diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/include/core/SkTArray.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/include/core/SkTArray.h Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,510 @@ +/* + * Copyright 2011 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkTArray_DEFINED +#define SkTArray_DEFINED + +#include +#include "SkTypes.h" +#include "SkTemplates.h" + +template class SkTArray; + +namespace SkTArrayExt { + +template +inline void copy(SkTArray* self, const T* array) { + memcpy(self->fMemArray, array, self->fCount * sizeof(T)); +} +template +inline void copyAndDelete(SkTArray* self, char* newMemArray) { + memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T)); +} + +template +inline void copy(SkTArray* self, const T* array) { + for (int i = 0; i < self->fCount; ++i) { + SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i])); + } +} +template +inline void copyAndDelete(SkTArray* self, char* newMemArray) { + for (int i = 0; i < self->fCount; ++i) { + SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i])); + self->fItemArray[i].~T(); + } +} + +} + +template void* operator new(size_t, SkTArray*, int); + +/** When MEM_COPY is true T will be bit copied when moved. + When MEM_COPY is false, T will be copy constructed / destructed. + In all cases T's constructor will be called on allocation, + and its destructor will be called from this object's destructor. +*/ +template class SkTArray { +public: + /** + * Creates an empty array with no initial storage + */ + SkTArray() { + fCount = 0; + fReserveCount = gMIN_ALLOC_COUNT; + fAllocCount = 0; + fMemArray = NULL; + fPreAllocMemArray = NULL; + } + + /** + * Creates an empty array that will preallocate space for reserveCount + * elements. + */ + explicit SkTArray(int reserveCount) { + this->init(NULL, 0, NULL, reserveCount); + } + + /** + * Copies one array to another. The new array will be heap allocated. + */ + explicit SkTArray(const SkTArray& array) { + this->init(array.fItemArray, array.fCount, NULL, 0); + } + + /** + * Creates a SkTArray by copying contents of a standard C array. The new + * array will be heap allocated. Be careful not to use this constructor + * when you really want the (void*, int) version. + */ + SkTArray(const T* array, int count) { + this->init(array, count, NULL, 0); + } + + /** + * assign copy of array to this + */ + SkTArray& operator =(const SkTArray& array) { + for (int i = 0; i < fCount; ++i) { + fItemArray[i].~T(); + } + fCount = 0; + this->checkRealloc((int)array.count()); + fCount = array.count(); + SkTArrayExt::copy(this, static_cast(array.fMemArray)); + return *this; + } + + virtual ~SkTArray() { + for (int i = 0; i < fCount; ++i) { + fItemArray[i].~T(); + } + if (fMemArray != fPreAllocMemArray) { + sk_free(fMemArray); + } + } + + /** + * Resets to count() == 0 + */ + void reset() { this->pop_back_n(fCount); } + + /** + * Resets to count() = n newly constructed T objects. + */ + void reset(int n) { + SkASSERT(n >= 0); + for (int i = 0; i < fCount; ++i) { + fItemArray[i].~T(); + } + // set fCount to 0 before calling checkRealloc so that no copy cons. are called. + fCount = 0; + this->checkRealloc(n); + fCount = n; + for (int i = 0; i < fCount; ++i) { + SkNEW_PLACEMENT(fItemArray + i, T); + } + } + + /** + * Resets to a copy of a C array. + */ + void reset(const T* array, int count) { + for (int i = 0; i < fCount; ++i) { + fItemArray[i].~T(); + } + int delta = count - fCount; + this->checkRealloc(delta); + fCount = count; + for (int i = 0; i < count; ++i) { + SkTArrayExt::copy(this, array); + } + } + + /** + * Number of elements in the array. + */ + int count() const { return fCount; } + + /** + * Is the array empty. + */ + bool empty() const { return !fCount; } + + /** + * Adds 1 new default-constructed T value and returns in by reference. Note + * the reference only remains valid until the next call that adds or removes + * elements. + */ + T& push_back() { + T* newT = reinterpret_cast(this->push_back_raw(1)); + SkNEW_PLACEMENT(newT, T); + return *newT; + } + + /** + * Version of above that uses a copy constructor to initialize the new item + */ + T& push_back(const T& t) { + T* newT = reinterpret_cast(this->push_back_raw(1)); + SkNEW_PLACEMENT_ARGS(newT, T, (t)); + return *newT; + } + + /** + * Allocates n more default T values, and returns the address of the start + * of that new range. Note: this address is only valid until the next API + * call made on the array that might add or remove elements. + */ + T* push_back_n(int n) { + SkASSERT(n >= 0); + T* newTs = reinterpret_cast(this->push_back_raw(n)); + for (int i = 0; i < n; ++i) { + SkNEW_PLACEMENT(newTs + i, T); + } + return newTs; + } + + /** + * Version of above that uses a copy constructor to initialize all n items + * to the same T. + */ + T* push_back_n(int n, const T& t) { + SkASSERT(n >= 0); + T* newTs = reinterpret_cast(this->push_back_raw(n)); + for (int i = 0; i < n; ++i) { + SkNEW_PLACEMENT_ARGS(newTs[i], T, (t)); + } + return newTs; + } + + /** + * Version of above that uses a copy constructor to initialize the n items + * to separate T values. + */ + T* push_back_n(int n, const T t[]) { + SkASSERT(n >= 0); + this->checkRealloc(n); + for (int i = 0; i < n; ++i) { + SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i])); + } + fCount += n; + return fItemArray + fCount - n; + } + + /** + * Removes the last element. Not safe to call when count() == 0. + */ + void pop_back() { + SkASSERT(fCount > 0); + --fCount; + fItemArray[fCount].~T(); + this->checkRealloc(0); + } + + /** + * Removes the last n elements. Not safe to call when count() < n. + */ + void pop_back_n(int n) { + SkASSERT(n >= 0); + SkASSERT(fCount >= n); + fCount -= n; + for (int i = 0; i < n; ++i) { + fItemArray[fCount + i].~T(); + } + this->checkRealloc(0); + } + + /** + * Pushes or pops from the back to resize. Pushes will be default + * initialized. + */ + void resize_back(int newCount) { + SkASSERT(newCount >= 0); + + if (newCount > fCount) { + this->push_back_n(newCount - fCount); + } else if (newCount < fCount) { + this->pop_back_n(fCount - newCount); + } + } + + T* begin() { + return fItemArray; + } + const T* begin() const { + return fItemArray; + } + T* end() { + return fItemArray ? fItemArray + fCount : NULL; + } + const T* end() const { + return fItemArray ? fItemArray + fCount : NULL;; + } + + /** + * Get the i^th element. + */ + T& operator[] (int i) { + SkASSERT(i < fCount); + SkASSERT(i >= 0); + return fItemArray[i]; + } + + const T& operator[] (int i) const { + SkASSERT(i < fCount); + SkASSERT(i >= 0); + return fItemArray[i]; + } + + /** + * equivalent to operator[](0) + */ + T& front() { SkASSERT(fCount > 0); return fItemArray[0];} + + const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} + + /** + * equivalent to operator[](count() - 1) + */ + T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} + + const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} + + /** + * equivalent to operator[](count()-1-i) + */ + T& fromBack(int i) { + SkASSERT(i >= 0); + SkASSERT(i < fCount); + return fItemArray[fCount - i - 1]; + } + + const T& fromBack(int i) const { + SkASSERT(i >= 0); + SkASSERT(i < fCount); + return fItemArray[fCount - i - 1]; + } + + bool operator==(const SkTArray& right) const { + int leftCount = this->count(); + if (leftCount != right.count()) { + return false; + } + for (int index = 0; index < leftCount; ++index) { + if (fItemArray[index] != right.fItemArray[index]) { + return false; + } + } + return true; + } + + bool operator!=(const SkTArray& right) const { + return !(*this == right); + } + +protected: + /** + * Creates an empty array that will use the passed storage block until it + * is insufficiently large to hold the entire array. + */ + template + SkTArray(SkAlignedSTStorage* storage) { + this->init(NULL, 0, storage->get(), N); + } + + /** + * Copy another array, using preallocated storage if preAllocCount >= + * array.count(). Otherwise storage will only be used when array shrinks + * to fit. + */ + template + SkTArray(const SkTArray& array, SkAlignedSTStorage* storage) { + this->init(array.fItemArray, array.fCount, storage->get(), N); + } + + /** + * Copy a C array, using preallocated storage if preAllocCount >= + * count. Otherwise storage will only be used when array shrinks + * to fit. + */ + template + SkTArray(const T* array, int count, SkAlignedSTStorage* storage) { + this->init(array, count, storage->get(), N); + } + + void init(const T* array, int count, + void* preAllocStorage, int preAllocOrReserveCount) { + SkASSERT(count >= 0); + SkASSERT(preAllocOrReserveCount >= 0); + fCount = count; + fReserveCount = (preAllocOrReserveCount > 0) ? + preAllocOrReserveCount : + gMIN_ALLOC_COUNT; + fPreAllocMemArray = preAllocStorage; + if (fReserveCount >= fCount && + NULL != preAllocStorage) { + fAllocCount = fReserveCount; + fMemArray = preAllocStorage; + } else { + fAllocCount = SkMax32(fCount, fReserveCount); + fMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); + } + + SkTArrayExt::copy(this, array); + } + +private: + + static const int gMIN_ALLOC_COUNT = 8; + + // Helper function that makes space for n objects, adjusts the count, but does not initialize + // the new objects. + void* push_back_raw(int n) { + this->checkRealloc(n); + void* ptr = fItemArray + fCount; + fCount += n; + return ptr; + } + + inline void checkRealloc(int delta) { + SkASSERT(fCount >= 0); + SkASSERT(fAllocCount >= 0); + + SkASSERT(-delta <= fCount); + + int newCount = fCount + delta; + int newAllocCount = fAllocCount; + + if (newCount > fAllocCount || newCount < (fAllocCount / 3)) { + // whether we're growing or shrinking, we leave at least 50% extra space for future + // growth (clamped to the reserve count). + newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount); + } + if (newAllocCount != fAllocCount) { + + fAllocCount = newAllocCount; + char* newMemArray; + + if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) { + newMemArray = (char*) fPreAllocMemArray; + } else { + newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T)); + } + + SkTArrayExt::copyAndDelete(this, newMemArray); + + if (fMemArray != fPreAllocMemArray) { + sk_free(fMemArray); + } + fMemArray = newMemArray; + } + } + + friend void* operator new(size_t, SkTArray*, int); + + template friend void SkTArrayExt::copy(SkTArray* that, const X*); + template friend void SkTArrayExt::copyAndDelete(SkTArray* that, char*); + + template friend void SkTArrayExt::copy(SkTArray* that, const X*); + template friend void SkTArrayExt::copyAndDelete(SkTArray* that, char*); + + int fReserveCount; + int fCount; + int fAllocCount; + void* fPreAllocMemArray; + union { + T* fItemArray; + void* fMemArray; + }; +}; + +// Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly +template +void* operator new(size_t, SkTArray* array, int atIndex) { + // Currently, we only support adding to the end of the array. When the array class itself + // supports random insertion then this should be updated. + // SkASSERT(atIndex >= 0 && atIndex <= array->count()); + SkASSERT(atIndex == array->count()); + return array->push_back_raw(1); +} + +// Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete +// to match the op new silences warnings about missing op delete when a constructor throws an +// exception. +template +void operator delete(void*, SkTArray* array, int atIndex) { + SK_CRASH(); +} + +// Constructs a new object as the last element of an SkTArray. +#define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args) \ + (new ((array_ptr), (array_ptr)->count()) type_name args) + + +/** + * Subclass of SkTArray that contains a preallocated memory block for the array. + */ +template +class SkSTArray : public SkTArray { +private: + typedef SkTArray INHERITED; + +public: + SkSTArray() : INHERITED(&fStorage) { + } + + SkSTArray(const SkSTArray& array) + : INHERITED(array, &fStorage) { + } + + explicit SkSTArray(const INHERITED& array) + : INHERITED(array, &fStorage) { + } + + explicit SkSTArray(int reserveCount) + : INHERITED(reserveCount) { + } + + SkSTArray(const T* array, int count) + : INHERITED(array, count, &fStorage) { + } + + SkSTArray& operator= (const SkSTArray& array) { + return *this = *(const INHERITED*)&array; + } + + SkSTArray& operator= (const INHERITED& array) { + INHERITED::operator=(array); + return *this; + } + +private: + SkAlignedSTStorage fStorage; +}; + +#endif