diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/core/SkBlitter.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/core/SkBlitter.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,973 @@ + +/* + * Copyright 2006 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#include "SkBlitter.h" +#include "SkAntiRun.h" +#include "SkColor.h" +#include "SkColorFilter.h" +#include "SkCoreBlitters.h" +#include "SkFilterShader.h" +#include "SkReadBuffer.h" +#include "SkWriteBuffer.h" +#include "SkMask.h" +#include "SkMaskFilter.h" +#include "SkString.h" +#include "SkTLazy.h" +#include "SkUtils.h" +#include "SkXfermode.h" + +SkBlitter::~SkBlitter() {} + +bool SkBlitter::isNullBlitter() const { return false; } + +const SkBitmap* SkBlitter::justAnOpaqueColor(uint32_t* value) { + return NULL; +} + +void SkBlitter::blitH(int x, int y, int width) { + SkDEBUGFAIL("unimplemented"); +} + +void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], + const int16_t runs[]) { + SkDEBUGFAIL("unimplemented"); +} + +void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) { + if (alpha == 255) { + this->blitRect(x, y, 1, height); + } else { + int16_t runs[2]; + runs[0] = 1; + runs[1] = 0; + + while (--height >= 0) { + this->blitAntiH(x, y++, &alpha, runs); + } + } +} + +void SkBlitter::blitRect(int x, int y, int width, int height) { + SkASSERT(width > 0); + while (--height >= 0) { + this->blitH(x, y++, width); + } +} + +/// Default implementation doesn't check for any easy optimizations +/// such as alpha == 0 or 255; also uses blitV(), which some subclasses +/// may not support. +void SkBlitter::blitAntiRect(int x, int y, int width, int height, + SkAlpha leftAlpha, SkAlpha rightAlpha) { + this->blitV(x++, y, height, leftAlpha); + if (width > 0) { + this->blitRect(x, y, width, height); + x += width; + } + this->blitV(x, y, height, rightAlpha); +} + +////////////////////////////////////////////////////////////////////////////// + +static inline void bits_to_runs(SkBlitter* blitter, int x, int y, + const uint8_t bits[], + U8CPU left_mask, int rowBytes, + U8CPU right_mask) { + int inFill = 0; + int pos = 0; + + while (--rowBytes >= 0) { + unsigned b = *bits++ & left_mask; + if (rowBytes == 0) { + b &= right_mask; + } + + for (unsigned test = 0x80; test != 0; test >>= 1) { + if (b & test) { + if (!inFill) { + pos = x; + inFill = true; + } + } else { + if (inFill) { + blitter->blitH(pos, y, x - pos); + inFill = false; + } + } + x += 1; + } + left_mask = 0xFF; + } + + // final cleanup + if (inFill) { + blitter->blitH(pos, y, x - pos); + } +} + +void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { + SkASSERT(mask.fBounds.contains(clip)); + + if (mask.fFormat == SkMask::kBW_Format) { + int cx = clip.fLeft; + int cy = clip.fTop; + int maskLeft = mask.fBounds.fLeft; + int mask_rowBytes = mask.fRowBytes; + int height = clip.height(); + + const uint8_t* bits = mask.getAddr1(cx, cy); + + if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) { + while (--height >= 0) { + bits_to_runs(this, cx, cy, bits, 0xFF, mask_rowBytes, 0xFF); + bits += mask_rowBytes; + cy += 1; + } + } else { + int left_edge = cx - maskLeft; + SkASSERT(left_edge >= 0); + int rite_edge = clip.fRight - maskLeft; + SkASSERT(rite_edge > left_edge); + + int left_mask = 0xFF >> (left_edge & 7); + int rite_mask = 0xFF << (8 - (rite_edge & 7)); + int full_runs = (rite_edge >> 3) - ((left_edge + 7) >> 3); + + // check for empty right mask, so we don't read off the end (or go slower than we need to) + if (rite_mask == 0) { + SkASSERT(full_runs >= 0); + full_runs -= 1; + rite_mask = 0xFF; + } + if (left_mask == 0xFF) { + full_runs -= 1; + } + + // back up manually so we can keep in sync with our byte-aligned src + // have cx reflect our actual starting x-coord + cx -= left_edge & 7; + + if (full_runs < 0) { + SkASSERT((left_mask & rite_mask) != 0); + while (--height >= 0) { + bits_to_runs(this, cx, cy, bits, left_mask, 1, rite_mask); + bits += mask_rowBytes; + cy += 1; + } + } else { + while (--height >= 0) { + bits_to_runs(this, cx, cy, bits, left_mask, full_runs + 2, rite_mask); + bits += mask_rowBytes; + cy += 1; + } + } + } + } else { + int width = clip.width(); + SkAutoSTMalloc<64, int16_t> runStorage(width + 1); + int16_t* runs = runStorage.get(); + const uint8_t* aa = mask.getAddr8(clip.fLeft, clip.fTop); + + sk_memset16((uint16_t*)runs, 1, width); + runs[width] = 0; + + int height = clip.height(); + int y = clip.fTop; + while (--height >= 0) { + this->blitAntiH(clip.fLeft, y, aa, runs); + aa += mask.fRowBytes; + y += 1; + } + } +} + +/////////////////////// these guys are not virtual, just a helpers + +void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) { + if (clip.quickReject(mask.fBounds)) { + return; + } + + SkRegion::Cliperator clipper(clip, mask.fBounds); + + while (!clipper.done()) { + const SkIRect& cr = clipper.rect(); + this->blitMask(mask, cr); + clipper.next(); + } +} + +void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) { + SkRegion::Cliperator clipper(clip, rect); + + while (!clipper.done()) { + const SkIRect& cr = clipper.rect(); + this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); + clipper.next(); + } +} + +void SkBlitter::blitRegion(const SkRegion& clip) { + SkRegion::Iterator iter(clip); + + while (!iter.done()) { + const SkIRect& cr = iter.rect(); + this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); + iter.next(); + } +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkNullBlitter::blitH(int x, int y, int width) {} + +void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], + const int16_t runs[]) {} + +void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) {} + +void SkNullBlitter::blitRect(int x, int y, int width, int height) {} + +void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {} + +const SkBitmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) { + return NULL; +} + +bool SkNullBlitter::isNullBlitter() const { return true; } + +/////////////////////////////////////////////////////////////////////////////// + +static int compute_anti_width(const int16_t runs[]) { + int width = 0; + + for (;;) { + int count = runs[0]; + + SkASSERT(count >= 0); + if (count == 0) { + break; + } + width += count; + runs += count; + } + return width; +} + +static inline bool y_in_rect(int y, const SkIRect& rect) { + return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); +} + +static inline bool x_in_rect(int x, const SkIRect& rect) { + return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); +} + +void SkRectClipBlitter::blitH(int left, int y, int width) { + SkASSERT(width > 0); + + if (!y_in_rect(y, fClipRect)) { + return; + } + + int right = left + width; + + if (left < fClipRect.fLeft) { + left = fClipRect.fLeft; + } + if (right > fClipRect.fRight) { + right = fClipRect.fRight; + } + + width = right - left; + if (width > 0) { + fBlitter->blitH(left, y, width); + } +} + +void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[], + const int16_t runs[]) { + if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) { + return; + } + + int x0 = left; + int x1 = left + compute_anti_width(runs); + + if (x1 <= fClipRect.fLeft) { + return; + } + + SkASSERT(x0 < x1); + if (x0 < fClipRect.fLeft) { + int dx = fClipRect.fLeft - x0; + SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx); + runs += dx; + aa += dx; + x0 = fClipRect.fLeft; + } + + SkASSERT(x0 < x1 && runs[x1 - x0] == 0); + if (x1 > fClipRect.fRight) { + x1 = fClipRect.fRight; + SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0); + ((int16_t*)runs)[x1 - x0] = 0; + } + + SkASSERT(x0 < x1 && runs[x1 - x0] == 0); + SkASSERT(compute_anti_width(runs) == x1 - x0); + + fBlitter->blitAntiH(x0, y, aa, runs); +} + +void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { + SkASSERT(height > 0); + + if (!x_in_rect(x, fClipRect)) { + return; + } + + int y0 = y; + int y1 = y + height; + + if (y0 < fClipRect.fTop) { + y0 = fClipRect.fTop; + } + if (y1 > fClipRect.fBottom) { + y1 = fClipRect.fBottom; + } + + if (y0 < y1) { + fBlitter->blitV(x, y0, y1 - y0, alpha); + } +} + +void SkRectClipBlitter::blitRect(int left, int y, int width, int height) { + SkIRect r; + + r.set(left, y, left + width, y + height); + if (r.intersect(fClipRect)) { + fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); + } +} + +void SkRectClipBlitter::blitAntiRect(int left, int y, int width, int height, + SkAlpha leftAlpha, SkAlpha rightAlpha) { + SkIRect r; + + // The *true* width of the rectangle blitted is width+2: + r.set(left, y, left + width + 2, y + height); + if (r.intersect(fClipRect)) { + if (r.fLeft != left) { + SkASSERT(r.fLeft > left); + leftAlpha = 255; + } + if (r.fRight != left + width + 2) { + SkASSERT(r.fRight < left + width + 2); + rightAlpha = 255; + } + if (255 == leftAlpha && 255 == rightAlpha) { + fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); + } else if (1 == r.width()) { + if (r.fLeft == left) { + fBlitter->blitV(r.fLeft, r.fTop, r.height(), leftAlpha); + } else { + SkASSERT(r.fLeft == left + width + 1); + fBlitter->blitV(r.fLeft, r.fTop, r.height(), rightAlpha); + } + } else { + fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), + leftAlpha, rightAlpha); + } + } +} + +void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { + SkASSERT(mask.fBounds.contains(clip)); + + SkIRect r = clip; + + if (r.intersect(fClipRect)) { + fBlitter->blitMask(mask, r); + } +} + +const SkBitmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) { + return fBlitter->justAnOpaqueColor(value); +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkRgnClipBlitter::blitH(int x, int y, int width) { + SkRegion::Spanerator span(*fRgn, y, x, x + width); + int left, right; + + while (span.next(&left, &right)) { + SkASSERT(left < right); + fBlitter->blitH(left, y, right - left); + } +} + +void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], + const int16_t runs[]) { + int width = compute_anti_width(runs); + SkRegion::Spanerator span(*fRgn, y, x, x + width); + int left, right; + SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();) + + int prevRite = x; + while (span.next(&left, &right)) { + SkASSERT(x <= left); + SkASSERT(left < right); + SkASSERT(left >= bounds.fLeft && right <= bounds.fRight); + + SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left); + + // now zero before left + if (left > prevRite) { + int index = prevRite - x; + ((uint8_t*)aa)[index] = 0; // skip runs after right + ((int16_t*)runs)[index] = SkToS16(left - prevRite); + } + + prevRite = right; + } + + if (prevRite > x) { + ((int16_t*)runs)[prevRite - x] = 0; + + if (x < 0) { + int skip = runs[0]; + SkASSERT(skip >= -x); + aa += skip; + runs += skip; + x += skip; + } + fBlitter->blitAntiH(x, y, aa, runs); + } +} + +void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { + SkIRect bounds; + bounds.set(x, y, x + 1, y + height); + + SkRegion::Cliperator iter(*fRgn, bounds); + + while (!iter.done()) { + const SkIRect& r = iter.rect(); + SkASSERT(bounds.contains(r)); + + fBlitter->blitV(x, r.fTop, r.height(), alpha); + iter.next(); + } +} + +void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) { + SkIRect bounds; + bounds.set(x, y, x + width, y + height); + + SkRegion::Cliperator iter(*fRgn, bounds); + + while (!iter.done()) { + const SkIRect& r = iter.rect(); + SkASSERT(bounds.contains(r)); + + fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); + iter.next(); + } +} + +void SkRgnClipBlitter::blitAntiRect(int x, int y, int width, int height, + SkAlpha leftAlpha, SkAlpha rightAlpha) { + // The *true* width of the rectangle to blit is width + 2 + SkIRect bounds; + bounds.set(x, y, x + width + 2, y + height); + + SkRegion::Cliperator iter(*fRgn, bounds); + + while (!iter.done()) { + const SkIRect& r = iter.rect(); + SkASSERT(bounds.contains(r)); + SkASSERT(r.fLeft >= x); + SkASSERT(r.fRight <= x + width + 2); + + SkAlpha effectiveLeftAlpha = (r.fLeft == x) ? leftAlpha : 255; + SkAlpha effectiveRightAlpha = (r.fRight == x + width + 2) ? + rightAlpha : 255; + + if (255 == effectiveLeftAlpha && 255 == effectiveRightAlpha) { + fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); + } else if (1 == r.width()) { + if (r.fLeft == x) { + fBlitter->blitV(r.fLeft, r.fTop, r.height(), + effectiveLeftAlpha); + } else { + SkASSERT(r.fLeft == x + width + 1); + fBlitter->blitV(r.fLeft, r.fTop, r.height(), + effectiveRightAlpha); + } + } else { + fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), + effectiveLeftAlpha, effectiveRightAlpha); + } + iter.next(); + } +} + + +void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { + SkASSERT(mask.fBounds.contains(clip)); + + SkRegion::Cliperator iter(*fRgn, clip); + const SkIRect& r = iter.rect(); + SkBlitter* blitter = fBlitter; + + while (!iter.done()) { + blitter->blitMask(mask, r); + iter.next(); + } +} + +const SkBitmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) { + return fBlitter->justAnOpaqueColor(value); +} + +/////////////////////////////////////////////////////////////////////////////// + +SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip, + const SkIRect* ir) { + if (clip) { + const SkIRect& clipR = clip->getBounds(); + + if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) { + blitter = &fNullBlitter; + } else if (clip->isRect()) { + if (ir == NULL || !clipR.contains(*ir)) { + fRectBlitter.init(blitter, clipR); + blitter = &fRectBlitter; + } + } else { + fRgnBlitter.init(blitter, clip); + blitter = &fRgnBlitter; + } + } + return blitter; +} + +/////////////////////////////////////////////////////////////////////////////// + +#include "SkColorShader.h" +#include "SkColorPriv.h" + +class Sk3DShader : public SkShader { +public: + Sk3DShader(SkShader* proxy) : fProxy(proxy) { + SkSafeRef(proxy); + fMask = NULL; + } + + virtual ~Sk3DShader() { + SkSafeUnref(fProxy); + } + + void setMask(const SkMask* mask) { fMask = mask; } + + virtual bool setContext(const SkBitmap& device, const SkPaint& paint, + const SkMatrix& matrix) SK_OVERRIDE { + if (!this->INHERITED::setContext(device, paint, matrix)) { + return false; + } + if (fProxy) { + if (!fProxy->setContext(device, paint, matrix)) { + // must keep our set/end context calls balanced + this->INHERITED::endContext(); + return false; + } + } else { + fPMColor = SkPreMultiplyColor(paint.getColor()); + } + return true; + } + + virtual void endContext() SK_OVERRIDE { + if (fProxy) { + fProxy->endContext(); + } + this->INHERITED::endContext(); + } + + virtual void shadeSpan(int x, int y, SkPMColor span[], int count) SK_OVERRIDE { + if (fProxy) { + fProxy->shadeSpan(x, y, span, count); + } + + if (fMask == NULL) { + if (fProxy == NULL) { + sk_memset32(span, fPMColor, count); + } + return; + } + + SkASSERT(fMask->fBounds.contains(x, y)); + SkASSERT(fMask->fBounds.contains(x + count - 1, y)); + + size_t size = fMask->computeImageSize(); + const uint8_t* alpha = fMask->getAddr8(x, y); + const uint8_t* mulp = alpha + size; + const uint8_t* addp = mulp + size; + + if (fProxy) { + for (int i = 0; i < count; i++) { + if (alpha[i]) { + SkPMColor c = span[i]; + if (c) { + unsigned a = SkGetPackedA32(c); + unsigned r = SkGetPackedR32(c); + unsigned g = SkGetPackedG32(c); + unsigned b = SkGetPackedB32(c); + + unsigned mul = SkAlpha255To256(mulp[i]); + unsigned add = addp[i]; + + r = SkFastMin32(SkAlphaMul(r, mul) + add, a); + g = SkFastMin32(SkAlphaMul(g, mul) + add, a); + b = SkFastMin32(SkAlphaMul(b, mul) + add, a); + + span[i] = SkPackARGB32(a, r, g, b); + } + } else { + span[i] = 0; + } + } + } else { // color + unsigned a = SkGetPackedA32(fPMColor); + unsigned r = SkGetPackedR32(fPMColor); + unsigned g = SkGetPackedG32(fPMColor); + unsigned b = SkGetPackedB32(fPMColor); + for (int i = 0; i < count; i++) { + if (alpha[i]) { + unsigned mul = SkAlpha255To256(mulp[i]); + unsigned add = addp[i]; + + span[i] = SkPackARGB32( a, + SkFastMin32(SkAlphaMul(r, mul) + add, a), + SkFastMin32(SkAlphaMul(g, mul) + add, a), + SkFastMin32(SkAlphaMul(b, mul) + add, a)); + } else { + span[i] = 0; + } + } + } + } + +#ifndef SK_IGNORE_TO_STRING + virtual void toString(SkString* str) const SK_OVERRIDE { + str->append("Sk3DShader: ("); + + if (NULL != fProxy) { + str->append("Proxy: "); + fProxy->toString(str); + } + + this->INHERITED::toString(str); + + str->append(")"); + } +#endif + + SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(Sk3DShader) + +protected: + Sk3DShader(SkReadBuffer& buffer) : INHERITED(buffer) { + fProxy = buffer.readShader(); + fPMColor = buffer.readColor(); + fMask = NULL; + } + + virtual void flatten(SkWriteBuffer& buffer) const SK_OVERRIDE { + this->INHERITED::flatten(buffer); + buffer.writeFlattenable(fProxy); + buffer.writeColor(fPMColor); + } + +private: + SkShader* fProxy; + SkPMColor fPMColor; + const SkMask* fMask; + + typedef SkShader INHERITED; +}; + +class Sk3DBlitter : public SkBlitter { +public: + Sk3DBlitter(SkBlitter* proxy, Sk3DShader* shader) + : fProxy(proxy) + , f3DShader(SkRef(shader)) + {} + + virtual void blitH(int x, int y, int width) { + fProxy->blitH(x, y, width); + } + + virtual void blitAntiH(int x, int y, const SkAlpha antialias[], + const int16_t runs[]) { + fProxy->blitAntiH(x, y, antialias, runs); + } + + virtual void blitV(int x, int y, int height, SkAlpha alpha) { + fProxy->blitV(x, y, height, alpha); + } + + virtual void blitRect(int x, int y, int width, int height) { + fProxy->blitRect(x, y, width, height); + } + + virtual void blitMask(const SkMask& mask, const SkIRect& clip) { + if (mask.fFormat == SkMask::k3D_Format) { + f3DShader->setMask(&mask); + + ((SkMask*)&mask)->fFormat = SkMask::kA8_Format; + fProxy->blitMask(mask, clip); + ((SkMask*)&mask)->fFormat = SkMask::k3D_Format; + + f3DShader->setMask(NULL); + } else { + fProxy->blitMask(mask, clip); + } + } + +private: + // fProxy is unowned. It will be deleted by SkSmallAllocator. + SkBlitter* fProxy; + SkAutoTUnref f3DShader; +}; + +/////////////////////////////////////////////////////////////////////////////// + +#include "SkCoreBlitters.h" + +static bool just_solid_color(const SkPaint& paint) { + if (paint.getAlpha() == 0xFF && paint.getColorFilter() == NULL) { + SkShader* shader = paint.getShader(); + if (NULL == shader || + (shader->getFlags() & SkShader::kOpaqueAlpha_Flag)) { + return true; + } + } + return false; +} + +/** By analyzing the paint (with an xfermode), we may decide we can take + special action. This enum lists our possible actions + */ +enum XferInterp { + kNormal_XferInterp, // no special interpretation, draw normally + kSrcOver_XferInterp, // draw as if in srcover mode + kSkipDrawing_XferInterp // draw nothing +}; + +static XferInterp interpret_xfermode(const SkPaint& paint, SkXfermode* xfer, + SkColorType deviceCT) { + SkXfermode::Mode mode; + + if (SkXfermode::AsMode(xfer, &mode)) { + switch (mode) { + case SkXfermode::kSrc_Mode: + if (just_solid_color(paint)) { + return kSrcOver_XferInterp; + } + break; + case SkXfermode::kDst_Mode: + return kSkipDrawing_XferInterp; + case SkXfermode::kSrcOver_Mode: + return kSrcOver_XferInterp; + case SkXfermode::kDstOver_Mode: + if (kRGB_565_SkColorType == deviceCT) { + return kSkipDrawing_XferInterp; + } + break; + case SkXfermode::kSrcIn_Mode: + if (kRGB_565_SkColorType == deviceCT && + just_solid_color(paint)) { + return kSrcOver_XferInterp; + } + break; + case SkXfermode::kDstIn_Mode: + if (just_solid_color(paint)) { + return kSkipDrawing_XferInterp; + } + break; + default: + break; + } + } + return kNormal_XferInterp; +} + +SkBlitter* SkBlitter::Choose(const SkBitmap& device, + const SkMatrix& matrix, + const SkPaint& origPaint, + SkTBlitterAllocator* allocator, + bool drawCoverage) { + SkASSERT(allocator != NULL); + + SkBlitter* blitter = NULL; + + // which check, in case we're being called by a client with a dummy device + // (e.g. they have a bounder that always aborts the draw) + if (kUnknown_SkColorType == device.colorType() || + (drawCoverage && (kAlpha_8_SkColorType != device.colorType()))) { + blitter = allocator->createT(); + return blitter; + } + + SkShader* shader = origPaint.getShader(); + SkColorFilter* cf = origPaint.getColorFilter(); + SkXfermode* mode = origPaint.getXfermode(); + Sk3DShader* shader3D = NULL; + + SkTCopyOnFirstWrite paint(origPaint); + + if (origPaint.getMaskFilter() != NULL && + origPaint.getMaskFilter()->getFormat() == SkMask::k3D_Format) { + shader3D = SkNEW_ARGS(Sk3DShader, (shader)); + // we know we haven't initialized lazyPaint yet, so just do it + paint.writable()->setShader(shader3D)->unref(); + shader = shader3D; + } + + if (NULL != mode) { + switch (interpret_xfermode(*paint, mode, device.colorType())) { + case kSrcOver_XferInterp: + mode = NULL; + paint.writable()->setXfermode(NULL); + break; + case kSkipDrawing_XferInterp:{ + blitter = allocator->createT(); + return blitter; + } + default: + break; + } + } + + /* + * If the xfermode is CLEAR, then we can completely ignore the installed + * color/shader/colorfilter, and just pretend we're SRC + color==0. This + * will fall into our optimizations for SRC mode. + */ + if (SkXfermode::IsMode(mode, SkXfermode::kClear_Mode)) { + SkPaint* p = paint.writable(); + shader = p->setShader(NULL); + cf = p->setColorFilter(NULL); + mode = p->setXfermodeMode(SkXfermode::kSrc_Mode); + p->setColor(0); + } + + if (NULL == shader) { + if (mode) { + // xfermodes (and filters) require shaders for our current blitters + shader = SkNEW(SkColorShader); + paint.writable()->setShader(shader)->unref(); + } else if (cf) { + // if no shader && no xfermode, we just apply the colorfilter to + // our color and move on. + SkPaint* writablePaint = paint.writable(); + writablePaint->setColor(cf->filterColor(paint->getColor())); + writablePaint->setColorFilter(NULL); + cf = NULL; + } + } + + if (cf) { + SkASSERT(shader); + shader = SkNEW_ARGS(SkFilterShader, (shader, cf)); + paint.writable()->setShader(shader)->unref(); + // blitters should ignore the presence/absence of a filter, since + // if there is one, the shader will take care of it. + } + + /* + * We need to have balanced calls to the shader: + * setContext + * endContext + * We make the first call here, in case it fails we can abort the draw. + * The endContext() call is made by the blitter (assuming setContext did + * not fail) in its destructor. + */ + if (shader && !shader->setContext(device, *paint, matrix)) { + blitter = allocator->createT(); + return blitter; + } + + + switch (device.colorType()) { + case kAlpha_8_SkColorType: + if (drawCoverage) { + SkASSERT(NULL == shader); + SkASSERT(NULL == paint->getXfermode()); + blitter = allocator->createT(device, *paint); + } else if (shader) { + blitter = allocator->createT(device, *paint); + } else { + blitter = allocator->createT(device, *paint); + } + break; + + case kRGB_565_SkColorType: + blitter = SkBlitter_ChooseD565(device, *paint, allocator); + break; + + case kPMColor_SkColorType: + if (shader) { + blitter = allocator->createT(device, *paint); + } else if (paint->getColor() == SK_ColorBLACK) { + blitter = allocator->createT(device, *paint); + } else if (paint->getAlpha() == 0xFF) { + blitter = allocator->createT(device, *paint); + } else { + blitter = allocator->createT(device, *paint); + } + break; + + default: + SkDEBUGFAIL("unsupported device config"); + blitter = allocator->createT(); + break; + } + + if (shader3D) { + SkBlitter* innerBlitter = blitter; + // innerBlitter was allocated by allocator, which will delete it. + blitter = allocator->createT(innerBlitter, shader3D); + } + return blitter; +} + +/////////////////////////////////////////////////////////////////////////////// + +const uint16_t gMask_0F0F = 0xF0F; +const uint32_t gMask_00FF00FF = 0xFF00FF; + +/////////////////////////////////////////////////////////////////////////////// + +SkShaderBlitter::SkShaderBlitter(const SkBitmap& device, const SkPaint& paint) + : INHERITED(device) { + fShader = paint.getShader(); + SkASSERT(fShader); + SkASSERT(fShader->setContextHasBeenCalled()); + + fShader->ref(); + fShaderFlags = fShader->getFlags(); +} + +SkShaderBlitter::~SkShaderBlitter() { + SkASSERT(fShader->setContextHasBeenCalled()); + fShader->endContext(); + fShader->unref(); +}