diff -r 000000000000 -r 6474c204b198 gfx/2d/FilterProcessingScalar.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/2d/FilterProcessingScalar.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,321 @@ +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#define FILTER_PROCESSING_SCALAR + +#include "FilterProcessingSIMD-inl.h" + +namespace mozilla { +namespace gfx { + +void +FilterProcessing::ExtractAlpha_Scalar(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride) +{ + for (int32_t y = 0; y < size.height; y++) { + for (int32_t x = 0; x < size.width; x++) { + int32_t sourceIndex = y * sourceStride + 4 * x; + int32_t targetIndex = y * alphaStride + x; + alphaData[targetIndex] = sourceData[sourceIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; + } + } +} + +TemporaryRef +FilterProcessing::ConvertToB8G8R8A8_Scalar(SourceSurface* aSurface) +{ + return ConvertToB8G8R8A8_SIMD(aSurface); +} + +template +static TemporaryRef +ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2) +{ + IntSize size = aInput1->GetSize(); + RefPtr target = + Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8); + if (!target) { + return nullptr; + } + + uint8_t* source1Data = aInput1->GetData(); + uint8_t* source2Data = aInput2->GetData(); + uint8_t* targetData = target->GetData(); + uint32_t targetStride = target->Stride(); + uint32_t source1Stride = aInput1->Stride(); + uint32_t source2Stride = aInput2->Stride(); + + for (int32_t y = 0; y < size.height; y++) { + for (int32_t x = 0; x < size.width; x++) { + uint32_t targetIndex = y * targetStride + 4 * x; + uint32_t source1Index = y * source1Stride + 4 * x; + uint32_t source2Index = y * source2Stride + 4 * x; + uint32_t qa = source1Data[source1Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; + uint32_t qb = source2Data[source2Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; + for (int32_t i = std::min(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R); + i <= std::max(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R); i++) { + uint32_t ca = source1Data[source1Index + i]; + uint32_t cb = source2Data[source2Index + i]; + uint32_t val; + switch (aBlendMode) { + case BLEND_MODE_MULTIPLY: + val = ((255 - qa) * cb + (255 - qb + cb) * ca); + break; + case BLEND_MODE_SCREEN: + val = 255 * (cb + ca) - ca * cb; + break; + case BLEND_MODE_DARKEN: + val = umin((255 - qa) * cb + 255 * ca, + (255 - qb) * ca + 255 * cb); + break; + case BLEND_MODE_LIGHTEN: + val = umax((255 - qa) * cb + 255 * ca, + (255 - qb) * ca + 255 * cb); + break; + default: + MOZ_CRASH(); + } + val = umin(FilterProcessing::FastDivideBy255(val), 255U); + targetData[targetIndex + i] = static_cast(val); + } + uint32_t alpha = 255 * 255 - (255 - qa) * (255 - qb); + targetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = + FilterProcessing::FastDivideBy255(alpha); + } + } + + return target; +} + +TemporaryRef +FilterProcessing::ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, + BlendMode aBlendMode) +{ + switch (aBlendMode) { + case BLEND_MODE_MULTIPLY: + return gfx::ApplyBlending_Scalar(aInput1, aInput2); + case BLEND_MODE_SCREEN: + return gfx::ApplyBlending_Scalar(aInput1, aInput2); + case BLEND_MODE_DARKEN: + return gfx::ApplyBlending_Scalar(aInput1, aInput2); + case BLEND_MODE_LIGHTEN: + return gfx::ApplyBlending_Scalar(aInput1, aInput2); + default: + return nullptr; + } +} + +template +static void +ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride, + uint8_t* aDestData, int32_t aDestStride, + const IntRect& aDestRect, int32_t aRadius) +{ + static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE || + Operator == MORPHOLOGY_OPERATOR_DILATE, + "unexpected morphology operator"); + + for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++) { + int32_t startX = aDestRect.x - aRadius; + int32_t endX = aDestRect.x + aRadius; + for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++, startX++, endX++) { + int32_t sourceIndex = y * aSourceStride + 4 * startX; + uint8_t u[4]; + for (size_t i = 0; i < 4; i++) { + u[i] = aSourceData[sourceIndex + i]; + } + sourceIndex += 4; + for (int32_t ix = startX + 1; ix <= endX; ix++, sourceIndex += 4) { + for (size_t i = 0; i < 4; i++) { + if (Operator == MORPHOLOGY_OPERATOR_ERODE) { + u[i] = umin(u[i], aSourceData[sourceIndex + i]); + } else { + u[i] = umax(u[i], aSourceData[sourceIndex + i]); + } + } + } + + int32_t destIndex = y * aDestStride + 4 * x; + for (size_t i = 0; i < 4; i++) { + aDestData[destIndex+i] = u[i]; + } + } + } +} + +void +FilterProcessing::ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride, + uint8_t* aDestData, int32_t aDestStride, + const IntRect& aDestRect, int32_t aRadius, + MorphologyOperator aOp) +{ + if (aOp == MORPHOLOGY_OPERATOR_ERODE) { + gfx::ApplyMorphologyHorizontal_Scalar( + aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); + } else { + gfx::ApplyMorphologyHorizontal_Scalar( + aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); + } +} + +template +static void ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride, + uint8_t* aDestData, int32_t aDestStride, + const IntRect& aDestRect, int32_t aRadius) +{ + static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE || + Operator == MORPHOLOGY_OPERATOR_DILATE, + "unexpected morphology operator"); + + int32_t startY = aDestRect.y - aRadius; + int32_t endY = aDestRect.y + aRadius; + for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++, startY++, endY++) { + for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++) { + int32_t sourceIndex = startY * aSourceStride + 4 * x; + uint8_t u[4]; + for (size_t i = 0; i < 4; i++) { + u[i] = aSourceData[sourceIndex + i]; + } + sourceIndex += aSourceStride; + for (int32_t iy = startY + 1; iy <= endY; iy++, sourceIndex += aSourceStride) { + for (size_t i = 0; i < 4; i++) { + if (Operator == MORPHOLOGY_OPERATOR_ERODE) { + u[i] = umin(u[i], aSourceData[sourceIndex + i]); + } else { + u[i] = umax(u[i], aSourceData[sourceIndex + i]); + } + } + } + + int32_t destIndex = y * aDestStride + 4 * x; + for (size_t i = 0; i < 4; i++) { + aDestData[destIndex+i] = u[i]; + } + } + } +} + +void +FilterProcessing::ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride, + uint8_t* aDestData, int32_t aDestStride, + const IntRect& aDestRect, int32_t aRadius, + MorphologyOperator aOp) +{ + if (aOp == MORPHOLOGY_OPERATOR_ERODE) { + gfx::ApplyMorphologyVertical_Scalar( + aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); + } else { + gfx::ApplyMorphologyVertical_Scalar( + aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); + } +} + +TemporaryRef +FilterProcessing::ApplyColorMatrix_Scalar(DataSourceSurface* aInput, const Matrix5x4 &aMatrix) +{ + return ApplyColorMatrix_SIMD(aInput, aMatrix); +} + +void +FilterProcessing::ApplyComposition_Scalar(DataSourceSurface* aSource, DataSourceSurface* aDest, + CompositeOperator aOperator) +{ + return ApplyComposition_SIMD(aSource, aDest, aOperator); +} + +void +FilterProcessing::SeparateColorChannels_Scalar(const IntSize &size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride) +{ + for (int32_t y = 0; y < size.height; y++) { + for (int32_t x = 0; x < size.width; x++) { + int32_t sourceIndex = y * sourceStride + 4 * x; + int32_t targetIndex = y * channelStride + x; + channel0Data[targetIndex] = sourceData[sourceIndex]; + channel1Data[targetIndex] = sourceData[sourceIndex+1]; + channel2Data[targetIndex] = sourceData[sourceIndex+2]; + channel3Data[targetIndex] = sourceData[sourceIndex+3]; + } + } +} + +void +FilterProcessing::CombineColorChannels_Scalar(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data) +{ + for (int32_t y = 0; y < size.height; y++) { + for (int32_t x = 0; x < size.width; x++) { + int32_t resultIndex = y * resultStride + 4 * x; + int32_t channelIndex = y * channelStride + x; + resultData[resultIndex] = channel0Data[channelIndex]; + resultData[resultIndex+1] = channel1Data[channelIndex]; + resultData[resultIndex+2] = channel2Data[channelIndex]; + resultData[resultIndex+3] = channel3Data[channelIndex]; + } + } +} + +void +FilterProcessing::DoPremultiplicationCalculation_Scalar(const IntSize& aSize, + uint8_t* aTargetData, int32_t aTargetStride, + uint8_t* aSourceData, int32_t aSourceStride) +{ + for (int32_t y = 0; y < aSize.height; y++) { + for (int32_t x = 0; x < aSize.width; x++) { + int32_t inputIndex = y * aSourceStride + 4 * x; + int32_t targetIndex = y * aTargetStride + 4 * x; + uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; + aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] = + FastDivideBy255(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alpha); + aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] = + FastDivideBy255(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alpha); + aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] = + FastDivideBy255(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alpha); + aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha; + } + } +} + +void +FilterProcessing::DoUnpremultiplicationCalculation_Scalar( + const IntSize& aSize, + uint8_t* aTargetData, int32_t aTargetStride, + uint8_t* aSourceData, int32_t aSourceStride) +{ + for (int32_t y = 0; y < aSize.height; y++) { + for (int32_t x = 0; x < aSize.width; x++) { + int32_t inputIndex = y * aSourceStride + 4 * x; + int32_t targetIndex = y * aTargetStride + 4 * x; + uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; + uint16_t alphaFactor = sAlphaFactors[alpha]; + // inputColor * alphaFactor + 128 is guaranteed to fit into uint16_t + // because the input is premultiplied and thus inputColor <= inputAlpha. + // The maximum value this can attain is 65520 (which is less than 65535) + // for color == alpha == 244: + // 244 * sAlphaFactors[244] + 128 == 244 * 268 + 128 == 65520 + aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] = + (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alphaFactor + 128) >> 8; + aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] = + (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alphaFactor + 128) >> 8; + aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] = + (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alphaFactor + 128) >> 8; + aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha; + } + } +} + +TemporaryRef +FilterProcessing::RenderTurbulence_Scalar(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency, + int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect) +{ + return RenderTurbulence_SIMD( + aSize, aOffset, aBaseFrequency, aSeed, aNumOctaves, aType, aStitch, aTileRect); +} + +TemporaryRef +FilterProcessing::ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4) +{ + return ApplyArithmeticCombine_SIMD(aInput1, aInput2, aK1, aK2, aK3, aK4); +} + +} // namespace mozilla +} // namespace gfx