] = aVec[0]; + aDest[1] = aVec[1]; + aDest[2] = aVec[2] || 0; + return aDest; + }, + + /** + * Sets a vec3 to an zero vector. + * + * @param {Array} aDest + * vec3 to set + * + * @return {Array} the same vector + */ + zero: function V3_zero(aDest) + { + aDest[0] = 0; + aDest[1] = 0; + aDest[2] = 0; + return aDest; + }, + + /** + * Performs a vector addition. + * + * @param {Array} aVec + * vec3, first operand + * @param {Array} aVec2 + * vec3, second operand + * @param {Array} aDest + * optional, vec3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, first operand otherwise + */ + add: function V3_add(aVec, aVec2, aDest) + { + if (!aDest) { + aDest = aVec; + } + + aDest[0] = aVec[0] + aVec2[0]; + aDest[1] = aVec[1] + aVec2[1]; + aDest[2] = aVec[2] + aVec2[2]; + return aDest; + }, + + /** + * Performs a vector subtraction. + * + * @param {Array} aVec + * vec3, first operand + * @param {Array} aVec2 + * vec3, second operand + * @param {Array} aDest + * optional, vec3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, first operand otherwise + */ + subtract: function V3_subtract(aVec, aVec2, aDest) + { + if (!aDest) { + aDest = aVec; + } + + aDest[0] = aVec[0] - aVec2[0]; + aDest[1] = aVec[1] - aVec2[1]; + aDest[2] = aVec[2] - aVec2[2]; + return aDest; + }, + + /** + * Negates the components of a vec3. + * + * @param {Array} aVec + * vec3 to negate + * @param {Array} aDest + * optional, vec3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, first operand otherwise + */ + negate: function V3_negate(aVec, aDest) + { + if (!aDest) { + aDest = aVec; + } + + aDest[0] = -aVec[0]; + aDest[1] = -aVec[1]; + aDest[2] = -aVec[2]; + return aDest; + }, + + /** + * Multiplies the components of a vec3 by a scalar value. + * + * @param {Array} aVec + * vec3 to scale + * @param {Number} aVal + * numeric value to scale by + * @param {Array} aDest + * optional, vec3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, first operand otherwise + */ + scale: function V3_scale(aVec, aVal, aDest) + { + if (!aDest) { + aDest = aVec; + } + + aDest[0] = aVec[0] * aVal; + aDest[1] = aVec[1] * aVal; + aDest[2] = aVec[2] * aVal; + return aDest; + }, + + /** + * Generates a unit vector of the same direction as the provided vec3. + * If vector length is 0, returns [0, 0, 0]. + * + * @param {Array} aVec + * vec3 to normalize + * @param {Array} aDest + * optional, vec3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, first operand otherwise + */ + normalize: function V3_normalize(aVec, aDest) + { + if (!aDest) { + aDest = aVec; + } + + let x = aVec[0]; + let y = aVec[1]; + let z = aVec[2]; + let len = Math.sqrt(x * x + y * y + z * z); + + if (Math.abs(len) < EPSILON) { + aDest[0] = 0; + aDest[1] = 0; + aDest[2] = 0; + return aDest; + } + + len = 1 / len; + aDest[0] = x * len; + aDest[1] = y * len; + aDest[2] = z * len; + return aDest; + }, + + /** + * Generates the cross product of two vectors. + * + * @param {Array} aVec + * vec3, first operand + * @param {Array} aVec2 + * vec3, second operand + * @param {Array} aDest + * optional, vec3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, first operand otherwise + */ + cross: function V3_cross(aVec, aVec2, aDest) + { + if (!aDest) { + aDest = aVec; + } + + let x = aVec[0]; + let y = aVec[1]; + let z = aVec[2]; + let x2 = aVec2[0]; + let y2 = aVec2[1]; + let z2 = aVec2[2]; + + aDest[0] = y * z2 - z * y2; + aDest[1] = z * x2 - x * z2; + aDest[2] = x * y2 - y * x2; + return aDest; + }, + + /** + * Caclulate the dot product of two vectors. + * + * @param {Array} aVec + * vec3, first operand + * @param {Array} aVec2 + * vec3, second operand + * + * @return {Array} dot product of the first and second operand + */ + dot: function V3_dot(aVec, aVec2) + { + return aVec[0] * aVec2[0] + aVec[1] * aVec2[1] + aVec[2] * aVec2[2]; + }, + + /** + * Caclulate the length of a vec3. + * + * @param {Array} aVec + * vec3 to calculate length of + * + * @return {Array} length of the vec3 + */ + length: function V3_length(aVec) + { + let x = aVec[0]; + let y = aVec[1]; + let z = aVec[2]; + + return Math.sqrt(x * x + y * y + z * z); + }, + + /** + * Generates a unit vector pointing from one vector to another. + * + * @param {Array} aVec + * origin vec3 + * @param {Array} aVec2 + * vec3 to point to + * @param {Array} aDest + * optional, vec3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, first operand otherwise + */ + direction: function V3_direction(aVec, aVec2, aDest) + { + if (!aDest) { + aDest = aVec; + } + + let x = aVec[0] - aVec2[0]; + let y = aVec[1] - aVec2[1]; + let z = aVec[2] - aVec2[2]; + let len = Math.sqrt(x * x + y * y + z * z); + + if (Math.abs(len) < EPSILON) { + aDest[0] = 0; + aDest[1] = 0; + aDest[2] = 0; + return aDest; + } + + len = 1 / len; + aDest[0] = x * len; + aDest[1] = y * len; + aDest[2] = z * len; + return aDest; + }, + + /** + * Performs a linear interpolation between two vec3. + * + * @param {Array} aVec + * first vector + * @param {Array} aVec2 + * second vector + * @param {Number} aLerp + * interpolation amount between the two inputs + * @param {Array} aDest + * optional, vec3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, first operand otherwise + */ + lerp: function V3_lerp(aVec, aVec2, aLerp, aDest) + { + if (!aDest) { + aDest = aVec; + } + + aDest[0] = aVec[0] + aLerp * (aVec2[0] - aVec[0]); + aDest[1] = aVec[1] + aLerp * (aVec2[1] - aVec[1]); + aDest[2] = aVec[2] + aLerp * (aVec2[2] - aVec[2]); + return aDest; + }, + + /** + * Projects a 3D point on a 2D screen plane. + * + * @param {Array} aP + * the [x, y, z] coordinates of the point to project + * @param {Array} aViewport + * the viewport [x, y, width, height] coordinates + * @param {Array} aMvMatrix + * the model view matrix + * @param {Array} aProjMatrix + * the projection matrix + * @param {Array} aDest + * optional parameter, the array to write the values to + * + * @return {Array} the projected coordinates + */ + project: function V3_project(aP, aViewport, aMvMatrix, aProjMatrix, aDest) + { + /*jshint undef: false */ + + let mvpMatrix = new Float32Array(16); + let coordinates = new Float32Array(4); + + // compute the perspective * model view matrix + mat4.multiply(aProjMatrix, aMvMatrix, mvpMatrix); + + // now transform that vector into homogenous coordinates + coordinates[0] = aP[0]; + coordinates[1] = aP[1]; + coordinates[2] = aP[2]; + coordinates[3] = 1; + mat4.multiplyVec4(mvpMatrix, coordinates); + + // transform the homogenous coordinates into screen space + coordinates[0] /= coordinates[3]; + coordinates[0] *= aViewport[2] * 0.5; + coordinates[0] += aViewport[2] * 0.5; + coordinates[1] /= coordinates[3]; + coordinates[1] *= -aViewport[3] * 0.5; + coordinates[1] += aViewport[3] * 0.5; + coordinates[2] = 0; + + if (!aDest) { + vec3.set(coordinates, aP); + } else { + vec3.set(coordinates, aDest); + } + return coordinates; + }, + + /** + * Unprojects a 2D point to 3D space. + * + * @param {Array} aP + * the [x, y, z] coordinates of the point to unproject; + * the z value should range between 0 and 1, as clipping plane + * @param {Array} aViewport + * the viewport [x, y, width, height] coordinates + * @param {Array} aMvMatrix + * the model view matrix + * @param {Array} aProjMatrix + * the projection matrix + * @param {Array} aDest + * optional parameter, the array to write the values to + * + * @return {Array} the unprojected coordinates + */ + unproject: function V3_unproject( + aP, aViewport, aMvMatrix, aProjMatrix, aDest) + { + /*jshint undef: false */ + + let mvpMatrix = new Float32Array(16); + let coordinates = new Float32Array(4); + + // compute the inverse of the perspective * model view matrix + mat4.multiply(aProjMatrix, aMvMatrix, mvpMatrix); + mat4.inverse(mvpMatrix); + + // transformation of normalized coordinates (-1 to 1) + coordinates[0] = +((aP[0] - aViewport[0]) / aViewport[2] * 2 - 1); + coordinates[1] = -((aP[1] - aViewport[1]) / aViewport[3] * 2 - 1); + coordinates[2] = 2 * aP[2] - 1; + coordinates[3] = 1; + + // now transform that vector into space coordinates + mat4.multiplyVec4(mvpMatrix, coordinates); + + // invert to normalize x, y, and z values + coordinates[3] = 1 / coordinates[3]; + coordinates[0] *= coordinates[3]; + coordinates[1] *= coordinates[3]; + coordinates[2] *= coordinates[3]; + + if (!aDest) { + vec3.set(coordinates, aP); + } else { + vec3.set(coordinates, aDest); + } + return coordinates; + }, + + /** + * Create a ray between two points using the current model view & projection + * matrices. This is useful when creating a ray destined for 3D picking. + * + * @param {Array} aP0 + * the [x, y, z] coordinates of the first point + * @param {Array} aP1 + * the [x, y, z] coordinates of the second point + * @param {Array} aViewport + * the viewport [x, y, width, height] coordinates + * @param {Array} aMvMatrix + * the model view matrix + * @param {Array} aProjMatrix + * the projection matrix + * + * @return {Object} a ray object containing the direction vector between + * the two unprojected points, the position and the lookAt + */ + createRay: function V3_createRay(aP0, aP1, aViewport, aMvMatrix, aProjMatrix) + { + // unproject the two points + vec3.unproject(aP0, aViewport, aMvMatrix, aProjMatrix, aP0); + vec3.unproject(aP1, aViewport, aMvMatrix, aProjMatrix, aP1); + + return { + origin: aP0, + direction: vec3.normalize(vec3.subtract(aP1, aP0)) + }; + }, + + /** + * Returns a string representation of a vector. + * + * @param {Array} aVec + * vec3 to represent as a string + * + * @return {String} representation of the vector + */ + str: function V3_str(aVec) + { + return '[' + aVec[0] + ", " + aVec[1] + ", " + aVec[2] + ']'; + } +}; + +exports.vec3 = vec3; + +/** + * mat3 - 3x3 Matrix. + */ +let mat3 = { + + /** + * Creates a new instance of a mat3 using the Float32Array array type. + * Any array containing at least 9 numeric elements can serve as a mat3. + * + * @param {Array} aMat + * optional, mat3 containing values to initialize with + * + * @return {Array} a new instance of a mat3 + */ + create: function M3_create(aMat) + { + let dest = new Float32Array(9); + + if (aMat) { + mat3.set(aMat, dest); + } else { + mat3.identity(dest); + } + return dest; + }, + + /** + * Copies the values of one mat3 to another. + * + * @param {Array} aMat + * mat3 containing values to copy + * @param {Array} aDest + * mat3 receiving copied values + * + * @return {Array} the destination mat3 receiving copied values + */ + set: function M3_set(aMat, aDest) + { + aDest[0] = aMat[0]; + aDest[1] = aMat[1]; + aDest[2] = aMat[2]; + aDest[3] = aMat[3]; + aDest[4] = aMat[4]; + aDest[5] = aMat[5]; + aDest[6] = aMat[6]; + aDest[7] = aMat[7]; + aDest[8] = aMat[8]; + return aDest; + }, + + /** + * Sets a mat3 to an identity matrix. + * + * @param {Array} aDest + * mat3 to set + * + * @return {Array} the same matrix + */ + identity: function M3_identity(aDest) + { + aDest[0] = 1; + aDest[1] = 0; + aDest[2] = 0; + aDest[3] = 0; + aDest[4] = 1; + aDest[5] = 0; + aDest[6] = 0; + aDest[7] = 0; + aDest[8] = 1; + return aDest; + }, + + /** + * Transposes a mat3 (flips the values over the diagonal). + * + * @param {Array} aMat + * mat3 to transpose + * @param {Array} aDest + * optional, mat3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat3 if specified, first operand otherwise + */ + transpose: function M3_transpose(aMat, aDest) + { + if (!aDest || aMat === aDest) { + let a01 = aMat[1]; + let a02 = aMat[2]; + let a12 = aMat[5]; + + aMat[1] = aMat[3]; + aMat[2] = aMat[6]; + aMat[3] = a01; + aMat[5] = aMat[7]; + aMat[6] = a02; + aMat[7] = a12; + return aMat; + } + + aDest[0] = aMat[0]; + aDest[1] = aMat[3]; + aDest[2] = aMat[6]; + aDest[3] = aMat[1]; + aDest[4] = aMat[4]; + aDest[5] = aMat[7]; + aDest[6] = aMat[2]; + aDest[7] = aMat[5]; + aDest[8] = aMat[8]; + return aDest; + }, + + /** + * Copies the elements of a mat3 into the upper 3x3 elements of a mat4. + * + * @param {Array} aMat + * mat3 containing values to copy + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat3 if specified, first operand otherwise + */ + toMat4: function M3_toMat4(aMat, aDest) + { + if (!aDest) { + aDest = new Float32Array(16); + } + + aDest[0] = aMat[0]; + aDest[1] = aMat[1]; + aDest[2] = aMat[2]; + aDest[3] = 0; + aDest[4] = aMat[3]; + aDest[5] = aMat[4]; + aDest[6] = aMat[5]; + aDest[7] = 0; + aDest[8] = aMat[6]; + aDest[9] = aMat[7]; + aDest[10] = aMat[8]; + aDest[11] = 0; + aDest[12] = 0; + aDest[13] = 0; + aDest[14] = 0; + aDest[15] = 1; + return aDest; + }, + + /** + * Returns a string representation of a 3x3 matrix. + * + * @param {Array} aMat + * mat3 to represent as a string + * + * @return {String} representation of the matrix + */ + str: function M3_str(aMat) + { + return "[" + aMat[0] + ", " + aMat[1] + ", " + aMat[2] + + ", " + aMat[3] + ", " + aMat[4] + ", " + aMat[5] + + ", " + aMat[6] + ", " + aMat[7] + ", " + aMat[8] + "]"; + } +}; + +exports.mat3 = mat3; + +/** + * mat4 - 4x4 Matrix. + */ +let mat4 = { + + /** + * Creates a new instance of a mat4 using the default Float32Array type. + * Any array containing at least 16 numeric elements can serve as a mat4. + * + * @param {Array} aMat + * optional, mat4 containing values to initialize with + * + * @return {Array} a new instance of a mat4 + */ + create: function M4_create(aMat) + { + let dest = new Float32Array(16); + + if (aMat) { + mat4.set(aMat, dest); + } else { + mat4.identity(dest); + } + return dest; + }, + + /** + * Copies the values of one mat4 to another + * + * @param {Array} aMat + * mat4 containing values to copy + * @param {Array} aDest + * mat4 receiving copied values + * + * @return {Array} the destination mat4 receiving copied values + */ + set: function M4_set(aMat, aDest) + { + aDest[0] = aMat[0]; + aDest[1] = aMat[1]; + aDest[2] = aMat[2]; + aDest[3] = aMat[3]; + aDest[4] = aMat[4]; + aDest[5] = aMat[5]; + aDest[6] = aMat[6]; + aDest[7] = aMat[7]; + aDest[8] = aMat[8]; + aDest[9] = aMat[9]; + aDest[10] = aMat[10]; + aDest[11] = aMat[11]; + aDest[12] = aMat[12]; + aDest[13] = aMat[13]; + aDest[14] = aMat[14]; + aDest[15] = aMat[15]; + return aDest; + }, + + /** + * Sets a mat4 to an identity matrix. + * + * @param {Array} aDest + * mat4 to set + * + * @return {Array} the same matrix + */ + identity: function M4_identity(aDest) + { + aDest[0] = 1; + aDest[1] = 0; + aDest[2] = 0; + aDest[3] = 0; + aDest[4] = 0; + aDest[5] = 1; + aDest[6] = 0; + aDest[7] = 0; + aDest[8] = 0; + aDest[9] = 0; + aDest[10] = 1; + aDest[11] = 0; + aDest[12] = 0; + aDest[13] = 0; + aDest[14] = 0; + aDest[15] = 1; + return aDest; + }, + + /** + * Transposes a mat4 (flips the values over the diagonal). + * + * @param {Array} aMat + * mat4 to transpose + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + transpose: function M4_transpose(aMat, aDest) + { + if (!aDest || aMat === aDest) { + let a01 = aMat[1]; + let a02 = aMat[2]; + let a03 = aMat[3]; + let a12 = aMat[6]; + let a13 = aMat[7]; + let a23 = aMat[11]; + + aMat[1] = aMat[4]; + aMat[2] = aMat[8]; + aMat[3] = aMat[12]; + aMat[4] = a01; + aMat[6] = aMat[9]; + aMat[7] = aMat[13]; + aMat[8] = a02; + aMat[9] = a12; + aMat[11] = aMat[14]; + aMat[12] = a03; + aMat[13] = a13; + aMat[14] = a23; + return aMat; + } + + aDest[0] = aMat[0]; + aDest[1] = aMat[4]; + aDest[2] = aMat[8]; + aDest[3] = aMat[12]; + aDest[4] = aMat[1]; + aDest[5] = aMat[5]; + aDest[6] = aMat[9]; + aDest[7] = aMat[13]; + aDest[8] = aMat[2]; + aDest[9] = aMat[6]; + aDest[10] = aMat[10]; + aDest[11] = aMat[14]; + aDest[12] = aMat[3]; + aDest[13] = aMat[7]; + aDest[14] = aMat[11]; + aDest[15] = aMat[15]; + return aDest; + }, + + /** + * Calculate the determinant of a mat4. + * + * @param {Array} aMat + * mat4 to calculate determinant of + * + * @return {Number} determinant of the matrix + */ + determinant: function M4_determinant(mat) + { + let a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3]; + let a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; + let a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; + let a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15]; + + return a30 * a21 * a12 * a03 - a20 * a31 * a12 * a03 - + a30 * a11 * a22 * a03 + a10 * a31 * a22 * a03 + + a20 * a11 * a32 * a03 - a10 * a21 * a32 * a03 - + a30 * a21 * a02 * a13 + a20 * a31 * a02 * a13 + + a30 * a01 * a22 * a13 - a00 * a31 * a22 * a13 - + a20 * a01 * a32 * a13 + a00 * a21 * a32 * a13 + + a30 * a11 * a02 * a23 - a10 * a31 * a02 * a23 - + a30 * a01 * a12 * a23 + a00 * a31 * a12 * a23 + + a10 * a01 * a32 * a23 - a00 * a11 * a32 * a23 - + a20 * a11 * a02 * a33 + a10 * a21 * a02 * a33 + + a20 * a01 * a12 * a33 - a00 * a21 * a12 * a33 - + a10 * a01 * a22 * a33 + a00 * a11 * a22 * a33; + }, + + /** + * Calculate the inverse of a mat4. + * + * @param {Array} aMat + * mat4 to calculate inverse of + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + inverse: function M4_inverse(aMat, aDest) + { + if (!aDest) { + aDest = aMat; + } + + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; + let a30 = aMat[12], a31 = aMat[13], a32 = aMat[14], a33 = aMat[15]; + + let b00 = a00 * a11 - a01 * a10; + let b01 = a00 * a12 - a02 * a10; + let b02 = a00 * a13 - a03 * a10; + let b03 = a01 * a12 - a02 * a11; + let b04 = a01 * a13 - a03 * a11; + let b05 = a02 * a13 - a03 * a12; + let b06 = a20 * a31 - a21 * a30; + let b07 = a20 * a32 - a22 * a30; + let b08 = a20 * a33 - a23 * a30; + let b09 = a21 * a32 - a22 * a31; + let b10 = a21 * a33 - a23 * a31; + let b11 = a22 * a33 - a23 * a32; + let id = 1 / ((b00 * b11 - b01 * b10 + b02 * b09 + + b03 * b08 - b04 * b07 + b05 * b06) || EPSILON); + + aDest[0] = ( a11 * b11 - a12 * b10 + a13 * b09) * id; + aDest[1] = (-a01 * b11 + a02 * b10 - a03 * b09) * id; + aDest[2] = ( a31 * b05 - a32 * b04 + a33 * b03) * id; + aDest[3] = (-a21 * b05 + a22 * b04 - a23 * b03) * id; + aDest[4] = (-a10 * b11 + a12 * b08 - a13 * b07) * id; + aDest[5] = ( a00 * b11 - a02 * b08 + a03 * b07) * id; + aDest[6] = (-a30 * b05 + a32 * b02 - a33 * b01) * id; + aDest[7] = ( a20 * b05 - a22 * b02 + a23 * b01) * id; + aDest[8] = ( a10 * b10 - a11 * b08 + a13 * b06) * id; + aDest[9] = (-a00 * b10 + a01 * b08 - a03 * b06) * id; + aDest[10] = ( a30 * b04 - a31 * b02 + a33 * b00) * id; + aDest[11] = (-a20 * b04 + a21 * b02 - a23 * b00) * id; + aDest[12] = (-a10 * b09 + a11 * b07 - a12 * b06) * id; + aDest[13] = ( a00 * b09 - a01 * b07 + a02 * b06) * id; + aDest[14] = (-a30 * b03 + a31 * b01 - a32 * b00) * id; + aDest[15] = ( a20 * b03 - a21 * b01 + a22 * b00) * id; + return aDest; + }, + + /** + * Copies the upper 3x3 elements of a mat4 into another mat4. + * + * @param {Array} aMat + * mat4 containing values to copy + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + toRotationMat: function M4_toRotationMat(aMat, aDest) + { + if (!aDest) { + aDest = new Float32Array(16); + } + + aDest[0] = aMat[0]; + aDest[1] = aMat[1]; + aDest[2] = aMat[2]; + aDest[3] = aMat[3]; + aDest[4] = aMat[4]; + aDest[5] = aMat[5]; + aDest[6] = aMat[6]; + aDest[7] = aMat[7]; + aDest[8] = aMat[8]; + aDest[9] = aMat[9]; + aDest[10] = aMat[10]; + aDest[11] = aMat[11]; + aDest[12] = 0; + aDest[13] = 0; + aDest[14] = 0; + aDest[15] = 1; + return aDest; + }, + + /** + * Copies the upper 3x3 elements of a mat4 into a mat3. + * + * @param {Array} aMat + * mat4 containing values to copy + * @param {Array} aDest + * optional, mat3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat3 if specified, first operand otherwise + */ + toMat3: function M4_toMat3(aMat, aDest) + { + if (!aDest) { + aDest = new Float32Array(9); + } + + aDest[0] = aMat[0]; + aDest[1] = aMat[1]; + aDest[2] = aMat[2]; + aDest[3] = aMat[4]; + aDest[4] = aMat[5]; + aDest[5] = aMat[6]; + aDest[6] = aMat[8]; + aDest[7] = aMat[9]; + aDest[8] = aMat[10]; + return aDest; + }, + + /** + * Calculate the inverse of the upper 3x3 elements of a mat4 and copies + * the result into a mat3. The resulting matrix is useful for calculating + * transformed normals. + * + * @param {Array} aMat + * mat4 containing values to invert and copy + * @param {Array} aDest + * optional, mat3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat3 if specified, first operand otherwise + */ + toInverseMat3: function M4_toInverseMat3(aMat, aDest) + { + if (!aDest) { + aDest = new Float32Array(9); + } + + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2]; + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6]; + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10]; + + let b01 = a22 * a11 - a12 * a21; + let b11 = -a22 * a10 + a12 * a20; + let b21 = a21 * a10 - a11 * a20; + let id = 1 / ((a00 * b01 + a01 * b11 + a02 * b21) || EPSILON); + + aDest[0] = b01 * id; + aDest[1] = (-a22 * a01 + a02 * a21) * id; + aDest[2] = ( a12 * a01 - a02 * a11) * id; + aDest[3] = b11 * id; + aDest[4] = ( a22 * a00 - a02 * a20) * id; + aDest[5] = (-a12 * a00 + a02 * a10) * id; + aDest[6] = b21 * id; + aDest[7] = (-a21 * a00 + a01 * a20) * id; + aDest[8] = ( a11 * a00 - a01 * a10) * id; + return aDest; + }, + + /** + * Performs a matrix multiplication. + * + * @param {Array} aMat + * first operand + * @param {Array} aMat2 + * second operand + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + multiply: function M4_multiply(aMat, aMat2, aDest) + { + if (!aDest) { + aDest = aMat; + } + + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; + let a30 = aMat[12], a31 = aMat[13], a32 = aMat[14], a33 = aMat[15]; + + let b00 = aMat2[0], b01 = aMat2[1], b02 = aMat2[2], b03 = aMat2[3]; + let b10 = aMat2[4], b11 = aMat2[5], b12 = aMat2[6], b13 = aMat2[7]; + let b20 = aMat2[8], b21 = aMat2[9], b22 = aMat2[10], b23 = aMat2[11]; + let b30 = aMat2[12], b31 = aMat2[13], b32 = aMat2[14], b33 = aMat2[15]; + + aDest[0] = b00 * a00 + b01 * a10 + b02 * a20 + b03 * a30; + aDest[1] = b00 * a01 + b01 * a11 + b02 * a21 + b03 * a31; + aDest[2] = b00 * a02 + b01 * a12 + b02 * a22 + b03 * a32; + aDest[3] = b00 * a03 + b01 * a13 + b02 * a23 + b03 * a33; + aDest[4] = b10 * a00 + b11 * a10 + b12 * a20 + b13 * a30; + aDest[5] = b10 * a01 + b11 * a11 + b12 * a21 + b13 * a31; + aDest[6] = b10 * a02 + b11 * a12 + b12 * a22 + b13 * a32; + aDest[7] = b10 * a03 + b11 * a13 + b12 * a23 + b13 * a33; + aDest[8] = b20 * a00 + b21 * a10 + b22 * a20 + b23 * a30; + aDest[9] = b20 * a01 + b21 * a11 + b22 * a21 + b23 * a31; + aDest[10] = b20 * a02 + b21 * a12 + b22 * a22 + b23 * a32; + aDest[11] = b20 * a03 + b21 * a13 + b22 * a23 + b23 * a33; + aDest[12] = b30 * a00 + b31 * a10 + b32 * a20 + b33 * a30; + aDest[13] = b30 * a01 + b31 * a11 + b32 * a21 + b33 * a31; + aDest[14] = b30 * a02 + b31 * a12 + b32 * a22 + b33 * a32; + aDest[15] = b30 * a03 + b31 * a13 + b32 * a23 + b33 * a33; + return aDest; + }, + + /** + * Transforms a vec3 with the given matrix. + * 4th vector component is implicitly 1. + * + * @param {Array} aMat + * mat4 to transform the vector with + * @param {Array} aVec + * vec3 to transform + * @param {Array} aDest + * optional, vec3 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, aVec operand otherwise + */ + multiplyVec3: function M4_multiplyVec3(aMat, aVec, aDest) + { + if (!aDest) { + aDest = aVec; + } + + let x = aVec[0]; + let y = aVec[1]; + let z = aVec[2]; + + aDest[0] = aMat[0] * x + aMat[4] * y + aMat[8] * z + aMat[12]; + aDest[1] = aMat[1] * x + aMat[5] * y + aMat[9] * z + aMat[13]; + aDest[2] = aMat[2] * x + aMat[6] * y + aMat[10] * z + aMat[14]; + return aDest; + }, + + /** + * Transforms a vec4 with the given matrix. + * + * @param {Array} aMat + * mat4 to transform the vector with + * @param {Array} aVec + * vec4 to transform + * @param {Array} aDest + * optional, vec4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec4 if specified, vec4 operand otherwise + */ + multiplyVec4: function M4_multiplyVec4(aMat, aVec, aDest) + { + if (!aDest) { + aDest = aVec; + } + + let x = aVec[0]; + let y = aVec[1]; + let z = aVec[2]; + let w = aVec[3]; + + aDest[0] = aMat[0] * x + aMat[4] * y + aMat[8] * z + aMat[12] * w; + aDest[1] = aMat[1] * x + aMat[5] * y + aMat[9] * z + aMat[13] * w; + aDest[2] = aMat[2] * x + aMat[6] * y + aMat[10] * z + aMat[14] * w; + aDest[3] = aMat[3] * x + aMat[7] * y + aMat[11] * z + aMat[15] * w; + return aDest; + }, + + /** + * Translates a matrix by the given vector. + * + * @param {Array} aMat + * mat4 to translate + * @param {Array} aVec + * vec3 specifying the translation + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + translate: function M4_translate(aMat, aVec, aDest) + { + let x = aVec[0]; + let y = aVec[1]; + let z = aVec[2]; + + if (!aDest || aMat === aDest) { + aMat[12] = aMat[0] * x + aMat[4] * y + aMat[8] * z + aMat[12]; + aMat[13] = aMat[1] * x + aMat[5] * y + aMat[9] * z + aMat[13]; + aMat[14] = aMat[2] * x + aMat[6] * y + aMat[10] * z + aMat[14]; + aMat[15] = aMat[3] * x + aMat[7] * y + aMat[11] * z + aMat[15]; + return aMat; + } + + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; + + aDest[0] = a00; + aDest[1] = a01; + aDest[2] = a02; + aDest[3] = a03; + aDest[4] = a10; + aDest[5] = a11; + aDest[6] = a12; + aDest[7] = a13; + aDest[8] = a20; + aDest[9] = a21; + aDest[10] = a22; + aDest[11] = a23; + aDest[12] = a00 * x + a10 * y + a20 * z + aMat[12]; + aDest[13] = a01 * x + a11 * y + a21 * z + aMat[13]; + aDest[14] = a02 * x + a12 * y + a22 * z + aMat[14]; + aDest[15] = a03 * x + a13 * y + a23 * z + aMat[15]; + return aDest; + }, + + /** + * Scales a matrix by the given vector. + * + * @param {Array} aMat + * mat4 to translate + * @param {Array} aVec + * vec3 specifying the scale on each axis + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + scale: function M4_scale(aMat, aVec, aDest) + { + let x = aVec[0]; + let y = aVec[1]; + let z = aVec[2]; + + if (!aDest || aMat === aDest) { + aMat[0] *= x; + aMat[1] *= x; + aMat[2] *= x; + aMat[3] *= x; + aMat[4] *= y; + aMat[5] *= y; + aMat[6] *= y; + aMat[7] *= y; + aMat[8] *= z; + aMat[9] *= z; + aMat[10] *= z; + aMat[11] *= z; + return aMat; + } + + aDest[0] = aMat[0] * x; + aDest[1] = aMat[1] * x; + aDest[2] = aMat[2] * x; + aDest[3] = aMat[3] * x; + aDest[4] = aMat[4] * y; + aDest[5] = aMat[5] * y; + aDest[6] = aMat[6] * y; + aDest[7] = aMat[7] * y; + aDest[8] = aMat[8] * z; + aDest[9] = aMat[9] * z; + aDest[10] = aMat[10] * z; + aDest[11] = aMat[11] * z; + aDest[12] = aMat[12]; + aDest[13] = aMat[13]; + aDest[14] = aMat[14]; + aDest[15] = aMat[15]; + return aDest; + }, + + /** + * Rotates a matrix by the given angle around the specified axis. + * If rotating around a primary axis (x, y, z) one of the specialized + * rotation functions should be used instead for performance, + * + * @param {Array} aMat + * mat4 to rotate + * @param {Number} aAngle + * the angle (in radians) to rotate + * @param {Array} aAxis + * vec3 representing the axis to rotate around + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + rotate: function M4_rotate(aMat, aAngle, aAxis, aDest) + { + let x = aAxis[0]; + let y = aAxis[1]; + let z = aAxis[2]; + let len = 1 / (Math.sqrt(x * x + y * y + z * z) || EPSILON); + + x *= len; + y *= len; + z *= len; + + let s = Math.sin(aAngle); + let c = Math.cos(aAngle); + let t = 1 - c; + + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; + + let b00 = x * x * t + c, b01 = y * x * t + z * s, b02 = z * x * t - y * s; + let b10 = x * y * t - z * s, b11 = y * y * t + c, b12 = z * y * t + x * s; + let b20 = x * z * t + y * s, b21 = y * z * t - x * s, b22 = z * z * t + c; + + if (!aDest) { + aDest = aMat; + } else if (aMat !== aDest) { + aDest[12] = aMat[12]; + aDest[13] = aMat[13]; + aDest[14] = aMat[14]; + aDest[15] = aMat[15]; + } + + aDest[0] = a00 * b00 + a10 * b01 + a20 * b02; + aDest[1] = a01 * b00 + a11 * b01 + a21 * b02; + aDest[2] = a02 * b00 + a12 * b01 + a22 * b02; + aDest[3] = a03 * b00 + a13 * b01 + a23 * b02; + aDest[4] = a00 * b10 + a10 * b11 + a20 * b12; + aDest[5] = a01 * b10 + a11 * b11 + a21 * b12; + aDest[6] = a02 * b10 + a12 * b11 + a22 * b12; + aDest[7] = a03 * b10 + a13 * b11 + a23 * b12; + aDest[8] = a00 * b20 + a10 * b21 + a20 * b22; + aDest[9] = a01 * b20 + a11 * b21 + a21 * b22; + aDest[10] = a02 * b20 + a12 * b21 + a22 * b22; + aDest[11] = a03 * b20 + a13 * b21 + a23 * b22; + return aDest; + }, + + /** + * Rotates a matrix by the given angle around the X axis. + * + * @param {Array} aMat + * mat4 to rotate + * @param {Number} aAngle + * the angle (in radians) to rotate + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + rotateX: function M4_rotateX(aMat, aAngle, aDest) + { + let s = Math.sin(aAngle); + let c = Math.cos(aAngle); + + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; + + if (!aDest) { + aDest = aMat; + } else if (aMat !== aDest) { + aDest[0] = aMat[0]; + aDest[1] = aMat[1]; + aDest[2] = aMat[2]; + aDest[3] = aMat[3]; + aDest[12] = aMat[12]; + aDest[13] = aMat[13]; + aDest[14] = aMat[14]; + aDest[15] = aMat[15]; + } + + aDest[4] = a10 * c + a20 * s; + aDest[5] = a11 * c + a21 * s; + aDest[6] = a12 * c + a22 * s; + aDest[7] = a13 * c + a23 * s; + aDest[8] = a10 * -s + a20 * c; + aDest[9] = a11 * -s + a21 * c; + aDest[10] = a12 * -s + a22 * c; + aDest[11] = a13 * -s + a23 * c; + return aDest; + }, + + /** + * Rotates a matrix by the given angle around the Y axix. + * + * @param {Array} aMat + * mat4 to rotate + * @param {Number} aAngle + * the angle (in radians) to rotate + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + rotateY: function M4_rotateY(aMat, aAngle, aDest) + { + let s = Math.sin(aAngle); + let c = Math.cos(aAngle); + + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; + let a20 = aMat[8], a21 = aMat[9], a22 = aMat[10], a23 = aMat[11]; + + if (!aDest) { + aDest = aMat; + } else if (aMat !== aDest) { + aDest[4] = aMat[4]; + aDest[5] = aMat[5]; + aDest[6] = aMat[6]; + aDest[7] = aMat[7]; + aDest[12] = aMat[12]; + aDest[13] = aMat[13]; + aDest[14] = aMat[14]; + aDest[15] = aMat[15]; + } + + aDest[0] = a00 * c + a20 * -s; + aDest[1] = a01 * c + a21 * -s; + aDest[2] = a02 * c + a22 * -s; + aDest[3] = a03 * c + a23 * -s; + aDest[8] = a00 * s + a20 * c; + aDest[9] = a01 * s + a21 * c; + aDest[10] = a02 * s + a22 * c; + aDest[11] = a03 * s + a23 * c; + return aDest; + }, + + /** + * Rotates a matrix by the given angle around the Z axix. + * + * @param {Array} aMat + * mat4 to rotate + * @param {Number} aAngle + * the angle (in radians) to rotate + * @param {Array} aDest + * optional, mat4 receiving operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + rotateZ: function M4_rotateZ(aMat, aAngle, aDest) + { + let s = Math.sin(aAngle); + let c = Math.cos(aAngle); + + let a00 = aMat[0], a01 = aMat[1], a02 = aMat[2], a03 = aMat[3]; + let a10 = aMat[4], a11 = aMat[5], a12 = aMat[6], a13 = aMat[7]; + + if (!aDest) { + aDest = aMat; + } else if (aMat !== aDest) { + aDest[8] = aMat[8]; + aDest[9] = aMat[9]; + aDest[10] = aMat[10]; + aDest[11] = aMat[11]; + aDest[12] = aMat[12]; + aDest[13] = aMat[13]; + aDest[14] = aMat[14]; + aDest[15] = aMat[15]; + } + + aDest[0] = a00 * c + a10 * s; + aDest[1] = a01 * c + a11 * s; + aDest[2] = a02 * c + a12 * s; + aDest[3] = a03 * c + a13 * s; + aDest[4] = a00 * -s + a10 * c; + aDest[5] = a01 * -s + a11 * c; + aDest[6] = a02 * -s + a12 * c; + aDest[7] = a03 * -s + a13 * c; + return aDest; + }, + + /** + * Generates a frustum matrix with the given bounds. + * + * @param {Number} aLeft + * scalar, left bound of the frustum + * @param {Number} aRight + * scalar, right bound of the frustum + * @param {Number} aBottom + * scalar, bottom bound of the frustum + * @param {Number} aTop + * scalar, top bound of the frustum + * @param {Number} aNear + * scalar, near bound of the frustum + * @param {Number} aFar + * scalar, far bound of the frustum + * @param {Array} aDest + * optional, mat4 frustum matrix will be written into + * if not specified result is written to a new mat4 + * + * @return {Array} the destination mat4 if specified, a new mat4 otherwise + */ + frustum: function M4_frustum( + aLeft, aRight, aBottom, aTop, aNear, aFar, aDest) + { + if (!aDest) { + aDest = new Float32Array(16); + } + + let rl = (aRight - aLeft); + let tb = (aTop - aBottom); + let fn = (aFar - aNear); + + aDest[0] = (aNear * 2) / rl; + aDest[1] = 0; + aDest[2] = 0; + aDest[3] = 0; + aDest[4] = 0; + aDest[5] = (aNear * 2) / tb; + aDest[6] = 0; + aDest[7] = 0; + aDest[8] = (aRight + aLeft) / rl; + aDest[9] = (aTop + aBottom) / tb; + aDest[10] = -(aFar + aNear) / fn; + aDest[11] = -1; + aDest[12] = 0; + aDest[13] = 0; + aDest[14] = -(aFar * aNear * 2) / fn; + aDest[15] = 0; + return aDest; + }, + + /** + * Generates a perspective projection matrix with the given bounds. + * + * @param {Number} aFovy + * scalar, vertical field of view (degrees) + * @param {Number} aAspect + * scalar, aspect ratio (typically viewport width/height) + * @param {Number} aNear + * scalar, near bound of the frustum + * @param {Number} aFar + * scalar, far bound of the frustum + * @param {Array} aDest + * optional, mat4 frustum matrix will be written into + * if not specified result is written to a new mat4 + * + * @return {Array} the destination mat4 if specified, a new mat4 otherwise + */ + perspective: function M4_perspective( + aFovy, aAspect, aNear, aFar, aDest, aFlip) + { + let upper = aNear * Math.tan(aFovy * 0.00872664626); // PI * 180 / 2 + let right = upper * aAspect; + let top = upper * (aFlip || 1); + + return mat4.frustum(-right, right, -top, top, aNear, aFar, aDest); + }, + + /** + * Generates a orthogonal projection matrix with the given bounds. + * + * @param {Number} aLeft + * scalar, left bound of the frustum + * @param {Number} aRight + * scalar, right bound of the frustum + * @param {Number} aBottom + * scalar, bottom bound of the frustum + * @param {Number} aTop + * scalar, top bound of the frustum + * @param {Number} aNear + * scalar, near bound of the frustum + * @param {Number} aFar + * scalar, far bound of the frustum + * @param {Array} aDest + * optional, mat4 frustum matrix will be written into + * if not specified result is written to a new mat4 + * + * @return {Array} the destination mat4 if specified, a new mat4 otherwise + */ + ortho: function M4_ortho(aLeft, aRight, aBottom, aTop, aNear, aFar, aDest) + { + if (!aDest) { + aDest = new Float32Array(16); + } + + let rl = (aRight - aLeft); + let tb = (aTop - aBottom); + let fn = (aFar - aNear); + + aDest[0] = 2 / rl; + aDest[1] = 0; + aDest[2] = 0; + aDest[3] = 0; + aDest[4] = 0; + aDest[5] = 2 / tb; + aDest[6] = 0; + aDest[7] = 0; + aDest[8] = 0; + aDest[9] = 0; + aDest[10] = -2 / fn; + aDest[11] = 0; + aDest[12] = -(aLeft + aRight) / rl; + aDest[13] = -(aTop + aBottom) / tb; + aDest[14] = -(aFar + aNear) / fn; + aDest[15] = 1; + return aDest; + }, + + /** + * Generates a look-at matrix with the given eye position, focal point, and + * up axis. + * + * @param {Array} aEye + * vec3, position of the viewer + * @param {Array} aCenter + * vec3, point the viewer is looking at + * @param {Array} aUp + * vec3 pointing up + * @param {Array} aDest + * optional, mat4 frustum matrix will be written into + * if not specified result is written to a new mat4 + * + * @return {Array} the destination mat4 if specified, a new mat4 otherwise + */ + lookAt: function M4_lookAt(aEye, aCenter, aUp, aDest) + { + if (!aDest) { + aDest = new Float32Array(16); + } + + let eyex = aEye[0]; + let eyey = aEye[1]; + let eyez = aEye[2]; + let upx = aUp[0]; + let upy = aUp[1]; + let upz = aUp[2]; + let centerx = aCenter[0]; + let centery = aCenter[1]; + let centerz = aCenter[2]; + + let z0 = eyex - aCenter[0]; + let z1 = eyey - aCenter[1]; + let z2 = eyez - aCenter[2]; + let len = 1 / (Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2) || EPSILON); + + z0 *= len; + z1 *= len; + z2 *= len; + + let x0 = upy * z2 - upz * z1; + let x1 = upz * z0 - upx * z2; + let x2 = upx * z1 - upy * z0; + len = 1 / (Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2) || EPSILON); + + x0 *= len; + x1 *= len; + x2 *= len; + + let y0 = z1 * x2 - z2 * x1; + let y1 = z2 * x0 - z0 * x2; + let y2 = z0 * x1 - z1 * x0; + len = 1 / (Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2) || EPSILON); + + y0 *= len; + y1 *= len; + y2 *= len; + + aDest[0] = x0; + aDest[1] = y0; + aDest[2] = z0; + aDest[3] = 0; + aDest[4] = x1; + aDest[5] = y1; + aDest[6] = z1; + aDest[7] = 0; + aDest[8] = x2; + aDest[9] = y2; + aDest[10] = z2; + aDest[11] = 0; + aDest[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); + aDest[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); + aDest[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); + aDest[15] = 1; + + return aDest; + }, + + /** + * Returns a string representation of a 4x4 matrix. + * + * @param {Array} aMat + * mat4 to represent as a string + * + * @return {String} representation of the matrix + */ + str: function M4_str(mat) + { + return "[" + mat[0] + ", " + mat[1] + ", " + mat[2] + ", " + mat[3] + + ", "+ mat[4] + ", " + mat[5] + ", " + mat[6] + ", " + mat[7] + + ", "+ mat[8] + ", " + mat[9] + ", " + mat[10] + ", " + mat[11] + + ", "+ mat[12] + ", " + mat[13] + ", " + mat[14] + ", " + mat[15] + + "]"; + } +}; + +exports.mat4 = mat4; + +/** + * quat4 - Quaternion. + */ +let quat4 = { + + /** + * Creates a new instance of a quat4 using the default Float32Array type. + * Any array containing at least 4 numeric elements can serve as a quat4. + * + * @param {Array} aQuat + * optional, quat4 containing values to initialize with + * + * @return {Array} a new instance of a quat4 + */ + create: function Q4_create(aQuat) + { + let dest = new Float32Array(4); + + if (aQuat) { + quat4.set(aQuat, dest); + } else { + quat4.identity(dest); + } + return dest; + }, + + /** + * Copies the values of one quat4 to another. + * + * @param {Array} aQuat + * quat4 containing values to copy + * @param {Array} aDest + * quat4 receiving copied values + * + * @return {Array} the destination quat4 receiving copied values + */ + set: function Q4_set(aQuat, aDest) + { + aDest[0] = aQuat[0]; + aDest[1] = aQuat[1]; + aDest[2] = aQuat[2]; + aDest[3] = aQuat[3]; + return aDest; + }, + + /** + * Sets a quat4 to an identity quaternion. + * + * @param {Array} aDest + * quat4 to set + * + * @return {Array} the same quaternion + */ + identity: function Q4_identity(aDest) + { + aDest[0] = 0; + aDest[1] = 0; + aDest[2] = 0; + aDest[3] = 1; + return aDest; + }, + + /** + * Calculate the W component of a quat4 from the X, Y, and Z components. + * Assumes that quaternion is 1 unit in length. + * Any existing W component will be ignored. + * + * @param {Array} aQuat + * quat4 to calculate W component of + * @param {Array} aDest + * optional, quat4 receiving calculated values + * if not specified result is written to the first operand + * + * @return {Array} the destination quat if specified, first operand otherwise + */ + calculateW: function Q4_calculateW(aQuat, aDest) + { + if (!aDest) { + aDest = aQuat; + } + + let x = aQuat[0]; + let y = aQuat[1]; + let z = aQuat[2]; + + aDest[0] = x; + aDest[1] = y; + aDest[2] = z; + aDest[3] = -Math.sqrt(Math.abs(1 - x * x - y * y - z * z)); + return aDest; + }, + + /** + * Calculate the inverse of a quat4. + * + * @param {Array} aQuat + * quat4 to calculate the inverse of + * @param {Array} aDest + * optional, quat4 receiving the inverse values + * if not specified result is written to the first operand + * + * @return {Array} the destination quat if specified, first operand otherwise + */ + inverse: function Q4_inverse(aQuat, aDest) + { + if (!aDest) { + aDest = aQuat; + } + + aQuat[0] = -aQuat[0]; + aQuat[1] = -aQuat[1]; + aQuat[2] = -aQuat[2]; + return aQuat; + }, + + /** + * Generates a unit quaternion of the same direction as the provided quat4. + * If quaternion length is 0, returns [0, 0, 0, 0]. + * + * @param {Array} aQuat + * quat4 to normalize + * @param {Array} aDest + * optional, quat4 receiving the operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination quat if specified, first operand otherwise + */ + normalize: function Q4_normalize(aQuat, aDest) + { + if (!aDest) { + aDest = aQuat; + } + + let x = aQuat[0]; + let y = aQuat[1]; + let z = aQuat[2]; + let w = aQuat[3]; + let len = Math.sqrt(x * x + y * y + z * z + w * w); + + if (Math.abs(len) < EPSILON) { + aDest[0] = 0; + aDest[1] = 0; + aDest[2] = 0; + aDest[3] = 0; + return aDest; + } + + len = 1 / len; + aDest[0] = x * len; + aDest[1] = y * len; + aDest[2] = z * len; + aDest[3] = w * len; + return aDest; + }, + + /** + * Calculate the length of a quat4. + * + * @param {Array} aQuat + * quat4 to calculate the length of + * + * @return {Number} length of the quaternion + */ + length: function Q4_length(aQuat) + { + let x = aQuat[0]; + let y = aQuat[1]; + let z = aQuat[2]; + let w = aQuat[3]; + + return Math.sqrt(x * x + y * y + z * z + w * w); + }, + + /** + * Performs a quaternion multiplication. + * + * @param {Array} aQuat + * first operand + * @param {Array} aQuat2 + * second operand + * @param {Array} aDest + * optional, quat4 receiving the operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination quat if specified, first operand otherwise + */ + multiply: function Q4_multiply(aQuat, aQuat2, aDest) + { + if (!aDest) { + aDest = aQuat; + } + + let qax = aQuat[0]; + let qay = aQuat[1]; + let qaz = aQuat[2]; + let qaw = aQuat[3]; + let qbx = aQuat2[0]; + let qby = aQuat2[1]; + let qbz = aQuat2[2]; + let qbw = aQuat2[3]; + + aDest[0] = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; + aDest[1] = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; + aDest[2] = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; + aDest[3] = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; + return aDest; + }, + + /** + * Transforms a vec3 with the given quaternion. + * + * @param {Array} aQuat + * quat4 to transform the vector with + * @param {Array} aVec + * vec3 to transform + * @param {Array} aDest + * optional, vec3 receiving the operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination vec3 if specified, aVec operand otherwise + */ + multiplyVec3: function Q4_multiplyVec3(aQuat, aVec, aDest) + { + if (!aDest) { + aDest = aVec; + } + + let x = aVec[0]; + let y = aVec[1]; + let z = aVec[2]; + + let qx = aQuat[0]; + let qy = aQuat[1]; + let qz = aQuat[2]; + let qw = aQuat[3]; + + let ix = qw * x + qy * z - qz * y; + let iy = qw * y + qz * x - qx * z; + let iz = qw * z + qx * y - qy * x; + let iw = -qx * x - qy * y - qz * z; + + aDest[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; + aDest[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; + aDest[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; + return aDest; + }, + + /** + * Performs a spherical linear interpolation between two quat4. + * + * @param {Array} aQuat + * first quaternion + * @param {Array} aQuat2 + * second quaternion + * @param {Number} aSlerp + * interpolation amount between the two inputs + * @param {Array} aDest + * optional, quat4 receiving the operation result + * if not specified result is written to the first operand + * + * @return {Array} the destination quat if specified, first operand otherwise + */ + slerp: function Q4_slerp(aQuat, aQuat2, aSlerp, aDest) + { + if (!aDest) { + aDest = aQuat; + } + + let cosHalfTheta = aQuat[0] * aQuat2[0] + + aQuat[1] * aQuat2[1] + + aQuat[2] * aQuat2[2] + + aQuat[3] * aQuat2[3]; + + if (Math.abs(cosHalfTheta) >= 1) { + aDest[0] = aQuat[0]; + aDest[1] = aQuat[1]; + aDest[2] = aQuat[2]; + aDest[3] = aQuat[3]; + return aDest; + } + + let halfTheta = Math.acos(cosHalfTheta); + let sinHalfTheta = Math.sqrt(1 - cosHalfTheta * cosHalfTheta); + + if (Math.abs(sinHalfTheta) < EPSILON) { + aDest[0] = (aQuat[0] * 0.5 + aQuat2[0] * 0.5); + aDest[1] = (aQuat[1] * 0.5 + aQuat2[1] * 0.5); + aDest[2] = (aQuat[2] * 0.5 + aQuat2[2] * 0.5); + aDest[3] = (aQuat[3] * 0.5 + aQuat2[3] * 0.5); + return aDest; + } + + let ratioA = Math.sin((1 - aSlerp) * halfTheta) / sinHalfTheta; + let ratioB = Math.sin(aSlerp * halfTheta) / sinHalfTheta; + + aDest[0] = (aQuat[0] * ratioA + aQuat2[0] * ratioB); + aDest[1] = (aQuat[1] * ratioA + aQuat2[1] * ratioB); + aDest[2] = (aQuat[2] * ratioA + aQuat2[2] * ratioB); + aDest[3] = (aQuat[3] * ratioA + aQuat2[3] * ratioB); + return aDest; + }, + + /** + * Calculates a 3x3 matrix from the given quat4. + * + * @param {Array} aQuat + * quat4 to create matrix from + * @param {Array} aDest + * optional, mat3 receiving the initialization result + * if not specified, a new matrix is created + * + * @return {Array} the destination mat3 if specified, first operand otherwise + */ + toMat3: function Q4_toMat3(aQuat, aDest) + { + if (!aDest) { + aDest = new Float32Array(9); + } + + let x = aQuat[0]; + let y = aQuat[1]; + let z = aQuat[2]; + let w = aQuat[3]; + + let x2 = x + x; + let y2 = y + y; + let z2 = z + z; + let xx = x * x2; + let xy = x * y2; + let xz = x * z2; + let yy = y * y2; + let yz = y * z2; + let zz = z * z2; + let wx = w * x2; + let wy = w * y2; + let wz = w * z2; + + aDest[0] = 1 - (yy + zz); + aDest[1] = xy - wz; + aDest[2] = xz + wy; + aDest[3] = xy + wz; + aDest[4] = 1 - (xx + zz); + aDest[5] = yz - wx; + aDest[6] = xz - wy; + aDest[7] = yz + wx; + aDest[8] = 1 - (xx + yy); + return aDest; + }, + + /** + * Calculates a 4x4 matrix from the given quat4. + * + * @param {Array} aQuat + * quat4 to create matrix from + * @param {Array} aDest + * optional, mat4 receiving the initialization result + * if not specified, a new matrix is created + * + * @return {Array} the destination mat4 if specified, first operand otherwise + */ + toMat4: function Q4_toMat4(aQuat, aDest) + { + if (!aDest) { + aDest = new Float32Array(16); + } + + let x = aQuat[0]; + let y = aQuat[1]; + let z = aQuat[2]; + let w = aQuat[3]; + + let x2 = x + x; + let y2 = y + y; + let z2 = z + z; + let xx = x * x2; + let xy = x * y2; + let xz = x * z2; + let yy = y * y2; + let yz = y * z2; + let zz = z * z2; + let wx = w * x2; + let wy = w * y2; + let wz = w * z2; + + aDest[0] = 1 - (yy + zz); + aDest[1] = xy - wz; + aDest[2] = xz + wy; + aDest[3] = 0; + aDest[4] = xy + wz; + aDest[5] = 1 - (xx + zz); + aDest[6] = yz - wx; + aDest[7] = 0; + aDest[8] = xz - wy; + aDest[9] = yz + wx; + aDest[10] = 1 - (xx + yy); + aDest[11] = 0; + aDest[12] = 0; + aDest[13] = 0; + aDest[14] = 0; + aDest[15] = 1; + return aDest; + }, + + /** + * Creates a rotation quaternion from axis-angle. + * This function expects that the axis is a normalized vector. + * + * @param {Array} aAxis + * an array of elements representing the [x, y, z] axis + * @param {Number} aAngle + * the angle of rotation + * @param {Array} aDest + * optional, quat4 receiving the initialization result + * if not specified, a new quaternion is created + * + * @return {Array} the quaternion as [x, y, z, w] + */ + fromAxis: function Q4_fromAxis(aAxis, aAngle, aDest) + { + if (!aDest) { + aDest = new Float32Array(4); + } + + let ang = aAngle * 0.5; + let sin = Math.sin(ang); + let cos = Math.cos(ang); + + aDest[0] = aAxis[0] * sin; + aDest[1] = aAxis[1] * sin; + aDest[2] = aAxis[2] * sin; + aDest[3] = cos; + return aDest; + }, + + /** + * Creates a rotation quaternion from Euler angles. + * + * @param {Number} aYaw + * the yaw angle of rotation + * @param {Number} aPitch + * the pitch angle of rotation + * @param {Number} aRoll + * the roll angle of rotation + * @param {Array} aDest + * optional, quat4 receiving the initialization result + * if not specified, a new quaternion is created + * + * @return {Array} the quaternion as [x, y, z, w] + */ + fromEuler: function Q4_fromEuler(aYaw, aPitch, aRoll, aDest) + { + if (!aDest) { + aDest = new Float32Array(4); + } + + let x = aPitch * 0.5; + let y = aYaw * 0.5; + let z = aRoll * 0.5; + + let sinr = Math.sin(x); + let sinp = Math.sin(y); + let siny = Math.sin(z); + let cosr = Math.cos(x); + let cosp = Math.cos(y); + let cosy = Math.cos(z); + + aDest[0] = sinr * cosp * cosy - cosr * sinp * siny; + aDest[1] = cosr * sinp * cosy + sinr * cosp * siny; + aDest[2] = cosr * cosp * siny - sinr * sinp * cosy; + aDest[3] = cosr * cosp * cosy + sinr * sinp * siny; + return aDest; + }, + + /** + * Returns a string representation of a quaternion. + * + * @param {Array} aQuat + * quat4 to represent as a string + * + * @return {String} representation of the quaternion + */ + str: function Q4_str(aQuat) { + return "[" + aQuat[0] + ", " + + aQuat[1] + ", " + + aQuat[2] + ", " + + aQuat[3] + "]"; + } +}; + +exports.quat4 = quat4; + +/** + * Various algebraic math functions required by the engine. + */ +let TiltMath = { + + /** + * Helper function, converts degrees to radians. + * + * @param {Number} aDegrees + * the degrees to be converted to radians + * + * @return {Number} the degrees converted to radians + */ + radians: function TM_radians(aDegrees) + { + return aDegrees * PI_OVER_180; + }, + + /** + * Helper function, converts radians to degrees. + * + * @param {Number} aRadians + * the radians to be converted to degrees + * + * @return {Number} the radians converted to degrees + */ + degrees: function TM_degrees(aRadians) + { + return aRadians * INV_PI_OVER_180; + }, + + /** + * Re-maps a number from one range to another. + * + * @param {Number} aValue + * the number to map + * @param {Number} aLow1 + * the normal lower bound of the number + * @param {Number} aHigh1 + * the normal upper bound of the number + * @param {Number} aLow2 + * the new lower bound of the number + * @param {Number} aHigh2 + * the new upper bound of the number + * + * @return {Number} the remapped number + */ + map: function TM_map(aValue, aLow1, aHigh1, aLow2, aHigh2) + { + return aLow2 + (aHigh2 - aLow2) * ((aValue - aLow1) / (aHigh1 - aLow1)); + }, + + /** + * Returns if number is power of two. + * + * @param {Number} aNumber + * the number to be verified + * + * @return {Boolean} true if x is power of two + */ + isPowerOfTwo: function TM_isPowerOfTwo(aNumber) + { + return !(aNumber & (aNumber - 1)); + }, + + /** + * Returns the next closest power of two greater than a number. + * + * @param {Number} aNumber + * the number to be converted + * + * @return {Number} the next closest power of two for x + */ + nextPowerOfTwo: function TM_nextPowerOfTwo(aNumber) + { + --aNumber; + + for (let i = 1; i < 32; i <<= 1) { + aNumber = aNumber | aNumber >> i; + } + return aNumber + 1; + }, + + /** + * A convenient way of limiting values to a set boundary. + * + * @param {Number} aValue + * the number to be limited + * @param {Number} aMin + * the minimum allowed value for the number + * @param {Number} aMax + * the maximum allowed value for the number + */ + clamp: function TM_clamp(aValue, aMin, aMax) + { + return Math.max(aMin, Math.min(aMax, aValue)); + }, + + /** + * Convenient way to clamp a value to 0..1 + * + * @param {Number} aValue + * the number to be limited + */ + saturate: function TM_saturate(aValue) + { + return Math.max(0, Math.min(1, aValue)); + }, + + /** + * Converts a hex color to rgba. + * If the passed param is invalid, it will be converted to [0, 0, 0, 1]; + * + * @param {String} aColor + * color expressed in hex, or using rgb() or rgba() + * + * @return {Array} with 4 color 0..1 components: [red, green, blue, alpha] + */ + hex2rgba: (function() + { + let cache = {}; + + return function TM_hex2rgba(aColor) { + let hex = aColor.charAt(0) === "#" ? aColor.substring(1) : aColor; + + // check the cache to see if this color wasn't converted already + if (cache[hex] !== undefined) { + return cache[hex]; + } + + // e.g. "f00" + if (hex.length === 3) { + let r = parseInt(hex.substring(0, 1), 16) * FIFTEEN_OVER_225; + let g = parseInt(hex.substring(1, 2), 16) * FIFTEEN_OVER_225; + let b = parseInt(hex.substring(2, 3), 16) * FIFTEEN_OVER_225; + + return (cache[hex] = [r, g, b, 1]); + } + // e.g. "f008" + if (hex.length === 4) { + let r = parseInt(hex.substring(0, 1), 16) * FIFTEEN_OVER_225; + let g = parseInt(hex.substring(1, 2), 16) * FIFTEEN_OVER_225; + let b = parseInt(hex.substring(2, 3), 16) * FIFTEEN_OVER_225; + let a = parseInt(hex.substring(3, 4), 16) * FIFTEEN_OVER_225; + + return (cache[hex] = [r, g, b, a]); + } + // e.g. "ff0000" + if (hex.length === 6) { + let r = parseInt(hex.substring(0, 2), 16) * ONE_OVER_255; + let g = parseInt(hex.substring(2, 4), 16) * ONE_OVER_255; + let b = parseInt(hex.substring(4, 6), 16) * ONE_OVER_255; + let a = 1; + + return (cache[hex] = [r, g, b, a]); + } + // e.g "ff0000aa" + if (hex.length === 8) { + let r = parseInt(hex.substring(0, 2), 16) * ONE_OVER_255; + let g = parseInt(hex.substring(2, 4), 16) * ONE_OVER_255; + let b = parseInt(hex.substring(4, 6), 16) * ONE_OVER_255; + let a = parseInt(hex.substring(6, 8), 16) * ONE_OVER_255; + + return (cache[hex] = [r, g, b, a]); + } + // e.g. "rgba(255, 0, 0, 0.5)" + if (hex.match("^rgba")) { + let rgba = hex.substring(5, hex.length - 1).split(","); + rgba[0] *= ONE_OVER_255; + rgba[1] *= ONE_OVER_255; + rgba[2] *= ONE_OVER_255; + // in CSS, the alpha component of rgba() is already in the range 0..1 + + return (cache[hex] = rgba); + } + // e.g. "rgb(255, 0, 0)" + if (hex.match("^rgb")) { + let rgba = hex.substring(4, hex.length - 1).split(","); + rgba[0] *= ONE_OVER_255; + rgba[1] *= ONE_OVER_255; + rgba[2] *= ONE_OVER_255; + rgba[3] = 1; + + return (cache[hex] = rgba); + } + + // your argument is invalid + return (cache[hex] = [0, 0, 0, 1]); + }; + }()) +}; + +exports.TiltMath = TiltMath; + +// bind the owner object to the necessary functions +TiltUtils.bindObjectFunc(vec3); +TiltUtils.bindObjectFunc(mat3); +TiltUtils.bindObjectFunc(mat4); +TiltUtils.bindObjectFunc(quat4); +TiltUtils.bindObjectFunc(TiltMath);