diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/include/core/SkFloatingPoint.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/include/core/SkFloatingPoint.h Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,140 @@ + +/* + * Copyright 2006 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#ifndef SkFloatingPoint_DEFINED +#define SkFloatingPoint_DEFINED + +#include "SkTypes.h" + +#include +#include +#include "SkFloatBits.h" + +// C++98 cmath std::pow seems to be the earliest portable way to get float pow. +// However, on Linux including cmath undefines isfinite. +// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 +static inline float sk_float_pow(float base, float exp) { + return powf(base, exp); +} + +static inline float sk_float_copysign(float x, float y) { + int32_t xbits = SkFloat2Bits(x); + int32_t ybits = SkFloat2Bits(y); + return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000)); +} + +#ifdef SK_BUILD_FOR_WINCE + #define sk_float_sqrt(x) (float)::sqrt(x) + #define sk_float_sin(x) (float)::sin(x) + #define sk_float_cos(x) (float)::cos(x) + #define sk_float_tan(x) (float)::tan(x) + #define sk_float_acos(x) (float)::acos(x) + #define sk_float_asin(x) (float)::asin(x) + #define sk_float_atan2(y,x) (float)::atan2(y,x) + #define sk_float_abs(x) (float)::fabs(x) + #define sk_float_mod(x,y) (float)::fmod(x,y) + #define sk_float_exp(x) (float)::exp(x) + #define sk_float_log(x) (float)::log(x) + #define sk_float_floor(x) (float)::floor(x) + #define sk_float_ceil(x) (float)::ceil(x) +#else + #define sk_float_sqrt(x) sqrtf(x) + #define sk_float_sin(x) sinf(x) + #define sk_float_cos(x) cosf(x) + #define sk_float_tan(x) tanf(x) + #define sk_float_floor(x) floorf(x) + #define sk_float_ceil(x) ceilf(x) +#ifdef SK_BUILD_FOR_MAC + #define sk_float_acos(x) static_cast(acos(x)) + #define sk_float_asin(x) static_cast(asin(x)) +#else + #define sk_float_acos(x) acosf(x) + #define sk_float_asin(x) asinf(x) +#endif + #define sk_float_atan2(y,x) atan2f(y,x) + #define sk_float_abs(x) fabsf(x) + #define sk_float_mod(x,y) fmodf(x,y) + #define sk_float_exp(x) expf(x) + #define sk_float_log(x) logf(x) +#endif + +#ifdef SK_BUILD_FOR_WIN + #define sk_float_isfinite(x) _finite(x) + #define sk_float_isnan(x) _isnan(x) + static inline int sk_float_isinf(float x) { + int32_t bits = SkFloat2Bits(x); + return (bits << 1) == (0xFF << 24); + } +#else + #define sk_float_isfinite(x) isfinite(x) + #define sk_float_isnan(x) isnan(x) + #define sk_float_isinf(x) isinf(x) +#endif + +#define sk_double_isnan(a) sk_float_isnan(a) + +#ifdef SK_USE_FLOATBITS + #define sk_float_floor2int(x) SkFloatToIntFloor(x) + #define sk_float_round2int(x) SkFloatToIntRound(x) + #define sk_float_ceil2int(x) SkFloatToIntCeil(x) +#else + #define sk_float_floor2int(x) (int)sk_float_floor(x) + #define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f) + #define sk_float_ceil2int(x) (int)sk_float_ceil(x) +#endif + +extern const uint32_t gIEEENotANumber; +extern const uint32_t gIEEEInfinity; +extern const uint32_t gIEEENegativeInfinity; + +#define SK_FloatNaN (*SkTCast(&gIEEENotANumber)) +#define SK_FloatInfinity (*SkTCast(&gIEEEInfinity)) +#define SK_FloatNegativeInfinity (*SkTCast(&gIEEENegativeInfinity)) + +#if defined(__SSE__) +#include +#elif defined(__ARM_NEON__) +#include +#endif + +// Fast, approximate inverse square root. +// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. +static inline float sk_float_rsqrt(const float x) { +// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got +// it at compile time. This is going to be too fast to productively hide behind a function pointer. +// +// We do one step of Newton's method to refine the estimates in the NEON and null paths. No +// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. +#if defined(__SSE__) + float result; + _mm_store_ss(&result, _mm_rsqrt_ss(_mm_set_ss(x))); + return result; +#elif defined(__ARM_NEON__) + // Get initial estimate. + const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. + float32x2_t estimate = vrsqrte_f32(xx); + + // One step of Newton's method to refine. + const float32x2_t estimate_sq = vmul_f32(estimate, estimate); + estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); + return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. +#else + // Get initial estimate. + int i = *SkTCast(&x); + i = 0x5f3759df - (i>>1); + float estimate = *SkTCast(&i); + + // One step of Newton's method to refine. + const float estimate_sq = estimate*estimate; + estimate *= (1.5f-0.5f*x*estimate_sq); + return estimate; +#endif +} + +#endif