diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/core/SkCubicClipper.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/core/SkCubicClipper.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,154 @@ + +/* + * Copyright 2009 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#include "SkCubicClipper.h" +#include "SkGeometry.h" + +SkCubicClipper::SkCubicClipper() { + fClip.setEmpty(); +} + +void SkCubicClipper::setClip(const SkIRect& clip) { + // conver to scalars, since that's where we'll see the points + fClip.set(clip); +} + + +static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) { + SkScalar ycrv[4]; + ycrv[0] = pts[0].fY - y; + ycrv[1] = pts[1].fY - y; + ycrv[2] = pts[2].fY - y; + ycrv[3] = pts[3].fY - y; + +#ifdef NEWTON_RAPHSON // Quadratic convergence, typically <= 3 iterations. + // Initial guess. + // TODO(turk): Check for zero denominator? Shouldn't happen unless the curve + // is not only monotonic but degenerate. + SkScalar t1 = ycrv[0] / (ycrv[0] - ycrv[3]); + + // Newton's iterations. + const SkScalar tol = SK_Scalar1 / 16384; // This leaves 2 fixed noise bits. + SkScalar t0; + const int maxiters = 5; + int iters = 0; + bool converged; + do { + t0 = t1; + SkScalar y01 = SkScalarInterp(ycrv[0], ycrv[1], t0); + SkScalar y12 = SkScalarInterp(ycrv[1], ycrv[2], t0); + SkScalar y23 = SkScalarInterp(ycrv[2], ycrv[3], t0); + SkScalar y012 = SkScalarInterp(y01, y12, t0); + SkScalar y123 = SkScalarInterp(y12, y23, t0); + SkScalar y0123 = SkScalarInterp(y012, y123, t0); + SkScalar yder = (y123 - y012) * 3; + // TODO(turk): check for yder==0: horizontal. + t1 -= y0123 / yder; + converged = SkScalarAbs(t1 - t0) <= tol; // NaN-safe + ++iters; + } while (!converged && (iters < maxiters)); + *t = t1; // Return the result. + + // The result might be valid, even if outside of the range [0, 1], but + // we never evaluate a Bezier outside this interval, so we return false. + if (t1 < 0 || t1 > SK_Scalar1) + return false; // This shouldn't happen, but check anyway. + return converged; + +#else // BISECTION // Linear convergence, typically 16 iterations. + + // Check that the endpoints straddle zero. + SkScalar tNeg, tPos; // Negative and positive function parameters. + if (ycrv[0] < 0) { + if (ycrv[3] < 0) + return false; + tNeg = 0; + tPos = SK_Scalar1; + } else if (ycrv[0] > 0) { + if (ycrv[3] > 0) + return false; + tNeg = SK_Scalar1; + tPos = 0; + } else { + *t = 0; + return true; + } + + const SkScalar tol = SK_Scalar1 / 65536; // 1 for fixed, 1e-5 for float. + int iters = 0; + do { + SkScalar tMid = (tPos + tNeg) / 2; + SkScalar y01 = SkScalarInterp(ycrv[0], ycrv[1], tMid); + SkScalar y12 = SkScalarInterp(ycrv[1], ycrv[2], tMid); + SkScalar y23 = SkScalarInterp(ycrv[2], ycrv[3], tMid); + SkScalar y012 = SkScalarInterp(y01, y12, tMid); + SkScalar y123 = SkScalarInterp(y12, y23, tMid); + SkScalar y0123 = SkScalarInterp(y012, y123, tMid); + if (y0123 == 0) { + *t = tMid; + return true; + } + if (y0123 < 0) tNeg = tMid; + else tPos = tMid; + ++iters; + } while (!(SkScalarAbs(tPos - tNeg) <= tol)); // Nan-safe + + *t = (tNeg + tPos) / 2; + return true; +#endif // BISECTION +} + + +bool SkCubicClipper::clipCubic(const SkPoint srcPts[4], SkPoint dst[4]) { + bool reverse; + + // we need the data to be monotonically descending in Y + if (srcPts[0].fY > srcPts[3].fY) { + dst[0] = srcPts[3]; + dst[1] = srcPts[2]; + dst[2] = srcPts[1]; + dst[3] = srcPts[0]; + reverse = true; + } else { + memcpy(dst, srcPts, 4 * sizeof(SkPoint)); + reverse = false; + } + + // are we completely above or below + const SkScalar ctop = fClip.fTop; + const SkScalar cbot = fClip.fBottom; + if (dst[3].fY <= ctop || dst[0].fY >= cbot) { + return false; + } + + SkScalar t; + SkPoint tmp[7]; // for SkChopCubicAt + + // are we partially above + if (dst[0].fY < ctop && chopMonoCubicAtY(dst, ctop, &t)) { + SkChopCubicAt(dst, tmp, t); + dst[0] = tmp[3]; + dst[1] = tmp[4]; + dst[2] = tmp[5]; + } + + // are we partially below + if (dst[3].fY > cbot && chopMonoCubicAtY(dst, cbot, &t)) { + SkChopCubicAt(dst, tmp, t); + dst[1] = tmp[1]; + dst[2] = tmp[2]; + dst[3] = tmp[3]; + } + + if (reverse) { + SkTSwap(dst[0], dst[3]); + SkTSwap(dst[1], dst[2]); + } + return true; +}