diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/core/SkConvolver.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/core/SkConvolver.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,461 @@ +// Copyright (c) 2011 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "SkConvolver.h" +#include "SkSize.h" +#include "SkTypes.h" + +namespace { + + // Converts the argument to an 8-bit unsigned value by clamping to the range + // 0-255. + inline unsigned char ClampTo8(int a) { + if (static_cast(a) < 256) { + return a; // Avoid the extra check in the common case. + } + if (a < 0) { + return 0; + } + return 255; + } + + // Stores a list of rows in a circular buffer. The usage is you write into it + // by calling AdvanceRow. It will keep track of which row in the buffer it + // should use next, and the total number of rows added. + class CircularRowBuffer { + public: + // The number of pixels in each row is given in |sourceRowPixelWidth|. + // The maximum number of rows needed in the buffer is |maxYFilterSize| + // (we only need to store enough rows for the biggest filter). + // + // We use the |firstInputRow| to compute the coordinates of all of the + // following rows returned by Advance(). + CircularRowBuffer(int destRowPixelWidth, int maxYFilterSize, + int firstInputRow) + : fRowByteWidth(destRowPixelWidth * 4), + fNumRows(maxYFilterSize), + fNextRow(0), + fNextRowCoordinate(firstInputRow) { + fBuffer.reset(fRowByteWidth * maxYFilterSize); + fRowAddresses.reset(fNumRows); + } + + // Moves to the next row in the buffer, returning a pointer to the beginning + // of it. + unsigned char* advanceRow() { + unsigned char* row = &fBuffer[fNextRow * fRowByteWidth]; + fNextRowCoordinate++; + + // Set the pointer to the next row to use, wrapping around if necessary. + fNextRow++; + if (fNextRow == fNumRows) { + fNextRow = 0; + } + return row; + } + + // Returns a pointer to an "unrolled" array of rows. These rows will start + // at the y coordinate placed into |*firstRowIndex| and will continue in + // order for the maximum number of rows in this circular buffer. + // + // The |firstRowIndex_| may be negative. This means the circular buffer + // starts before the top of the image (it hasn't been filled yet). + unsigned char* const* GetRowAddresses(int* firstRowIndex) { + // Example for a 4-element circular buffer holding coords 6-9. + // Row 0 Coord 8 + // Row 1 Coord 9 + // Row 2 Coord 6 <- fNextRow = 2, fNextRowCoordinate = 10. + // Row 3 Coord 7 + // + // The "next" row is also the first (lowest) coordinate. This computation + // may yield a negative value, but that's OK, the math will work out + // since the user of this buffer will compute the offset relative + // to the firstRowIndex and the negative rows will never be used. + *firstRowIndex = fNextRowCoordinate - fNumRows; + + int curRow = fNextRow; + for (int i = 0; i < fNumRows; i++) { + fRowAddresses[i] = &fBuffer[curRow * fRowByteWidth]; + + // Advance to the next row, wrapping if necessary. + curRow++; + if (curRow == fNumRows) { + curRow = 0; + } + } + return &fRowAddresses[0]; + } + + private: + // The buffer storing the rows. They are packed, each one fRowByteWidth. + SkTArray fBuffer; + + // Number of bytes per row in the |buffer|. + int fRowByteWidth; + + // The number of rows available in the buffer. + int fNumRows; + + // The next row index we should write into. This wraps around as the + // circular buffer is used. + int fNextRow; + + // The y coordinate of the |fNextRow|. This is incremented each time a + // new row is appended and does not wrap. + int fNextRowCoordinate; + + // Buffer used by GetRowAddresses(). + SkTArray fRowAddresses; + }; + +// Convolves horizontally along a single row. The row data is given in +// |srcData| and continues for the numValues() of the filter. +template + void ConvolveHorizontally(const unsigned char* srcData, + const SkConvolutionFilter1D& filter, + unsigned char* outRow) { + // Loop over each pixel on this row in the output image. + int numValues = filter.numValues(); + for (int outX = 0; outX < numValues; outX++) { + // Get the filter that determines the current output pixel. + int filterOffset, filterLength; + const SkConvolutionFilter1D::ConvolutionFixed* filterValues = + filter.FilterForValue(outX, &filterOffset, &filterLength); + + // Compute the first pixel in this row that the filter affects. It will + // touch |filterLength| pixels (4 bytes each) after this. + const unsigned char* rowToFilter = &srcData[filterOffset * 4]; + + // Apply the filter to the row to get the destination pixel in |accum|. + int accum[4] = {0}; + for (int filterX = 0; filterX < filterLength; filterX++) { + SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX]; + accum[0] += curFilter * rowToFilter[filterX * 4 + 0]; + accum[1] += curFilter * rowToFilter[filterX * 4 + 1]; + accum[2] += curFilter * rowToFilter[filterX * 4 + 2]; + if (hasAlpha) { + accum[3] += curFilter * rowToFilter[filterX * 4 + 3]; + } + } + + // Bring this value back in range. All of the filter scaling factors + // are in fixed point with kShiftBits bits of fractional part. + accum[0] >>= SkConvolutionFilter1D::kShiftBits; + accum[1] >>= SkConvolutionFilter1D::kShiftBits; + accum[2] >>= SkConvolutionFilter1D::kShiftBits; + if (hasAlpha) { + accum[3] >>= SkConvolutionFilter1D::kShiftBits; + } + + // Store the new pixel. + outRow[outX * 4 + 0] = ClampTo8(accum[0]); + outRow[outX * 4 + 1] = ClampTo8(accum[1]); + outRow[outX * 4 + 2] = ClampTo8(accum[2]); + if (hasAlpha) { + outRow[outX * 4 + 3] = ClampTo8(accum[3]); + } + } + } + +// Does vertical convolution to produce one output row. The filter values and +// length are given in the first two parameters. These are applied to each +// of the rows pointed to in the |sourceDataRows| array, with each row +// being |pixelWidth| wide. +// +// The output must have room for |pixelWidth * 4| bytes. +template + void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, + int filterLength, + unsigned char* const* sourceDataRows, + int pixelWidth, + unsigned char* outRow) { + // We go through each column in the output and do a vertical convolution, + // generating one output pixel each time. + for (int outX = 0; outX < pixelWidth; outX++) { + // Compute the number of bytes over in each row that the current column + // we're convolving starts at. The pixel will cover the next 4 bytes. + int byteOffset = outX * 4; + + // Apply the filter to one column of pixels. + int accum[4] = {0}; + for (int filterY = 0; filterY < filterLength; filterY++) { + SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY]; + accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0]; + accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1]; + accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2]; + if (hasAlpha) { + accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3]; + } + } + + // Bring this value back in range. All of the filter scaling factors + // are in fixed point with kShiftBits bits of precision. + accum[0] >>= SkConvolutionFilter1D::kShiftBits; + accum[1] >>= SkConvolutionFilter1D::kShiftBits; + accum[2] >>= SkConvolutionFilter1D::kShiftBits; + if (hasAlpha) { + accum[3] >>= SkConvolutionFilter1D::kShiftBits; + } + + // Store the new pixel. + outRow[byteOffset + 0] = ClampTo8(accum[0]); + outRow[byteOffset + 1] = ClampTo8(accum[1]); + outRow[byteOffset + 2] = ClampTo8(accum[2]); + if (hasAlpha) { + unsigned char alpha = ClampTo8(accum[3]); + + // Make sure the alpha channel doesn't come out smaller than any of the + // color channels. We use premultipled alpha channels, so this should + // never happen, but rounding errors will cause this from time to time. + // These "impossible" colors will cause overflows (and hence random pixel + // values) when the resulting bitmap is drawn to the screen. + // + // We only need to do this when generating the final output row (here). + int maxColorChannel = SkTMax(outRow[byteOffset + 0], + SkTMax(outRow[byteOffset + 1], + outRow[byteOffset + 2])); + if (alpha < maxColorChannel) { + outRow[byteOffset + 3] = maxColorChannel; + } else { + outRow[byteOffset + 3] = alpha; + } + } else { + // No alpha channel, the image is opaque. + outRow[byteOffset + 3] = 0xff; + } + } + } + + void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, + int filterLength, + unsigned char* const* sourceDataRows, + int pixelWidth, + unsigned char* outRow, + bool sourceHasAlpha) { + if (sourceHasAlpha) { + ConvolveVertically(filterValues, filterLength, + sourceDataRows, pixelWidth, + outRow); + } else { + ConvolveVertically(filterValues, filterLength, + sourceDataRows, pixelWidth, + outRow); + } + } + +} // namespace + +// SkConvolutionFilter1D --------------------------------------------------------- + +SkConvolutionFilter1D::SkConvolutionFilter1D() +: fMaxFilter(0) { +} + +SkConvolutionFilter1D::~SkConvolutionFilter1D() { +} + +void SkConvolutionFilter1D::AddFilter(int filterOffset, + const float* filterValues, + int filterLength) { + SkASSERT(filterLength > 0); + + SkTArray fixedValues; + fixedValues.reset(filterLength); + + for (int i = 0; i < filterLength; ++i) { + fixedValues.push_back(FloatToFixed(filterValues[i])); + } + + AddFilter(filterOffset, &fixedValues[0], filterLength); +} + +void SkConvolutionFilter1D::AddFilter(int filterOffset, + const ConvolutionFixed* filterValues, + int filterLength) { + // It is common for leading/trailing filter values to be zeros. In such + // cases it is beneficial to only store the central factors. + // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on + // a 1080p image this optimization gives a ~10% speed improvement. + int filterSize = filterLength; + int firstNonZero = 0; + while (firstNonZero < filterLength && filterValues[firstNonZero] == 0) { + firstNonZero++; + } + + if (firstNonZero < filterLength) { + // Here we have at least one non-zero factor. + int lastNonZero = filterLength - 1; + while (lastNonZero >= 0 && filterValues[lastNonZero] == 0) { + lastNonZero--; + } + + filterOffset += firstNonZero; + filterLength = lastNonZero + 1 - firstNonZero; + SkASSERT(filterLength > 0); + + for (int i = firstNonZero; i <= lastNonZero; i++) { + fFilterValues.push_back(filterValues[i]); + } + } else { + // Here all the factors were zeroes. + filterLength = 0; + } + + FilterInstance instance; + + // We pushed filterLength elements onto fFilterValues + instance.fDataLocation = (static_cast(fFilterValues.count()) - + filterLength); + instance.fOffset = filterOffset; + instance.fTrimmedLength = filterLength; + instance.fLength = filterSize; + fFilters.push_back(instance); + + fMaxFilter = SkTMax(fMaxFilter, filterLength); +} + +const SkConvolutionFilter1D::ConvolutionFixed* SkConvolutionFilter1D::GetSingleFilter( + int* specifiedFilterlength, + int* filterOffset, + int* filterLength) const { + const FilterInstance& filter = fFilters[0]; + *filterOffset = filter.fOffset; + *filterLength = filter.fTrimmedLength; + *specifiedFilterlength = filter.fLength; + if (filter.fTrimmedLength == 0) { + return NULL; + } + + return &fFilterValues[filter.fDataLocation]; +} + +void BGRAConvolve2D(const unsigned char* sourceData, + int sourceByteRowStride, + bool sourceHasAlpha, + const SkConvolutionFilter1D& filterX, + const SkConvolutionFilter1D& filterY, + int outputByteRowStride, + unsigned char* output, + const SkConvolutionProcs& convolveProcs, + bool useSimdIfPossible) { + + int maxYFilterSize = filterY.maxFilter(); + + // The next row in the input that we will generate a horizontally + // convolved row for. If the filter doesn't start at the beginning of the + // image (this is the case when we are only resizing a subset), then we + // don't want to generate any output rows before that. Compute the starting + // row for convolution as the first pixel for the first vertical filter. + int filterOffset, filterLength; + const SkConvolutionFilter1D::ConvolutionFixed* filterValues = + filterY.FilterForValue(0, &filterOffset, &filterLength); + int nextXRow = filterOffset; + + // We loop over each row in the input doing a horizontal convolution. This + // will result in a horizontally convolved image. We write the results into + // a circular buffer of convolved rows and do vertical convolution as rows + // are available. This prevents us from having to store the entire + // intermediate image and helps cache coherency. + // We will need four extra rows to allow horizontal convolution could be done + // simultaneously. We also pad each row in row buffer to be aligned-up to + // 16 bytes. + // TODO(jiesun): We do not use aligned load from row buffer in vertical + // convolution pass yet. Somehow Windows does not like it. + int rowBufferWidth = (filterX.numValues() + 15) & ~0xF; + int rowBufferHeight = maxYFilterSize + + (convolveProcs.fConvolve4RowsHorizontally ? 4 : 0); + CircularRowBuffer rowBuffer(rowBufferWidth, + rowBufferHeight, + filterOffset); + + // Loop over every possible output row, processing just enough horizontal + // convolutions to run each subsequent vertical convolution. + SkASSERT(outputByteRowStride >= filterX.numValues() * 4); + int numOutputRows = filterY.numValues(); + + // We need to check which is the last line to convolve before we advance 4 + // lines in one iteration. + int lastFilterOffset, lastFilterLength; + + // SSE2 can access up to 3 extra pixels past the end of the + // buffer. At the bottom of the image, we have to be careful + // not to access data past the end of the buffer. Normally + // we fall back to the C++ implementation for the last row. + // If the last row is less than 3 pixels wide, we may have to fall + // back to the C++ version for more rows. Compute how many + // rows we need to avoid the SSE implementation for here. + filterX.FilterForValue(filterX.numValues() - 1, &lastFilterOffset, + &lastFilterLength); + int avoidSimdRows = 1 + convolveProcs.fExtraHorizontalReads / + (lastFilterOffset + lastFilterLength); + + filterY.FilterForValue(numOutputRows - 1, &lastFilterOffset, + &lastFilterLength); + + for (int outY = 0; outY < numOutputRows; outY++) { + filterValues = filterY.FilterForValue(outY, + &filterOffset, &filterLength); + + // Generate output rows until we have enough to run the current filter. + while (nextXRow < filterOffset + filterLength) { + if (convolveProcs.fConvolve4RowsHorizontally && + nextXRow + 3 < lastFilterOffset + lastFilterLength - + avoidSimdRows) { + const unsigned char* src[4]; + unsigned char* outRow[4]; + for (int i = 0; i < 4; ++i) { + src[i] = &sourceData[(nextXRow + i) * sourceByteRowStride]; + outRow[i] = rowBuffer.advanceRow(); + } + convolveProcs.fConvolve4RowsHorizontally(src, filterX, outRow); + nextXRow += 4; + } else { + // Check if we need to avoid SSE2 for this row. + if (convolveProcs.fConvolveHorizontally && + nextXRow < lastFilterOffset + lastFilterLength - + avoidSimdRows) { + convolveProcs.fConvolveHorizontally( + &sourceData[nextXRow * sourceByteRowStride], + filterX, rowBuffer.advanceRow(), sourceHasAlpha); + } else { + if (sourceHasAlpha) { + ConvolveHorizontally( + &sourceData[nextXRow * sourceByteRowStride], + filterX, rowBuffer.advanceRow()); + } else { + ConvolveHorizontally( + &sourceData[nextXRow * sourceByteRowStride], + filterX, rowBuffer.advanceRow()); + } + } + nextXRow++; + } + } + + // Compute where in the output image this row of final data will go. + unsigned char* curOutputRow = &output[outY * outputByteRowStride]; + + // Get the list of rows that the circular buffer has, in order. + int firstRowInCircularBuffer; + unsigned char* const* rowsToConvolve = + rowBuffer.GetRowAddresses(&firstRowInCircularBuffer); + + // Now compute the start of the subset of those rows that the filter + // needs. + unsigned char* const* firstRowForFilter = + &rowsToConvolve[filterOffset - firstRowInCircularBuffer]; + + if (convolveProcs.fConvolveVertically) { + convolveProcs.fConvolveVertically(filterValues, filterLength, + firstRowForFilter, + filterX.numValues(), curOutputRow, + sourceHasAlpha); + } else { + ConvolveVertically(filterValues, filterLength, + firstRowForFilter, + filterX.numValues(), curOutputRow, + sourceHasAlpha); + } + } +}