diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/include/utils/SkThreadPool.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/include/utils/SkThreadPool.h Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,202 @@ +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkThreadPool_DEFINED +#define SkThreadPool_DEFINED + +#include "SkCondVar.h" +#include "SkRunnable.h" +#include "SkTDArray.h" +#include "SkTInternalLList.h" +#include "SkThreadUtils.h" +#include "SkTypes.h" + +#if defined(SK_BUILD_FOR_UNIX) || defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_ANDROID) +# include +#endif + +// Returns the number of cores on this machine. +static inline int num_cores() { +#if defined(SK_BUILD_FOR_WIN32) + SYSTEM_INFO sysinfo; + GetSystemInfo(&sysinfo); + return sysinfo.dwNumberOfProcessors; +#elif defined(SK_BUILD_FOR_UNIX) || defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_ANDROID) + return sysconf(_SC_NPROCESSORS_ONLN); +#else + return 1; +#endif +} + +template +class SkTThreadPool { +public: + /** + * Create a threadpool with count threads, or one thread per core if kThreadPerCore. + */ + static const int kThreadPerCore = -1; + explicit SkTThreadPool(int count); + ~SkTThreadPool(); + + /** + * Queues up an SkRunnable to run when a thread is available, or synchronously if count is 0. + * Does not take ownership. NULL is a safe no-op. If T is not void, the runnable will be passed + * a reference to a T on the thread's local stack. + */ + void add(SkTRunnable*); + + /** + * Block until all added SkRunnables have completed. Once called, calling add() is undefined. + */ + void wait(); + + private: + struct LinkedRunnable { + SkTRunnable* fRunnable; // Unowned. + SK_DECLARE_INTERNAL_LLIST_INTERFACE(LinkedRunnable); + }; + + enum State { + kRunning_State, // Normal case. We've been constructed and no one has called wait(). + kWaiting_State, // wait has been called, but there still might be work to do or being done. + kHalting_State, // There's no work to do and no thread is busy. All threads can shut down. + }; + + SkTInternalLList fQueue; + SkCondVar fReady; + SkTDArray fThreads; + State fState; + int fBusyThreads; + + static void Loop(void*); // Static because we pass in this. +}; + +template +SkTThreadPool::SkTThreadPool(int count) : fState(kRunning_State), fBusyThreads(0) { + if (count < 0) { + count = num_cores(); + } + // Create count threads, all running SkTThreadPool::Loop. + for (int i = 0; i < count; i++) { + SkThread* thread = SkNEW_ARGS(SkThread, (&SkTThreadPool::Loop, this)); + *fThreads.append() = thread; + thread->start(); + } +} + +template +SkTThreadPool::~SkTThreadPool() { + if (kRunning_State == fState) { + this->wait(); + } +} + +namespace SkThreadPoolPrivate { + +template +struct ThreadLocal { + void run(SkTRunnable* r) { r->run(data); } + T data; +}; + +template <> +struct ThreadLocal { + void run(SkTRunnable* r) { r->run(); } +}; + +} // namespace SkThreadPoolPrivate + +template +void SkTThreadPool::add(SkTRunnable* r) { + if (r == NULL) { + return; + } + + if (fThreads.isEmpty()) { + SkThreadPoolPrivate::ThreadLocal threadLocal; + threadLocal.run(r); + return; + } + + LinkedRunnable* linkedRunnable = SkNEW(LinkedRunnable); + linkedRunnable->fRunnable = r; + fReady.lock(); + SkASSERT(fState != kHalting_State); // Shouldn't be able to add work when we're halting. + fQueue.addToHead(linkedRunnable); + fReady.signal(); + fReady.unlock(); +} + + +template +void SkTThreadPool::wait() { + fReady.lock(); + fState = kWaiting_State; + fReady.broadcast(); + fReady.unlock(); + + // Wait for all threads to stop. + for (int i = 0; i < fThreads.count(); i++) { + fThreads[i]->join(); + SkDELETE(fThreads[i]); + } + SkASSERT(fQueue.isEmpty()); +} + +template +/*static*/ void SkTThreadPool::Loop(void* arg) { + // The SkTThreadPool passes itself as arg to each thread as they're created. + SkTThreadPool* pool = static_cast*>(arg); + SkThreadPoolPrivate::ThreadLocal threadLocal; + + while (true) { + // We have to be holding the lock to read the queue and to call wait. + pool->fReady.lock(); + while(pool->fQueue.isEmpty()) { + // Does the client want to stop and are all the threads ready to stop? + // If so, we move into the halting state, and whack all the threads so they notice. + if (kWaiting_State == pool->fState && pool->fBusyThreads == 0) { + pool->fState = kHalting_State; + pool->fReady.broadcast(); + } + // Any time we find ourselves in the halting state, it's quitting time. + if (kHalting_State == pool->fState) { + pool->fReady.unlock(); + return; + } + // wait yields the lock while waiting, but will have it again when awoken. + pool->fReady.wait(); + } + // We've got the lock back here, no matter if we ran wait or not. + + // The queue is not empty, so we have something to run. Claim it. + LinkedRunnable* r = pool->fQueue.tail(); + + pool->fQueue.remove(r); + + // Having claimed our SkRunnable, we now give up the lock while we run it. + // Otherwise, we'd only ever do work on one thread at a time, which rather + // defeats the point of this code. + pool->fBusyThreads++; + pool->fReady.unlock(); + + // OK, now really do the work. + threadLocal.run(r->fRunnable); + SkDELETE(r); + + // Let everyone know we're not busy. + pool->fReady.lock(); + pool->fBusyThreads--; + pool->fReady.unlock(); + } + + SkASSERT(false); // Unreachable. The only exit happens when pool->fState is kHalting_State. +} + +typedef SkTThreadPool SkThreadPool; + +#endif