diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/include/core/SkRect.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/include/core/SkRect.h Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,792 @@ + +/* + * Copyright 2006 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#ifndef SkRect_DEFINED +#define SkRect_DEFINED + +#include "SkPoint.h" +#include "SkSize.h" + +/** \struct SkIRect + + SkIRect holds four 32 bit integer coordinates for a rectangle +*/ +struct SK_API SkIRect { + int32_t fLeft, fTop, fRight, fBottom; + + static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() { + SkIRect r; + r.setEmpty(); + return r; + } + + static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() { + SkIRect r; + r.setLargest(); + return r; + } + + static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) { + SkIRect r; + r.set(0, 0, w, h); + return r; + } + + static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) { + SkIRect r; + r.set(0, 0, size.width(), size.height()); + return r; + } + + static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) { + SkIRect rect; + rect.set(l, t, r, b); + return rect; + } + + static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) { + SkIRect r; + r.set(x, y, x + w, y + h); + return r; + } + + int left() const { return fLeft; } + int top() const { return fTop; } + int right() const { return fRight; } + int bottom() const { return fBottom; } + + /** return the left edge of the rect */ + int x() const { return fLeft; } + /** return the top edge of the rect */ + int y() const { return fTop; } + /** + * Returns the rectangle's width. This does not check for a valid rect + * (i.e. left <= right) so the result may be negative. + */ + int width() const { return fRight - fLeft; } + + /** + * Returns the rectangle's height. This does not check for a valid rect + * (i.e. top <= bottom) so the result may be negative. + */ + int height() const { return fBottom - fTop; } + + /** + * Since the center of an integer rect may fall on a factional value, this + * method is defined to return (right + left) >> 1. + * + * This is a specific "truncation" of the average, which is different than + * (right + left) / 2 when the sum is negative. + */ + int centerX() const { return (fRight + fLeft) >> 1; } + + /** + * Since the center of an integer rect may fall on a factional value, this + * method is defined to return (bottom + top) >> 1 + * + * This is a specific "truncation" of the average, which is different than + * (bottom + top) / 2 when the sum is negative. + */ + int centerY() const { return (fBottom + fTop) >> 1; } + + /** + * Return true if the rectangle's width or height are <= 0 + */ + bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } + + bool isLargest() const { return SK_MinS32 == fLeft && + SK_MinS32 == fTop && + SK_MaxS32 == fRight && + SK_MaxS32 == fBottom; } + + friend bool operator==(const SkIRect& a, const SkIRect& b) { + return !memcmp(&a, &b, sizeof(a)); + } + + friend bool operator!=(const SkIRect& a, const SkIRect& b) { + return !(a == b); + } + + bool is16Bit() const { + return SkIsS16(fLeft) && SkIsS16(fTop) && + SkIsS16(fRight) && SkIsS16(fBottom); + } + + /** Set the rectangle to (0,0,0,0) + */ + void setEmpty() { memset(this, 0, sizeof(*this)); } + + void set(int32_t left, int32_t top, int32_t right, int32_t bottom) { + fLeft = left; + fTop = top; + fRight = right; + fBottom = bottom; + } + // alias for set(l, t, r, b) + void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) { + this->set(left, top, right, bottom); + } + + void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) { + fLeft = x; + fTop = y; + fRight = x + width; + fBottom = y + height; + } + + /** + * Make the largest representable rectangle + */ + void setLargest() { + fLeft = fTop = SK_MinS32; + fRight = fBottom = SK_MaxS32; + } + + /** + * Make the largest representable rectangle, but inverted (e.g. fLeft will + * be max 32bit and right will be min 32bit). + */ + void setLargestInverted() { + fLeft = fTop = SK_MaxS32; + fRight = fBottom = SK_MinS32; + } + + /** Offset set the rectangle by adding dx to its left and right, + and adding dy to its top and bottom. + */ + void offset(int32_t dx, int32_t dy) { + fLeft += dx; + fTop += dy; + fRight += dx; + fBottom += dy; + } + + void offset(const SkIPoint& delta) { + this->offset(delta.fX, delta.fY); + } + + /** + * Offset this rect such its new x() and y() will equal newX and newY. + */ + void offsetTo(int32_t newX, int32_t newY) { + fRight += newX - fLeft; + fBottom += newY - fTop; + fLeft = newX; + fTop = newY; + } + + /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards, + making the rectangle narrower. If dx is negative, then the sides are moved outwards, + making the rectangle wider. The same holds true for dy and the top and bottom. + */ + void inset(int32_t dx, int32_t dy) { + fLeft += dx; + fTop += dy; + fRight -= dx; + fBottom -= dy; + } + + /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are + moved outwards, making the rectangle wider. If dx is negative, then the + sides are moved inwards, making the rectangle narrower. The same holds + true for dy and the top and bottom. + */ + void outset(int32_t dx, int32_t dy) { this->inset(-dx, -dy); } + + bool quickReject(int l, int t, int r, int b) const { + return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b; + } + + /** Returns true if (x,y) is inside the rectangle and the rectangle is not + empty. The left and top are considered to be inside, while the right + and bottom are not. Thus for the rectangle (0, 0, 5, 10), the + points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not. + */ + bool contains(int32_t x, int32_t y) const { + return (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) && + (unsigned)(y - fTop) < (unsigned)(fBottom - fTop); + } + + /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle. + If either rectangle is empty, contains() returns false. + */ + bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const { + return left < right && top < bottom && !this->isEmpty() && // check for empties + fLeft <= left && fTop <= top && + fRight >= right && fBottom >= bottom; + } + + /** Returns true if the specified rectangle r is inside or equal to this rectangle. + */ + bool contains(const SkIRect& r) const { + return !r.isEmpty() && !this->isEmpty() && // check for empties + fLeft <= r.fLeft && fTop <= r.fTop && + fRight >= r.fRight && fBottom >= r.fBottom; + } + + /** Return true if this rectangle contains the specified rectangle. + For speed, this method does not check if either this or the specified + rectangles are empty, and if either is, its return value is undefined. + In the debugging build however, we assert that both this and the + specified rectangles are non-empty. + */ + bool containsNoEmptyCheck(int32_t left, int32_t top, + int32_t right, int32_t bottom) const { + SkASSERT(fLeft < fRight && fTop < fBottom); + SkASSERT(left < right && top < bottom); + + return fLeft <= left && fTop <= top && + fRight >= right && fBottom >= bottom; + } + + bool containsNoEmptyCheck(const SkIRect& r) const { + return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom); + } + + /** If r intersects this rectangle, return true and set this rectangle to that + intersection, otherwise return false and do not change this rectangle. + If either rectangle is empty, do nothing and return false. + */ + bool intersect(const SkIRect& r) { + SkASSERT(&r); + return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom); + } + + /** If rectangles a and b intersect, return true and set this rectangle to + that intersection, otherwise return false and do not change this + rectangle. If either rectangle is empty, do nothing and return false. + */ + bool intersect(const SkIRect& a, const SkIRect& b) { + SkASSERT(&a && &b); + + if (!a.isEmpty() && !b.isEmpty() && + a.fLeft < b.fRight && b.fLeft < a.fRight && + a.fTop < b.fBottom && b.fTop < a.fBottom) { + fLeft = SkMax32(a.fLeft, b.fLeft); + fTop = SkMax32(a.fTop, b.fTop); + fRight = SkMin32(a.fRight, b.fRight); + fBottom = SkMin32(a.fBottom, b.fBottom); + return true; + } + return false; + } + + /** If rectangles a and b intersect, return true and set this rectangle to + that intersection, otherwise return false and do not change this + rectangle. For speed, no check to see if a or b are empty is performed. + If either is, then the return result is undefined. In the debug build, + we assert that both rectangles are non-empty. + */ + bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) { + SkASSERT(&a && &b); + SkASSERT(!a.isEmpty() && !b.isEmpty()); + + if (a.fLeft < b.fRight && b.fLeft < a.fRight && + a.fTop < b.fBottom && b.fTop < a.fBottom) { + fLeft = SkMax32(a.fLeft, b.fLeft); + fTop = SkMax32(a.fTop, b.fTop); + fRight = SkMin32(a.fRight, b.fRight); + fBottom = SkMin32(a.fBottom, b.fBottom); + return true; + } + return false; + } + + /** If the rectangle specified by left,top,right,bottom intersects this rectangle, + return true and set this rectangle to that intersection, + otherwise return false and do not change this rectangle. + If either rectangle is empty, do nothing and return false. + */ + bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) { + if (left < right && top < bottom && !this->isEmpty() && + fLeft < right && left < fRight && fTop < bottom && top < fBottom) { + if (fLeft < left) fLeft = left; + if (fTop < top) fTop = top; + if (fRight > right) fRight = right; + if (fBottom > bottom) fBottom = bottom; + return true; + } + return false; + } + + /** Returns true if a and b are not empty, and they intersect + */ + static bool Intersects(const SkIRect& a, const SkIRect& b) { + return !a.isEmpty() && !b.isEmpty() && // check for empties + a.fLeft < b.fRight && b.fLeft < a.fRight && + a.fTop < b.fBottom && b.fTop < a.fBottom; + } + + /** + * Returns true if a and b intersect. debug-asserts that neither are empty. + */ + static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) { + SkASSERT(!a.isEmpty()); + SkASSERT(!b.isEmpty()); + return a.fLeft < b.fRight && b.fLeft < a.fRight && + a.fTop < b.fBottom && b.fTop < a.fBottom; + } + + /** Update this rectangle to enclose itself and the specified rectangle. + If this rectangle is empty, just set it to the specified rectangle. If the specified + rectangle is empty, do nothing. + */ + void join(int32_t left, int32_t top, int32_t right, int32_t bottom); + + /** Update this rectangle to enclose itself and the specified rectangle. + If this rectangle is empty, just set it to the specified rectangle. If the specified + rectangle is empty, do nothing. + */ + void join(const SkIRect& r) { + this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); + } + + /** Swap top/bottom or left/right if there are flipped. + This can be called if the edges are computed separately, + and may have crossed over each other. + When this returns, left <= right && top <= bottom + */ + void sort(); + + static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() { + static const SkIRect gEmpty = { 0, 0, 0, 0 }; + return gEmpty; + } +}; + +/** \struct SkRect +*/ +struct SK_API SkRect { + SkScalar fLeft, fTop, fRight, fBottom; + + static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() { + SkRect r; + r.setEmpty(); + return r; + } + + static SkRect SK_WARN_UNUSED_RESULT MakeLargest() { + SkRect r; + r.setLargest(); + return r; + } + + static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) { + SkRect r; + r.set(0, 0, w, h); + return r; + } + + static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) { + SkRect r; + r.set(0, 0, size.width(), size.height()); + return r; + } + + static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) { + SkRect rect; + rect.set(l, t, r, b); + return rect; + } + + static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) { + SkRect r; + r.set(x, y, x + w, y + h); + return r; + } + + SK_ATTR_DEPRECATED("use Make()") + static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) { + SkRect r; + r.set(SkIntToScalar(irect.fLeft), + SkIntToScalar(irect.fTop), + SkIntToScalar(irect.fRight), + SkIntToScalar(irect.fBottom)); + return r; + } + + static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) { + SkRect r; + r.set(SkIntToScalar(irect.fLeft), + SkIntToScalar(irect.fTop), + SkIntToScalar(irect.fRight), + SkIntToScalar(irect.fBottom)); + return r; + } + + /** + * Return true if the rectangle's width or height are <= 0 + */ + bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } + + bool isLargest() const { return SK_ScalarMin == fLeft && + SK_ScalarMin == fTop && + SK_ScalarMax == fRight && + SK_ScalarMax == fBottom; } + + /** + * Returns true iff all values in the rect are finite. If any are + * infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this + * returns false. + */ + bool isFinite() const { + float accum = 0; + accum *= fLeft; + accum *= fTop; + accum *= fRight; + accum *= fBottom; + + // accum is either NaN or it is finite (zero). + SkASSERT(0 == accum || !(accum == accum)); + + // value==value will be true iff value is not NaN + // TODO: is it faster to say !accum or accum==accum? + return accum == accum; + } + + SkScalar x() const { return fLeft; } + SkScalar y() const { return fTop; } + SkScalar left() const { return fLeft; } + SkScalar top() const { return fTop; } + SkScalar right() const { return fRight; } + SkScalar bottom() const { return fBottom; } + SkScalar width() const { return fRight - fLeft; } + SkScalar height() const { return fBottom - fTop; } + SkScalar centerX() const { return SkScalarHalf(fLeft + fRight); } + SkScalar centerY() const { return SkScalarHalf(fTop + fBottom); } + + friend bool operator==(const SkRect& a, const SkRect& b) { + return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); + } + + friend bool operator!=(const SkRect& a, const SkRect& b) { + return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); + } + + /** return the 4 points that enclose the rectangle (top-left, top-right, bottom-right, + bottom-left). TODO: Consider adding param to control whether quad is CW or CCW. + */ + void toQuad(SkPoint quad[4]) const; + + /** Set this rectangle to the empty rectangle (0,0,0,0) + */ + void setEmpty() { memset(this, 0, sizeof(*this)); } + + void set(const SkIRect& src) { + fLeft = SkIntToScalar(src.fLeft); + fTop = SkIntToScalar(src.fTop); + fRight = SkIntToScalar(src.fRight); + fBottom = SkIntToScalar(src.fBottom); + } + + void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { + fLeft = left; + fTop = top; + fRight = right; + fBottom = bottom; + } + // alias for set(l, t, r, b) + void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { + this->set(left, top, right, bottom); + } + + /** Initialize the rect with the 4 specified integers. The routine handles + converting them to scalars (by calling SkIntToScalar) + */ + void iset(int left, int top, int right, int bottom) { + fLeft = SkIntToScalar(left); + fTop = SkIntToScalar(top); + fRight = SkIntToScalar(right); + fBottom = SkIntToScalar(bottom); + } + + /** + * Set this rectangle to be left/top at 0,0, and have the specified width + * and height (automatically converted to SkScalar). + */ + void isetWH(int width, int height) { + fLeft = fTop = 0; + fRight = SkIntToScalar(width); + fBottom = SkIntToScalar(height); + } + + /** Set this rectangle to be the bounds of the array of points. + If the array is empty (count == 0), then set this rectangle + to the empty rectangle (0,0,0,0) + */ + void set(const SkPoint pts[], int count) { + // set() had been checking for non-finite values, so keep that behavior + // for now. Now that we have setBoundsCheck(), we may decide to make + // set() be simpler/faster, and not check for those. + (void)this->setBoundsCheck(pts, count); + } + + // alias for set(pts, count) + void setBounds(const SkPoint pts[], int count) { + (void)this->setBoundsCheck(pts, count); + } + + /** + * Compute the bounds of the array of points, and set this rect to that + * bounds and return true... unless a non-finite value is encountered, + * in which case this rect is set to empty and false is returned. + */ + bool setBoundsCheck(const SkPoint pts[], int count); + + void set(const SkPoint& p0, const SkPoint& p1) { + fLeft = SkMinScalar(p0.fX, p1.fX); + fRight = SkMaxScalar(p0.fX, p1.fX); + fTop = SkMinScalar(p0.fY, p1.fY); + fBottom = SkMaxScalar(p0.fY, p1.fY); + } + + void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) { + fLeft = x; + fTop = y; + fRight = x + width; + fBottom = y + height; + } + + void setWH(SkScalar width, SkScalar height) { + fLeft = 0; + fTop = 0; + fRight = width; + fBottom = height; + } + + /** + * Make the largest representable rectangle + */ + void setLargest() { + fLeft = fTop = SK_ScalarMin; + fRight = fBottom = SK_ScalarMax; + } + + /** + * Make the largest representable rectangle, but inverted (e.g. fLeft will + * be max and right will be min). + */ + void setLargestInverted() { + fLeft = fTop = SK_ScalarMax; + fRight = fBottom = SK_ScalarMin; + } + + /** Offset set the rectangle by adding dx to its left and right, + and adding dy to its top and bottom. + */ + void offset(SkScalar dx, SkScalar dy) { + fLeft += dx; + fTop += dy; + fRight += dx; + fBottom += dy; + } + + void offset(const SkPoint& delta) { + this->offset(delta.fX, delta.fY); + } + + /** + * Offset this rect such its new x() and y() will equal newX and newY. + */ + void offsetTo(SkScalar newX, SkScalar newY) { + fRight += newX - fLeft; + fBottom += newY - fTop; + fLeft = newX; + fTop = newY; + } + + /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are + moved inwards, making the rectangle narrower. If dx is negative, then + the sides are moved outwards, making the rectangle wider. The same holds + true for dy and the top and bottom. + */ + void inset(SkScalar dx, SkScalar dy) { + fLeft += dx; + fTop += dy; + fRight -= dx; + fBottom -= dy; + } + + /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are + moved outwards, making the rectangle wider. If dx is negative, then the + sides are moved inwards, making the rectangle narrower. The same holds + true for dy and the top and bottom. + */ + void outset(SkScalar dx, SkScalar dy) { this->inset(-dx, -dy); } + + /** If this rectangle intersects r, return true and set this rectangle to that + intersection, otherwise return false and do not change this rectangle. + If either rectangle is empty, do nothing and return false. + */ + bool intersect(const SkRect& r); + bool intersect2(const SkRect& r); + + /** If this rectangle intersects the rectangle specified by left, top, right, bottom, + return true and set this rectangle to that intersection, otherwise return false + and do not change this rectangle. + If either rectangle is empty, do nothing and return false. + */ + bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); + + /** + * Return true if this rectangle is not empty, and the specified sides of + * a rectangle are not empty, and they intersect. + */ + bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const { + return // first check that both are not empty + left < right && top < bottom && + fLeft < fRight && fTop < fBottom && + // now check for intersection + fLeft < right && left < fRight && + fTop < bottom && top < fBottom; + } + + /** If rectangles a and b intersect, return true and set this rectangle to + * that intersection, otherwise return false and do not change this + * rectangle. If either rectangle is empty, do nothing and return false. + */ + bool intersect(const SkRect& a, const SkRect& b); + + /** + * Return true if rectangles a and b are not empty and intersect. + */ + static bool Intersects(const SkRect& a, const SkRect& b) { + return !a.isEmpty() && !b.isEmpty() && + a.fLeft < b.fRight && b.fLeft < a.fRight && + a.fTop < b.fBottom && b.fTop < a.fBottom; + } + + /** + * Update this rectangle to enclose itself and the specified rectangle. + * If this rectangle is empty, just set it to the specified rectangle. + * If the specified rectangle is empty, do nothing. + */ + void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); + + /** Update this rectangle to enclose itself and the specified rectangle. + If this rectangle is empty, just set it to the specified rectangle. If the specified + rectangle is empty, do nothing. + */ + void join(const SkRect& r) { + this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); + } + // alias for join() + void growToInclude(const SkRect& r) { this->join(r); } + + /** + * Grow the rect to include the specified (x,y). After this call, the + * following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom. + * + * This is close, but not quite the same contract as contains(), since + * contains() treats the left and top different from the right and bottom. + * contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note + * that contains(x,y) always returns false if the rect is empty. + */ + void growToInclude(SkScalar x, SkScalar y) { + fLeft = SkMinScalar(x, fLeft); + fRight = SkMaxScalar(x, fRight); + fTop = SkMinScalar(y, fTop); + fBottom = SkMaxScalar(y, fBottom); + } + + /** Bulk version of growToInclude */ + void growToInclude(const SkPoint pts[], int count) { + this->growToInclude(pts, sizeof(SkPoint), count); + } + + /** Bulk version of growToInclude with stride. */ + void growToInclude(const SkPoint pts[], size_t stride, int count) { + SkASSERT(count >= 0); + SkASSERT(stride >= sizeof(SkPoint)); + const SkPoint* end = (const SkPoint*)((intptr_t)pts + count * stride); + for (; pts < end; pts = (const SkPoint*)((intptr_t)pts + stride)) { + this->growToInclude(pts->fX, pts->fY); + } + } + + /** + * Return true if this rectangle contains r, and if both rectangles are + * not empty. + */ + bool contains(const SkRect& r) const { + // todo: can we eliminate the this->isEmpty check? + return !r.isEmpty() && !this->isEmpty() && + fLeft <= r.fLeft && fTop <= r.fTop && + fRight >= r.fRight && fBottom >= r.fBottom; + } + + /** + * Set the dst rectangle by rounding this rectangle's coordinates to their + * nearest integer values using SkScalarRoundToInt. + */ + void round(SkIRect* dst) const { + SkASSERT(dst); + dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop), + SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom)); + } + + /** + * Set the dst rectangle by rounding "out" this rectangle, choosing the + * SkScalarFloor of top and left, and the SkScalarCeil of right and bottom. + */ + void roundOut(SkIRect* dst) const { + SkASSERT(dst); + dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop), + SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)); + } + + /** + * Expand this rectangle by rounding its coordinates "out", choosing the + * floor of top and left, and the ceil of right and bottom. If this rect + * is already on integer coordinates, then it will be unchanged. + */ + void roundOut() { + this->set(SkScalarFloorToScalar(fLeft), + SkScalarFloorToScalar(fTop), + SkScalarCeilToScalar(fRight), + SkScalarCeilToScalar(fBottom)); + } + + /** + * Set the dst rectangle by rounding "in" this rectangle, choosing the + * ceil of top and left, and the floor of right and bottom. This does *not* + * call sort(), so it is possible that the resulting rect is inverted... + * e.g. left >= right or top >= bottom. Call isEmpty() to detect that. + */ + void roundIn(SkIRect* dst) const { + SkASSERT(dst); + dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop), + SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom)); + } + + /** + * Return a new SkIRect which is contains the rounded coordinates of this + * rect using SkScalarRoundToInt. + */ + SkIRect round() const { + SkIRect ir; + this->round(&ir); + return ir; + } + + /** + * Swap top/bottom or left/right if there are flipped (i.e. if width() + * or height() would have returned a negative value.) This should be called + * if the edges are computed separately, and may have crossed over each + * other. When this returns, left <= right && top <= bottom + */ + void sort(); + + /** + * cast-safe way to treat the rect as an array of (4) SkScalars. + */ + const SkScalar* asScalars() const { return &fLeft; } +}; + +#endif