diff -r 000000000000 -r 6474c204b198 gfx/angle/src/libGLESv2/ProgramBinary.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/angle/src/libGLESv2/ProgramBinary.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,2622 @@ +#include "precompiled.h" +// +// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// + +// Program.cpp: Implements the gl::Program class. Implements GL program objects +// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. + +#include "libGLESv2/BinaryStream.h" +#include "libGLESv2/ProgramBinary.h" +#include "libGLESv2/renderer/ShaderExecutable.h" + +#include "common/debug.h" +#include "common/version.h" +#include "utilities.h" + +#include "libGLESv2/main.h" +#include "libGLESv2/Shader.h" +#include "libGLESv2/Program.h" +#include "libGLESv2/renderer/Renderer.h" +#include "libGLESv2/renderer/VertexDataManager.h" + +#include + +#undef near +#undef far + +namespace gl +{ +std::string str(int i) +{ + char buffer[20]; + snprintf(buffer, sizeof(buffer), "%d", i); + return buffer; +} + +UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index) + : name(name), element(element), index(index) +{ +} + +unsigned int ProgramBinary::mCurrentSerial = 1; + +ProgramBinary::ProgramBinary(rx::Renderer *renderer) : mRenderer(renderer), RefCountObject(0), mSerial(issueSerial()) +{ + mPixelExecutable = NULL; + mVertexExecutable = NULL; + mGeometryExecutable = NULL; + + mValidated = false; + + for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) + { + mSemanticIndex[index] = -1; + } + + for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) + { + mSamplersPS[index].active = false; + } + + for (int index = 0; index < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++) + { + mSamplersVS[index].active = false; + } + + mUsedVertexSamplerRange = 0; + mUsedPixelSamplerRange = 0; + mUsesPointSize = false; +} + +ProgramBinary::~ProgramBinary() +{ + delete mPixelExecutable; + mPixelExecutable = NULL; + + delete mVertexExecutable; + mVertexExecutable = NULL; + + delete mGeometryExecutable; + mGeometryExecutable = NULL; + + while (!mUniforms.empty()) + { + delete mUniforms.back(); + mUniforms.pop_back(); + } +} + +unsigned int ProgramBinary::getSerial() const +{ + return mSerial; +} + +unsigned int ProgramBinary::issueSerial() +{ + return mCurrentSerial++; +} + +rx::ShaderExecutable *ProgramBinary::getPixelExecutable() +{ + return mPixelExecutable; +} + +rx::ShaderExecutable *ProgramBinary::getVertexExecutable() +{ + return mVertexExecutable; +} + +rx::ShaderExecutable *ProgramBinary::getGeometryExecutable() +{ + return mGeometryExecutable; +} + +GLuint ProgramBinary::getAttributeLocation(const char *name) +{ + if (name) + { + for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) + { + if (mLinkedAttribute[index].name == std::string(name)) + { + return index; + } + } + } + + return -1; +} + +int ProgramBinary::getSemanticIndex(int attributeIndex) +{ + ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); + + return mSemanticIndex[attributeIndex]; +} + +// Returns one more than the highest sampler index used. +GLint ProgramBinary::getUsedSamplerRange(SamplerType type) +{ + switch (type) + { + case SAMPLER_PIXEL: + return mUsedPixelSamplerRange; + case SAMPLER_VERTEX: + return mUsedVertexSamplerRange; + default: + UNREACHABLE(); + return 0; + } +} + +bool ProgramBinary::usesPointSize() const +{ + return mUsesPointSize; +} + +bool ProgramBinary::usesPointSpriteEmulation() const +{ + return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4; +} + +bool ProgramBinary::usesGeometryShader() const +{ + return usesPointSpriteEmulation(); +} + +// Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler +// index (0-15 for the pixel shader and 0-3 for the vertex shader). +GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex) +{ + GLint logicalTextureUnit = -1; + + switch (type) + { + case SAMPLER_PIXEL: + ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); + + if (mSamplersPS[samplerIndex].active) + { + logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit; + } + break; + case SAMPLER_VERTEX: + ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); + + if (mSamplersVS[samplerIndex].active) + { + logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit; + } + break; + default: UNREACHABLE(); + } + + if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)mRenderer->getMaxCombinedTextureImageUnits()) + { + return logicalTextureUnit; + } + + return -1; +} + +// Returns the texture type for a given Direct3D 9 sampler type and +// index (0-15 for the pixel shader and 0-3 for the vertex shader). +TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex) +{ + switch (type) + { + case SAMPLER_PIXEL: + ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); + ASSERT(mSamplersPS[samplerIndex].active); + return mSamplersPS[samplerIndex].textureType; + case SAMPLER_VERTEX: + ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); + ASSERT(mSamplersVS[samplerIndex].active); + return mSamplersVS[samplerIndex].textureType; + default: UNREACHABLE(); + } + + return TEXTURE_2D; +} + +GLint ProgramBinary::getUniformLocation(std::string name) +{ + unsigned int subscript = 0; + + // Strip any trailing array operator and retrieve the subscript + size_t open = name.find_last_of('['); + size_t close = name.find_last_of(']'); + if (open != std::string::npos && close == name.length() - 1) + { + subscript = atoi(name.substr(open + 1).c_str()); + name.erase(open); + } + + unsigned int numUniforms = mUniformIndex.size(); + for (unsigned int location = 0; location < numUniforms; location++) + { + if (mUniformIndex[location].name == name && + mUniformIndex[location].element == subscript) + { + return location; + } + } + + return -1; +} + +bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + + if (targetUniform->type == GL_FLOAT) + { + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = 0; + target[2] = 0; + target[3] = 0; + target += 4; + v += 1; + } + } + else if (targetUniform->type == GL_BOOL) + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams[1] = GL_FALSE; + boolParams[2] = GL_FALSE; + boolParams[3] = GL_FALSE; + boolParams += 4; + v += 1; + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + + if (targetUniform->type == GL_FLOAT_VEC2) + { + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = v[1]; + target[2] = 0; + target[3] = 0; + target += 4; + v += 2; + } + } + else if (targetUniform->type == GL_BOOL_VEC2) + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams[2] = GL_FALSE; + boolParams[3] = GL_FALSE; + boolParams += 4; + v += 2; + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + + if (targetUniform->type == GL_FLOAT_VEC3) + { + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = v[1]; + target[2] = v[2]; + target[3] = 0; + target += 4; + v += 3; + } + } + else if (targetUniform->type == GL_BOOL_VEC3) + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams[3] = GL_FALSE; + boolParams += 4; + v += 3; + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + + if (targetUniform->type == GL_FLOAT_VEC4) + { + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = v[1]; + target[2] = v[2]; + target[3] = v[3]; + target += 4; + v += 4; + } + } + else if (targetUniform->type == GL_BOOL_VEC4) + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams[3] = (v[3] == 0.0f) ? GL_FALSE : GL_TRUE; + boolParams += 4; + v += 4; + } + } + else + { + return false; + } + + return true; +} + +template +void transposeMatrix(T *target, const GLfloat *value) +{ + int copyWidth = std::min(targetWidth, srcWidth); + int copyHeight = std::min(targetHeight, srcHeight); + + for (int x = 0; x < copyWidth; x++) + { + for (int y = 0; y < copyHeight; y++) + { + target[x * targetWidth + y] = (T)value[y * srcWidth + x]; + } + } + // clear unfilled right side + for (int y = 0; y < copyHeight; y++) + { + for (int x = srcWidth; x < targetWidth; x++) + { + target[y * targetWidth + x] = (T)0; + } + } + // clear unfilled bottom. + for (int y = srcHeight; y < targetHeight; y++) + { + for (int x = 0; x < targetWidth; x++) + { + target[y * targetWidth + x] = (T)0; + } + } +} + +bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type != GL_FLOAT_MAT2) + { + return false; + } + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8; + + for (int i = 0; i < count; i++) + { + transposeMatrix(target, value); + target += 8; + value += 4; + } + + return true; +} + +bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type != GL_FLOAT_MAT3) + { + return false; + } + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12; + + for (int i = 0; i < count; i++) + { + transposeMatrix(target, value); + target += 12; + value += 9; + } + + return true; +} + + +bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + if (targetUniform->type != GL_FLOAT_MAT4) + { + return false; + } + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16); + + for (int i = 0; i < count; i++) + { + transposeMatrix(target, value); + target += 16; + value += 16; + } + + return true; +} + +bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + + if (targetUniform->type == GL_INT || + targetUniform->type == GL_SAMPLER_2D || + targetUniform->type == GL_SAMPLER_CUBE) + { + GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = 0; + target[2] = 0; + target[3] = 0; + target += 4; + v += 1; + } + } + else if (targetUniform->type == GL_BOOL) + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; + boolParams[1] = GL_FALSE; + boolParams[2] = GL_FALSE; + boolParams[3] = GL_FALSE; + boolParams += 4; + v += 1; + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + + if (targetUniform->type == GL_INT_VEC2) + { + GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = v[1]; + target[2] = 0; + target[3] = 0; + target += 4; + v += 2; + } + } + else if (targetUniform->type == GL_BOOL_VEC2) + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; + boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE; + boolParams[2] = GL_FALSE; + boolParams[3] = GL_FALSE; + boolParams += 4; + v += 2; + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + + if (targetUniform->type == GL_INT_VEC3) + { + GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = v[1]; + target[2] = v[2]; + target[3] = 0; + target += 4; + v += 3; + } + } + else if (targetUniform->type == GL_BOOL_VEC3) + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; + boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE; + boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE; + boolParams[3] = GL_FALSE; + boolParams += 4; + v += 3; + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + targetUniform->dirty = true; + + int elementCount = targetUniform->elementCount(); + + if (elementCount == 1 && count > 1) + return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION + + count = std::min(elementCount - (int)mUniformIndex[location].element, count); + + if (targetUniform->type == GL_INT_VEC4) + { + GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + target[0] = v[0]; + target[1] = v[1]; + target[2] = v[2]; + target[3] = v[3]; + target += 4; + v += 4; + } + } + else if (targetUniform->type == GL_BOOL_VEC4) + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (int i = 0; i < count; i++) + { + boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; + boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE; + boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE; + boolParams[3] = (v[3] == 0) ? GL_FALSE : GL_TRUE; + boolParams += 4; + v += 4; + } + } + else + { + return false; + } + + return true; +} + +bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + + // sized queries -- ensure the provided buffer is large enough + if (bufSize) + { + int requiredBytes = UniformExternalSize(targetUniform->type); + if (*bufSize < requiredBytes) + { + return false; + } + } + + switch (targetUniform->type) + { + case GL_FLOAT_MAT2: + transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); + break; + case GL_FLOAT_MAT3: + transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); + break; + case GL_FLOAT_MAT4: + transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); + break; + default: + { + unsigned int size = UniformComponentCount(targetUniform->type); + + switch (UniformComponentType(targetUniform->type)) + { + case GL_BOOL: + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (unsigned int i = 0; i < size; i++) + { + params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; + } + } + break; + case GL_FLOAT: + memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLfloat), + size * sizeof(GLfloat)); + break; + case GL_INT: + { + GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (unsigned int i = 0; i < size; i++) + { + params[i] = (float)intParams[i]; + } + } + break; + default: UNREACHABLE(); + } + } + } + + return true; +} + +bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params) +{ + if (location < 0 || location >= (int)mUniformIndex.size()) + { + return false; + } + + Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; + + // sized queries -- ensure the provided buffer is large enough + if (bufSize) + { + int requiredBytes = UniformExternalSize(targetUniform->type); + if (*bufSize < requiredBytes) + { + return false; + } + } + + switch (targetUniform->type) + { + case GL_FLOAT_MAT2: + transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); + break; + case GL_FLOAT_MAT3: + transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); + break; + case GL_FLOAT_MAT4: + transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); + break; + default: + { + unsigned int size = VariableColumnCount(targetUniform->type); + + switch (UniformComponentType(targetUniform->type)) + { + case GL_BOOL: + { + GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; + + for (unsigned int i = 0; i < size; i++) + { + params[i] = boolParams[i]; + } + } + break; + case GL_FLOAT: + { + GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; + + for (unsigned int i = 0; i < size; i++) + { + params[i] = (GLint)floatParams[i]; + } + } + break; + case GL_INT: + memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLint), + size * sizeof(GLint)); + break; + default: UNREACHABLE(); + } + } + } + + return true; +} + +void ProgramBinary::dirtyAllUniforms() +{ + unsigned int numUniforms = mUniforms.size(); + for (unsigned int index = 0; index < numUniforms; index++) + { + mUniforms[index]->dirty = true; + } +} + +// Applies all the uniforms set for this program object to the renderer +void ProgramBinary::applyUniforms() +{ + // Retrieve sampler uniform values + for (std::vector::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub) + { + Uniform *targetUniform = *ub; + + if (targetUniform->dirty) + { + if (targetUniform->type == GL_SAMPLER_2D || + targetUniform->type == GL_SAMPLER_CUBE) + { + int count = targetUniform->elementCount(); + GLint (*v)[4] = (GLint(*)[4])targetUniform->data; + + if (targetUniform->psRegisterIndex >= 0) + { + unsigned int firstIndex = targetUniform->psRegisterIndex; + + for (int i = 0; i < count; i++) + { + unsigned int samplerIndex = firstIndex + i; + + if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) + { + ASSERT(mSamplersPS[samplerIndex].active); + mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0]; + } + } + } + + if (targetUniform->vsRegisterIndex >= 0) + { + unsigned int firstIndex = targetUniform->vsRegisterIndex; + + for (int i = 0; i < count; i++) + { + unsigned int samplerIndex = firstIndex + i; + + if (samplerIndex < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS) + { + ASSERT(mSamplersVS[samplerIndex].active); + mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0]; + } + } + } + } + } + } + + mRenderer->applyUniforms(this, &mUniforms); +} + +// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 +// Returns the number of used varying registers, or -1 if unsuccesful +int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader) +{ + const int maxVaryingVectors = mRenderer->getMaxVaryingVectors(); + + fragmentShader->resetVaryingsRegisterAssignment(); + + for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) + { + int n = VariableRowCount(varying->type) * varying->size; + int m = VariableColumnCount(varying->type); + bool success = false; + + if (m == 2 || m == 3 || m == 4) + { + for (int r = 0; r <= maxVaryingVectors - n && !success; r++) + { + bool available = true; + + for (int y = 0; y < n && available; y++) + { + for (int x = 0; x < m && available; x++) + { + if (packing[r + y][x]) + { + available = false; + } + } + } + + if (available) + { + varying->reg = r; + varying->col = 0; + + for (int y = 0; y < n; y++) + { + for (int x = 0; x < m; x++) + { + packing[r + y][x] = &*varying; + } + } + + success = true; + } + } + + if (!success && m == 2) + { + for (int r = maxVaryingVectors - n; r >= 0 && !success; r--) + { + bool available = true; + + for (int y = 0; y < n && available; y++) + { + for (int x = 2; x < 4 && available; x++) + { + if (packing[r + y][x]) + { + available = false; + } + } + } + + if (available) + { + varying->reg = r; + varying->col = 2; + + for (int y = 0; y < n; y++) + { + for (int x = 2; x < 4; x++) + { + packing[r + y][x] = &*varying; + } + } + + success = true; + } + } + } + } + else if (m == 1) + { + int space[4] = {0}; + + for (int y = 0; y < maxVaryingVectors; y++) + { + for (int x = 0; x < 4; x++) + { + space[x] += packing[y][x] ? 0 : 1; + } + } + + int column = 0; + + for (int x = 0; x < 4; x++) + { + if (space[x] >= n && space[x] < space[column]) + { + column = x; + } + } + + if (space[column] >= n) + { + for (int r = 0; r < maxVaryingVectors; r++) + { + if (!packing[r][column]) + { + varying->reg = r; + + for (int y = r; y < r + n; y++) + { + packing[y][column] = &*varying; + } + + break; + } + } + + varying->col = column; + + success = true; + } + } + else UNREACHABLE(); + + if (!success) + { + infoLog.append("Could not pack varying %s", varying->name.c_str()); + + return -1; + } + } + + // Return the number of used registers + int registers = 0; + + for (int r = 0; r < maxVaryingVectors; r++) + { + if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) + { + registers++; + } + } + + return registers; +} + +bool ProgramBinary::linkVaryings(InfoLog &infoLog, int registers, const Varying *packing[][4], + std::string& pixelHLSL, std::string& vertexHLSL, + FragmentShader *fragmentShader, VertexShader *vertexShader) +{ + if (pixelHLSL.empty() || vertexHLSL.empty()) + { + return false; + } + + bool usesMRT = fragmentShader->mUsesMultipleRenderTargets; + bool usesFragColor = fragmentShader->mUsesFragColor; + bool usesFragData = fragmentShader->mUsesFragData; + if (usesFragColor && usesFragData) + { + infoLog.append("Cannot use both gl_FragColor and gl_FragData in the same fragment shader."); + return false; + } + + // Write the HLSL input/output declarations + const int shaderModel = mRenderer->getMajorShaderModel(); + const int maxVaryingVectors = mRenderer->getMaxVaryingVectors(); + + const int registersNeeded = registers + (fragmentShader->mUsesFragCoord ? 1 : 0) + (fragmentShader->mUsesPointCoord ? 1 : 0); + + // The output color is broadcast to all enabled draw buffers when writing to gl_FragColor + const bool broadcast = fragmentShader->mUsesFragColor; + const unsigned int numRenderTargets = (broadcast || usesMRT ? mRenderer->getMaxRenderTargets() : 1); + + if (registersNeeded > maxVaryingVectors) + { + infoLog.append("No varying registers left to support gl_FragCoord/gl_PointCoord"); + + return false; + } + + vertexShader->resetVaryingsRegisterAssignment(); + + for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++) + { + bool matched = false; + + for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++) + { + if (output->name == input->name) + { + if (output->type != input->type || output->size != input->size) + { + infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str()); + + return false; + } + + output->reg = input->reg; + output->col = input->col; + + matched = true; + break; + } + } + + if (!matched) + { + infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str()); + + return false; + } + } + + mUsesPointSize = vertexShader->mUsesPointSize; + std::string varyingSemantic = (mUsesPointSize && shaderModel == 3) ? "COLOR" : "TEXCOORD"; + std::string targetSemantic = (shaderModel >= 4) ? "SV_Target" : "COLOR"; + std::string positionSemantic = (shaderModel >= 4) ? "SV_Position" : "POSITION"; + std::string depthSemantic = (shaderModel >= 4) ? "SV_Depth" : "DEPTH"; + + // special varyings that use reserved registers + int reservedRegisterIndex = registers; + std::string fragCoordSemantic; + std::string pointCoordSemantic; + + if (fragmentShader->mUsesFragCoord) + { + fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); + } + + if (fragmentShader->mUsesPointCoord) + { + // Shader model 3 uses a special TEXCOORD semantic for point sprite texcoords. + // In DX11 we compute this in the GS. + if (shaderModel == 3) + { + pointCoordSemantic = "TEXCOORD0"; + } + else if (shaderModel >= 4) + { + pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); + } + } + + vertexHLSL += "struct VS_INPUT\n" + "{\n"; + + int semanticIndex = 0; + for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) + { + switch (attribute->type) + { + case GL_FLOAT: vertexHLSL += " float "; break; + case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break; + case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break; + case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break; + case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break; + case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break; + case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break; + default: UNREACHABLE(); + } + + vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n"; + + semanticIndex += VariableRowCount(attribute->type); + } + + vertexHLSL += "};\n" + "\n" + "struct VS_OUTPUT\n" + "{\n"; + + if (shaderModel < 4) + { + vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n"; + } + + for (int r = 0; r < registers; r++) + { + int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); + + vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; + } + + if (fragmentShader->mUsesFragCoord) + { + vertexHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; + } + + if (vertexShader->mUsesPointSize && shaderModel >= 3) + { + vertexHLSL += " float gl_PointSize : PSIZE;\n"; + } + + if (shaderModel >= 4) + { + vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n"; + } + + vertexHLSL += "};\n" + "\n" + "VS_OUTPUT main(VS_INPUT input)\n" + "{\n"; + + for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) + { + vertexHLSL += " " + decorateAttribute(attribute->name) + " = "; + + if (VariableRowCount(attribute->type) > 1) // Matrix + { + vertexHLSL += "transpose"; + } + + vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n"; + } + + if (shaderModel >= 4) + { + vertexHLSL += "\n" + " gl_main();\n" + "\n" + " VS_OUTPUT output;\n" + " output.gl_Position.x = gl_Position.x;\n" + " output.gl_Position.y = -gl_Position.y;\n" + " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" + " output.gl_Position.w = gl_Position.w;\n"; + } + else + { + vertexHLSL += "\n" + " gl_main();\n" + "\n" + " VS_OUTPUT output;\n" + " output.gl_Position.x = gl_Position.x * dx_ViewAdjust.z + dx_ViewAdjust.x * gl_Position.w;\n" + " output.gl_Position.y = -(gl_Position.y * dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n" + " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" + " output.gl_Position.w = gl_Position.w;\n"; + } + + if (vertexShader->mUsesPointSize && shaderModel >= 3) + { + vertexHLSL += " output.gl_PointSize = gl_PointSize;\n"; + } + + if (fragmentShader->mUsesFragCoord) + { + vertexHLSL += " output.gl_FragCoord = gl_Position;\n"; + } + + for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++) + { + if (varying->reg >= 0) + { + for (int i = 0; i < varying->size; i++) + { + int rows = VariableRowCount(varying->type); + + for (int j = 0; j < rows; j++) + { + int r = varying->reg + i * rows + j; + vertexHLSL += " output.v" + str(r); + + bool sharedRegister = false; // Register used by multiple varyings + + for (int x = 0; x < 4; x++) + { + if (packing[r][x] && packing[r][x] != packing[r][0]) + { + sharedRegister = true; + break; + } + } + + if(sharedRegister) + { + vertexHLSL += "."; + + for (int x = 0; x < 4; x++) + { + if (packing[r][x] == &*varying) + { + switch(x) + { + case 0: vertexHLSL += "x"; break; + case 1: vertexHLSL += "y"; break; + case 2: vertexHLSL += "z"; break; + case 3: vertexHLSL += "w"; break; + } + } + } + } + + vertexHLSL += " = " + varying->name; + + if (varying->array) + { + vertexHLSL += "[" + str(i) + "]"; + } + + if (rows > 1) + { + vertexHLSL += "[" + str(j) + "]"; + } + + vertexHLSL += ";\n"; + } + } + } + } + + vertexHLSL += "\n" + " return output;\n" + "}\n"; + + pixelHLSL += "struct PS_INPUT\n" + "{\n"; + + for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) + { + if (varying->reg >= 0) + { + for (int i = 0; i < varying->size; i++) + { + int rows = VariableRowCount(varying->type); + for (int j = 0; j < rows; j++) + { + std::string n = str(varying->reg + i * rows + j); + pixelHLSL += " float" + str(VariableColumnCount(varying->type)) + " v" + n + " : " + varyingSemantic + n + ";\n"; + } + } + } + else UNREACHABLE(); + } + + if (fragmentShader->mUsesFragCoord) + { + pixelHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; + } + + if (fragmentShader->mUsesPointCoord && shaderModel >= 3) + { + pixelHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n"; + } + + // Must consume the PSIZE element if the geometry shader is not active + // We won't know if we use a GS until we draw + if (vertexShader->mUsesPointSize && shaderModel >= 4) + { + pixelHLSL += " float gl_PointSize : PSIZE;\n"; + } + + if (fragmentShader->mUsesFragCoord) + { + if (shaderModel >= 4) + { + pixelHLSL += " float4 dx_VPos : SV_Position;\n"; + } + else if (shaderModel >= 3) + { + pixelHLSL += " float2 dx_VPos : VPOS;\n"; + } + } + + pixelHLSL += "};\n" + "\n" + "struct PS_OUTPUT\n" + "{\n"; + + for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++) + { + pixelHLSL += " float4 gl_Color" + str(renderTargetIndex) + " : " + targetSemantic + str(renderTargetIndex) + ";\n"; + } + + if (fragmentShader->mUsesFragDepth) + { + pixelHLSL += " float gl_Depth : " + depthSemantic + ";\n"; + } + + pixelHLSL += "};\n" + "\n"; + + if (fragmentShader->mUsesFrontFacing) + { + if (shaderModel >= 4) + { + pixelHLSL += "PS_OUTPUT main(PS_INPUT input, bool isFrontFace : SV_IsFrontFace)\n" + "{\n"; + } + else + { + pixelHLSL += "PS_OUTPUT main(PS_INPUT input, float vFace : VFACE)\n" + "{\n"; + } + } + else + { + pixelHLSL += "PS_OUTPUT main(PS_INPUT input)\n" + "{\n"; + } + + if (fragmentShader->mUsesFragCoord) + { + pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; + + if (shaderModel >= 4) + { + pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x;\n" + " gl_FragCoord.y = input.dx_VPos.y;\n"; + } + else if (shaderModel >= 3) + { + pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n" + " gl_FragCoord.y = input.dx_VPos.y + 0.5;\n"; + } + else + { + // dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See Renderer::setViewport() + pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + dx_ViewCoords.z;\n" + " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + dx_ViewCoords.w;\n"; + } + + pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n" + " gl_FragCoord.w = rhw;\n"; + } + + if (fragmentShader->mUsesPointCoord && shaderModel >= 3) + { + pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n"; + pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n"; + } + + if (fragmentShader->mUsesFrontFacing) + { + if (shaderModel <= 3) + { + pixelHLSL += " gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n"; + } + else + { + pixelHLSL += " gl_FrontFacing = isFrontFace;\n"; + } + } + + for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) + { + if (varying->reg >= 0) + { + for (int i = 0; i < varying->size; i++) + { + int rows = VariableRowCount(varying->type); + for (int j = 0; j < rows; j++) + { + std::string n = str(varying->reg + i * rows + j); + pixelHLSL += " " + varying->name; + + if (varying->array) + { + pixelHLSL += "[" + str(i) + "]"; + } + + if (rows > 1) + { + pixelHLSL += "[" + str(j) + "]"; + } + + switch (VariableColumnCount(varying->type)) + { + case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break; + case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break; + case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break; + case 4: pixelHLSL += " = input.v" + n + ";\n"; break; + default: UNREACHABLE(); + } + } + } + } + else UNREACHABLE(); + } + + pixelHLSL += "\n" + " gl_main();\n" + "\n" + " PS_OUTPUT output;\n"; + + for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++) + { + unsigned int sourceColorIndex = broadcast ? 0 : renderTargetIndex; + + pixelHLSL += " output.gl_Color" + str(renderTargetIndex) + " = gl_Color[" + str(sourceColorIndex) + "];\n"; + } + + if (fragmentShader->mUsesFragDepth) + { + pixelHLSL += " output.gl_Depth = gl_Depth;\n"; + } + + pixelHLSL += "\n" + " return output;\n" + "}\n"; + + return true; +} + +bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length) +{ + BinaryInputStream stream(binary, length); + + int format = 0; + stream.read(&format); + if (format != GL_PROGRAM_BINARY_ANGLE) + { + infoLog.append("Invalid program binary format."); + return false; + } + + int version = 0; + stream.read(&version); + if (version != VERSION_DWORD) + { + infoLog.append("Invalid program binary version."); + return false; + } + + int compileFlags = 0; + stream.read(&compileFlags); + if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL) + { + infoLog.append("Mismatched compilation flags."); + return false; + } + + for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) + { + stream.read(&mLinkedAttribute[i].type); + std::string name; + stream.read(&name); + mLinkedAttribute[i].name = name; + stream.read(&mSemanticIndex[i]); + } + + for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i) + { + stream.read(&mSamplersPS[i].active); + stream.read(&mSamplersPS[i].logicalTextureUnit); + + int textureType; + stream.read(&textureType); + mSamplersPS[i].textureType = (TextureType) textureType; + } + + for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i) + { + stream.read(&mSamplersVS[i].active); + stream.read(&mSamplersVS[i].logicalTextureUnit); + + int textureType; + stream.read(&textureType); + mSamplersVS[i].textureType = (TextureType) textureType; + } + + stream.read(&mUsedVertexSamplerRange); + stream.read(&mUsedPixelSamplerRange); + stream.read(&mUsesPointSize); + + size_t size; + stream.read(&size); + if (stream.error()) + { + infoLog.append("Invalid program binary."); + return false; + } + + mUniforms.resize(size); + for (unsigned int i = 0; i < size; ++i) + { + GLenum type; + GLenum precision; + std::string name; + unsigned int arraySize; + + stream.read(&type); + stream.read(&precision); + stream.read(&name); + stream.read(&arraySize); + + mUniforms[i] = new Uniform(type, precision, name, arraySize); + + stream.read(&mUniforms[i]->psRegisterIndex); + stream.read(&mUniforms[i]->vsRegisterIndex); + stream.read(&mUniforms[i]->registerCount); + } + + stream.read(&size); + if (stream.error()) + { + infoLog.append("Invalid program binary."); + return false; + } + + mUniformIndex.resize(size); + for (unsigned int i = 0; i < size; ++i) + { + stream.read(&mUniformIndex[i].name); + stream.read(&mUniformIndex[i].element); + stream.read(&mUniformIndex[i].index); + } + + unsigned int pixelShaderSize; + stream.read(&pixelShaderSize); + + unsigned int vertexShaderSize; + stream.read(&vertexShaderSize); + + unsigned int geometryShaderSize; + stream.read(&geometryShaderSize); + + const char *ptr = (const char*) binary + stream.offset(); + + const GUID *binaryIdentifier = (const GUID *) ptr; + ptr += sizeof(GUID); + + GUID identifier = mRenderer->getAdapterIdentifier(); + if (memcmp(&identifier, binaryIdentifier, sizeof(GUID)) != 0) + { + infoLog.append("Invalid program binary."); + return false; + } + + const char *pixelShaderFunction = ptr; + ptr += pixelShaderSize; + + const char *vertexShaderFunction = ptr; + ptr += vertexShaderSize; + + const char *geometryShaderFunction = geometryShaderSize > 0 ? ptr : NULL; + ptr += geometryShaderSize; + + mPixelExecutable = mRenderer->loadExecutable(reinterpret_cast(pixelShaderFunction), + pixelShaderSize, rx::SHADER_PIXEL); + if (!mPixelExecutable) + { + infoLog.append("Could not create pixel shader."); + return false; + } + + mVertexExecutable = mRenderer->loadExecutable(reinterpret_cast(vertexShaderFunction), + vertexShaderSize, rx::SHADER_VERTEX); + if (!mVertexExecutable) + { + infoLog.append("Could not create vertex shader."); + delete mPixelExecutable; + mPixelExecutable = NULL; + return false; + } + + if (geometryShaderFunction != NULL && geometryShaderSize > 0) + { + mGeometryExecutable = mRenderer->loadExecutable(reinterpret_cast(geometryShaderFunction), + geometryShaderSize, rx::SHADER_GEOMETRY); + if (!mGeometryExecutable) + { + infoLog.append("Could not create geometry shader."); + delete mPixelExecutable; + mPixelExecutable = NULL; + delete mVertexExecutable; + mVertexExecutable = NULL; + return false; + } + } + else + { + mGeometryExecutable = NULL; + } + + return true; +} + +bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length) +{ + BinaryOutputStream stream; + + stream.write(GL_PROGRAM_BINARY_ANGLE); + stream.write(VERSION_DWORD); + stream.write(ANGLE_COMPILE_OPTIMIZATION_LEVEL); + + for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) + { + stream.write(mLinkedAttribute[i].type); + stream.write(mLinkedAttribute[i].name); + stream.write(mSemanticIndex[i]); + } + + for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i) + { + stream.write(mSamplersPS[i].active); + stream.write(mSamplersPS[i].logicalTextureUnit); + stream.write((int) mSamplersPS[i].textureType); + } + + for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i) + { + stream.write(mSamplersVS[i].active); + stream.write(mSamplersVS[i].logicalTextureUnit); + stream.write((int) mSamplersVS[i].textureType); + } + + stream.write(mUsedVertexSamplerRange); + stream.write(mUsedPixelSamplerRange); + stream.write(mUsesPointSize); + + stream.write(mUniforms.size()); + for (unsigned int i = 0; i < mUniforms.size(); ++i) + { + stream.write(mUniforms[i]->type); + stream.write(mUniforms[i]->precision); + stream.write(mUniforms[i]->name); + stream.write(mUniforms[i]->arraySize); + + stream.write(mUniforms[i]->psRegisterIndex); + stream.write(mUniforms[i]->vsRegisterIndex); + stream.write(mUniforms[i]->registerCount); + } + + stream.write(mUniformIndex.size()); + for (unsigned int i = 0; i < mUniformIndex.size(); ++i) + { + stream.write(mUniformIndex[i].name); + stream.write(mUniformIndex[i].element); + stream.write(mUniformIndex[i].index); + } + + UINT pixelShaderSize = mPixelExecutable->getLength(); + stream.write(pixelShaderSize); + + UINT vertexShaderSize = mVertexExecutable->getLength(); + stream.write(vertexShaderSize); + + UINT geometryShaderSize = (mGeometryExecutable != NULL) ? mGeometryExecutable->getLength() : 0; + stream.write(geometryShaderSize); + + GUID identifier = mRenderer->getAdapterIdentifier(); + + GLsizei streamLength = stream.length(); + const void *streamData = stream.data(); + + GLsizei totalLength = streamLength + sizeof(GUID) + pixelShaderSize + vertexShaderSize + geometryShaderSize; + if (totalLength > bufSize) + { + if (length) + { + *length = 0; + } + + return false; + } + + if (binary) + { + char *ptr = (char*) binary; + + memcpy(ptr, streamData, streamLength); + ptr += streamLength; + + memcpy(ptr, &identifier, sizeof(GUID)); + ptr += sizeof(GUID); + + memcpy(ptr, mPixelExecutable->getFunction(), pixelShaderSize); + ptr += pixelShaderSize; + + memcpy(ptr, mVertexExecutable->getFunction(), vertexShaderSize); + ptr += vertexShaderSize; + + if (mGeometryExecutable != NULL && geometryShaderSize > 0) + { + memcpy(ptr, mGeometryExecutable->getFunction(), geometryShaderSize); + ptr += geometryShaderSize; + } + + ASSERT(ptr - totalLength == binary); + } + + if (length) + { + *length = totalLength; + } + + return true; +} + +GLint ProgramBinary::getLength() +{ + GLint length; + if (save(NULL, INT_MAX, &length)) + { + return length; + } + else + { + return 0; + } +} + +bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) +{ + if (!fragmentShader || !fragmentShader->isCompiled()) + { + return false; + } + + if (!vertexShader || !vertexShader->isCompiled()) + { + return false; + } + + std::string pixelHLSL = fragmentShader->getHLSL(); + std::string vertexHLSL = vertexShader->getHLSL(); + + // Map the varyings to the register file + const Varying *packing[IMPLEMENTATION_MAX_VARYING_VECTORS][4] = {NULL}; + int registers = packVaryings(infoLog, packing, fragmentShader); + + if (registers < 0) + { + return false; + } + + if (!linkVaryings(infoLog, registers, packing, pixelHLSL, vertexHLSL, fragmentShader, vertexShader)) + { + return false; + } + + bool success = true; + + if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader)) + { + success = false; + } + + if (!linkUniforms(infoLog, vertexShader->getUniforms(), fragmentShader->getUniforms())) + { + success = false; + } + + // special case for gl_DepthRange, the only built-in uniform (also a struct) + if (vertexShader->mUsesDepthRange || fragmentShader->mUsesDepthRange) + { + mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.near", 0)); + mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.far", 0)); + mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.diff", 0)); + } + + if (success) + { + mVertexExecutable = mRenderer->compileToExecutable(infoLog, vertexHLSL.c_str(), rx::SHADER_VERTEX); + mPixelExecutable = mRenderer->compileToExecutable(infoLog, pixelHLSL.c_str(), rx::SHADER_PIXEL); + + if (usesGeometryShader()) + { + std::string geometryHLSL = generateGeometryShaderHLSL(registers, packing, fragmentShader, vertexShader); + mGeometryExecutable = mRenderer->compileToExecutable(infoLog, geometryHLSL.c_str(), rx::SHADER_GEOMETRY); + } + + if (!mVertexExecutable || !mPixelExecutable || (usesGeometryShader() && !mGeometryExecutable)) + { + infoLog.append("Failed to create D3D shaders."); + success = false; + + delete mVertexExecutable; + mVertexExecutable = NULL; + delete mPixelExecutable; + mPixelExecutable = NULL; + delete mGeometryExecutable; + mGeometryExecutable = NULL; + } + } + + return success; +} + +// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices +bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) +{ + unsigned int usedLocations = 0; + + // Link attributes that have a binding location + for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) + { + int location = attributeBindings.getAttributeBinding(attribute->name); + + if (location != -1) // Set by glBindAttribLocation + { + if (!mLinkedAttribute[location].name.empty()) + { + // Multiple active attributes bound to the same location; not an error + } + + mLinkedAttribute[location] = *attribute; + + int rows = VariableRowCount(attribute->type); + + if (rows + location > MAX_VERTEX_ATTRIBS) + { + infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location); + + return false; + } + + for (int i = 0; i < rows; i++) + { + usedLocations |= 1 << (location + i); + } + } + } + + // Link attributes that don't have a binding location + for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) + { + int location = attributeBindings.getAttributeBinding(attribute->name); + + if (location == -1) // Not set by glBindAttribLocation + { + int rows = VariableRowCount(attribute->type); + int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); + + if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) + { + infoLog.append("Too many active attributes (%s)", attribute->name.c_str()); + + return false; // Fail to link + } + + mLinkedAttribute[availableIndex] = *attribute; + } + } + + for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) + { + int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name); + int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1); + + for (int r = 0; r < rows; r++) + { + mSemanticIndex[attributeIndex++] = index++; + } + } + + return true; +} + +bool ProgramBinary::linkUniforms(InfoLog &infoLog, const sh::ActiveUniforms &vertexUniforms, const sh::ActiveUniforms &fragmentUniforms) +{ + for (sh::ActiveUniforms::const_iterator uniform = vertexUniforms.begin(); uniform != vertexUniforms.end(); uniform++) + { + if (!defineUniform(GL_VERTEX_SHADER, *uniform, infoLog)) + { + return false; + } + } + + for (sh::ActiveUniforms::const_iterator uniform = fragmentUniforms.begin(); uniform != fragmentUniforms.end(); uniform++) + { + if (!defineUniform(GL_FRAGMENT_SHADER, *uniform, infoLog)) + { + return false; + } + } + + return true; +} + +bool ProgramBinary::defineUniform(GLenum shader, const sh::Uniform &constant, InfoLog &infoLog) +{ + if (constant.type == GL_SAMPLER_2D || + constant.type == GL_SAMPLER_CUBE) + { + unsigned int samplerIndex = constant.registerIndex; + + do + { + if (shader == GL_VERTEX_SHADER) + { + if (samplerIndex < mRenderer->getMaxVertexTextureImageUnits()) + { + mSamplersVS[samplerIndex].active = true; + mSamplersVS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D; + mSamplersVS[samplerIndex].logicalTextureUnit = 0; + mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange); + } + else + { + infoLog.append("Vertex shader sampler count exceeds the maximum vertex texture units (%d).", mRenderer->getMaxVertexTextureImageUnits()); + return false; + } + } + else if (shader == GL_FRAGMENT_SHADER) + { + if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) + { + mSamplersPS[samplerIndex].active = true; + mSamplersPS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D; + mSamplersPS[samplerIndex].logicalTextureUnit = 0; + mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange); + } + else + { + infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS); + return false; + } + } + else UNREACHABLE(); + + samplerIndex++; + } + while (samplerIndex < constant.registerIndex + constant.arraySize); + } + + Uniform *uniform = NULL; + GLint location = getUniformLocation(constant.name); + + if (location >= 0) // Previously defined, type and precision must match + { + uniform = mUniforms[mUniformIndex[location].index]; + + if (uniform->type != constant.type) + { + infoLog.append("Types for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str()); + return false; + } + + if (uniform->precision != constant.precision) + { + infoLog.append("Precisions for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str()); + return false; + } + } + else + { + uniform = new Uniform(constant.type, constant.precision, constant.name, constant.arraySize); + } + + if (!uniform) + { + return false; + } + + if (shader == GL_FRAGMENT_SHADER) + { + uniform->psRegisterIndex = constant.registerIndex; + } + else if (shader == GL_VERTEX_SHADER) + { + uniform->vsRegisterIndex = constant.registerIndex; + } + else UNREACHABLE(); + + if (location >= 0) + { + return uniform->type == constant.type; + } + + mUniforms.push_back(uniform); + unsigned int uniformIndex = mUniforms.size() - 1; + + for (unsigned int i = 0; i < uniform->elementCount(); i++) + { + mUniformIndex.push_back(UniformLocation(constant.name, i, uniformIndex)); + } + + if (shader == GL_VERTEX_SHADER) + { + if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedVertexUniformVectors() + mRenderer->getMaxVertexUniformVectors()) + { + infoLog.append("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%u)", mRenderer->getMaxVertexUniformVectors()); + return false; + } + } + else if (shader == GL_FRAGMENT_SHADER) + { + if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedFragmentUniformVectors() + mRenderer->getMaxFragmentUniformVectors()) + { + infoLog.append("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%u)", mRenderer->getMaxFragmentUniformVectors()); + return false; + } + } + else UNREACHABLE(); + + return true; +} + +std::string ProgramBinary::generateGeometryShaderHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const +{ + // for now we only handle point sprite emulation + ASSERT(usesPointSpriteEmulation()); + return generatePointSpriteHLSL(registers, packing, fragmentShader, vertexShader); +} + +std::string ProgramBinary::generatePointSpriteHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const +{ + ASSERT(registers >= 0); + ASSERT(vertexShader->mUsesPointSize); + ASSERT(mRenderer->getMajorShaderModel() >= 4); + + std::string geomHLSL; + + std::string varyingSemantic = "TEXCOORD"; + + std::string fragCoordSemantic; + std::string pointCoordSemantic; + + int reservedRegisterIndex = registers; + + if (fragmentShader->mUsesFragCoord) + { + fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); + } + + if (fragmentShader->mUsesPointCoord) + { + pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); + } + + geomHLSL += "uniform float4 dx_ViewCoords : register(c1);\n" + "\n" + "struct GS_INPUT\n" + "{\n"; + + for (int r = 0; r < registers; r++) + { + int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); + + geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; + } + + if (fragmentShader->mUsesFragCoord) + { + geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; + } + + geomHLSL += " float gl_PointSize : PSIZE;\n" + " float4 gl_Position : SV_Position;\n" + "};\n" + "\n" + "struct GS_OUTPUT\n" + "{\n"; + + for (int r = 0; r < registers; r++) + { + int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); + + geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; + } + + if (fragmentShader->mUsesFragCoord) + { + geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; + } + + if (fragmentShader->mUsesPointCoord) + { + geomHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n"; + } + + geomHLSL += " float gl_PointSize : PSIZE;\n" + " float4 gl_Position : SV_Position;\n" + "};\n" + "\n" + "static float2 pointSpriteCorners[] = \n" + "{\n" + " float2( 0.5f, -0.5f),\n" + " float2( 0.5f, 0.5f),\n" + " float2(-0.5f, -0.5f),\n" + " float2(-0.5f, 0.5f)\n" + "};\n" + "\n" + "static float2 pointSpriteTexcoords[] = \n" + "{\n" + " float2(1.0f, 1.0f),\n" + " float2(1.0f, 0.0f),\n" + " float2(0.0f, 1.0f),\n" + " float2(0.0f, 0.0f)\n" + "};\n" + "\n" + "static float minPointSize = " + str(ALIASED_POINT_SIZE_RANGE_MIN) + ".0f;\n" + "static float maxPointSize = " + str(mRenderer->getMaxPointSize()) + ".0f;\n" + "\n" + "[maxvertexcount(4)]\n" + "void main(point GS_INPUT input[1], inout TriangleStream outStream)\n" + "{\n" + " GS_OUTPUT output = (GS_OUTPUT)0;\n" + " output.gl_PointSize = input[0].gl_PointSize;\n"; + + for (int r = 0; r < registers; r++) + { + geomHLSL += " output.v" + str(r) + " = input[0].v" + str(r) + ";\n"; + } + + if (fragmentShader->mUsesFragCoord) + { + geomHLSL += " output.gl_FragCoord = input[0].gl_FragCoord;\n"; + } + + geomHLSL += " \n" + " float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, maxPointSize);\n" + " float4 gl_Position = input[0].gl_Position;\n" + " float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / dx_ViewCoords.y) * gl_Position.w;\n"; + + for (int corner = 0; corner < 4; corner++) + { + geomHLSL += " \n" + " output.gl_Position = gl_Position + float4(pointSpriteCorners[" + str(corner) + "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n"; + + if (fragmentShader->mUsesPointCoord) + { + geomHLSL += " output.gl_PointCoord = pointSpriteTexcoords[" + str(corner) + "];\n"; + } + + geomHLSL += " outStream.Append(output);\n"; + } + + geomHLSL += " \n" + " outStream.RestartStrip();\n" + "}\n"; + + return geomHLSL; +} + +// This method needs to match OutputHLSL::decorate +std::string ProgramBinary::decorateAttribute(const std::string &name) +{ + if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0) + { + return "_" + name; + } + + return name; +} + +bool ProgramBinary::isValidated() const +{ + return mValidated; +} + +void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const +{ + // Skip over inactive attributes + unsigned int activeAttribute = 0; + unsigned int attribute; + for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) + { + if (mLinkedAttribute[attribute].name.empty()) + { + continue; + } + + if (activeAttribute == index) + { + break; + } + + activeAttribute++; + } + + if (bufsize > 0) + { + const char *string = mLinkedAttribute[attribute].name.c_str(); + + strncpy(name, string, bufsize); + name[bufsize - 1] = '\0'; + + if (length) + { + *length = strlen(name); + } + } + + *size = 1; // Always a single 'type' instance + + *type = mLinkedAttribute[attribute].type; +} + +GLint ProgramBinary::getActiveAttributeCount() const +{ + int count = 0; + + for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) + { + if (!mLinkedAttribute[attributeIndex].name.empty()) + { + count++; + } + } + + return count; +} + +GLint ProgramBinary::getActiveAttributeMaxLength() const +{ + int maxLength = 0; + + for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) + { + if (!mLinkedAttribute[attributeIndex].name.empty()) + { + maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); + } + } + + return maxLength; +} + +void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const +{ + ASSERT(index < mUniforms.size()); // index must be smaller than getActiveUniformCount() + + if (bufsize > 0) + { + std::string string = mUniforms[index]->name; + + if (mUniforms[index]->isArray()) + { + string += "[0]"; + } + + strncpy(name, string.c_str(), bufsize); + name[bufsize - 1] = '\0'; + + if (length) + { + *length = strlen(name); + } + } + + *size = mUniforms[index]->elementCount(); + + *type = mUniforms[index]->type; +} + +GLint ProgramBinary::getActiveUniformCount() const +{ + return mUniforms.size(); +} + +GLint ProgramBinary::getActiveUniformMaxLength() const +{ + int maxLength = 0; + + unsigned int numUniforms = mUniforms.size(); + for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) + { + if (!mUniforms[uniformIndex]->name.empty()) + { + int length = (int)(mUniforms[uniformIndex]->name.length() + 1); + if (mUniforms[uniformIndex]->isArray()) + { + length += 3; // Counting in "[0]". + } + maxLength = std::max(length, maxLength); + } + } + + return maxLength; +} + +void ProgramBinary::validate(InfoLog &infoLog) +{ + applyUniforms(); + if (!validateSamplers(&infoLog)) + { + mValidated = false; + } + else + { + mValidated = true; + } +} + +bool ProgramBinary::validateSamplers(InfoLog *infoLog) +{ + // if any two active samplers in a program are of different types, but refer to the same + // texture image unit, and this is the current program, then ValidateProgram will fail, and + // DrawArrays and DrawElements will issue the INVALID_OPERATION error. + + const unsigned int maxCombinedTextureImageUnits = mRenderer->getMaxCombinedTextureImageUnits(); + TextureType textureUnitType[IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS]; + + for (unsigned int i = 0; i < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i) + { + textureUnitType[i] = TEXTURE_UNKNOWN; + } + + for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i) + { + if (mSamplersPS[i].active) + { + unsigned int unit = mSamplersPS[i].logicalTextureUnit; + + if (unit >= maxCombinedTextureImageUnits) + { + if (infoLog) + { + infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); + } + + return false; + } + + if (textureUnitType[unit] != TEXTURE_UNKNOWN) + { + if (mSamplersPS[i].textureType != textureUnitType[unit]) + { + if (infoLog) + { + infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); + } + + return false; + } + } + else + { + textureUnitType[unit] = mSamplersPS[i].textureType; + } + } + } + + for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i) + { + if (mSamplersVS[i].active) + { + unsigned int unit = mSamplersVS[i].logicalTextureUnit; + + if (unit >= maxCombinedTextureImageUnits) + { + if (infoLog) + { + infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); + } + + return false; + } + + if (textureUnitType[unit] != TEXTURE_UNKNOWN) + { + if (mSamplersVS[i].textureType != textureUnitType[unit]) + { + if (infoLog) + { + infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); + } + + return false; + } + } + else + { + textureUnitType[unit] = mSamplersVS[i].textureType; + } + } + } + + return true; +} + +ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D) +{ +} + +struct AttributeSorter +{ + AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS]) + : originalIndices(semanticIndices) + { + for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) + { + indices[i] = i; + } + + std::sort(&indices[0], &indices[MAX_VERTEX_ATTRIBS], *this); + } + + bool operator()(int a, int b) + { + return originalIndices[a] == -1 ? false : originalIndices[a] < originalIndices[b]; + } + + int indices[MAX_VERTEX_ATTRIBS]; + const int (&originalIndices)[MAX_VERTEX_ATTRIBS]; +}; + +void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const +{ + AttributeSorter sorter(mSemanticIndex); + + int oldIndices[MAX_VERTEX_ATTRIBS]; + rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS]; + + for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) + { + oldIndices[i] = mSemanticIndex[i]; + oldTranslatedAttributes[i] = attributes[i]; + } + + for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) + { + int oldIndex = sorter.indices[i]; + sortedSemanticIndices[i] = oldIndices[oldIndex]; + attributes[i] = oldTranslatedAttributes[oldIndex]; + } +} + +}