diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/core/SkPathRef.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/core/SkPathRef.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,492 @@ +/* + * Copyright 2013 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "SkBuffer.h" +#include "SkOnce.h" +#include "SkPath.h" +#include "SkPathRef.h" + +////////////////////////////////////////////////////////////////////////////// +SkPathRef::Editor::Editor(SkAutoTUnref* pathRef, + int incReserveVerbs, + int incReservePoints) +{ + if ((*pathRef)->unique()) { + (*pathRef)->incReserve(incReserveVerbs, incReservePoints); + } else { + SkPathRef* copy = SkNEW(SkPathRef); + copy->copy(**pathRef, incReserveVerbs, incReservePoints); + pathRef->reset(copy); + } + fPathRef = *pathRef; + fPathRef->fGenerationID = 0; + SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);) +} + +////////////////////////////////////////////////////////////////////////////// +static SkPathRef* gEmptyPathRef = NULL; +static void cleanup_gEmptyPathRef() { gEmptyPathRef->unref(); } + +void SkPathRef::CreateEmptyImpl(int) { + gEmptyPathRef = SkNEW(SkPathRef); + gEmptyPathRef->computeBounds(); // Preemptively avoid a race to clear fBoundsIsDirty. +} + +SkPathRef* SkPathRef::CreateEmpty() { + SK_DECLARE_STATIC_ONCE(once); + SkOnce(&once, SkPathRef::CreateEmptyImpl, 0, cleanup_gEmptyPathRef); + return SkRef(gEmptyPathRef); +} + +void SkPathRef::CreateTransformedCopy(SkAutoTUnref* dst, + const SkPathRef& src, + const SkMatrix& matrix) { + SkDEBUGCODE(src.validate();) + if (matrix.isIdentity()) { + if (*dst != &src) { + src.ref(); + dst->reset(const_cast(&src)); + SkDEBUGCODE((*dst)->validate();) + } + return; + } + + if (!(*dst)->unique()) { + dst->reset(SkNEW(SkPathRef)); + } + + if (*dst != &src) { + (*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count()); + memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t)); + (*dst)->fConicWeights = src.fConicWeights; + } + + SkASSERT((*dst)->countPoints() == src.countPoints()); + SkASSERT((*dst)->countVerbs() == src.countVerbs()); + SkASSERT((*dst)->fConicWeights.count() == src.fConicWeights.count()); + + // Need to check this here in case (&src == dst) + bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1; + + matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt); + + /* + * Here we optimize the bounds computation, by noting if the bounds are + * already known, and if so, we just transform those as well and mark + * them as "known", rather than force the transformed path to have to + * recompute them. + * + * Special gotchas if the path is effectively empty (<= 1 point) or + * if it is non-finite. In those cases bounds need to stay empty, + * regardless of the matrix. + */ + if (canXformBounds) { + (*dst)->fBoundsIsDirty = false; + if (src.fIsFinite) { + matrix.mapRect(&(*dst)->fBounds, src.fBounds); + if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) { + (*dst)->fBounds.setEmpty(); + } + } else { + (*dst)->fIsFinite = false; + (*dst)->fBounds.setEmpty(); + } + } else { + (*dst)->fBoundsIsDirty = true; + } + + (*dst)->fSegmentMask = src.fSegmentMask; + + // It's an oval only if it stays a rect. + (*dst)->fIsOval = src.fIsOval && matrix.rectStaysRect(); + + SkDEBUGCODE((*dst)->validate();) +} + +SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer) { + SkPathRef* ref = SkNEW(SkPathRef); + bool isOval; + uint8_t segmentMask; + + int32_t packed; + if (!buffer->readS32(&packed)) { + SkDELETE(ref); + return NULL; + } + + ref->fIsFinite = (packed >> kIsFinite_SerializationShift) & 1; + segmentMask = (packed >> kSegmentMask_SerializationShift) & 0xF; + isOval = (packed >> kIsOval_SerializationShift) & 1; + + int32_t verbCount, pointCount, conicCount; + if (!buffer->readU32(&(ref->fGenerationID)) || + !buffer->readS32(&verbCount) || + !buffer->readS32(&pointCount) || + !buffer->readS32(&conicCount)) { + SkDELETE(ref); + return NULL; + } + + ref->resetToSize(verbCount, pointCount, conicCount); + SkASSERT(verbCount == ref->countVerbs()); + SkASSERT(pointCount == ref->countPoints()); + SkASSERT(conicCount == ref->fConicWeights.count()); + + if (!buffer->read(ref->verbsMemWritable(), verbCount * sizeof(uint8_t)) || + !buffer->read(ref->fPoints, pointCount * sizeof(SkPoint)) || + !buffer->read(ref->fConicWeights.begin(), conicCount * sizeof(SkScalar)) || + !buffer->read(&ref->fBounds, sizeof(SkRect))) { + SkDELETE(ref); + return NULL; + } + ref->fBoundsIsDirty = false; + + // resetToSize clears fSegmentMask and fIsOval + ref->fSegmentMask = segmentMask; + ref->fIsOval = isOval; + return ref; +} + +void SkPathRef::Rewind(SkAutoTUnref* pathRef) { + if ((*pathRef)->unique()) { + SkDEBUGCODE((*pathRef)->validate();) + (*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite + (*pathRef)->fVerbCnt = 0; + (*pathRef)->fPointCnt = 0; + (*pathRef)->fFreeSpace = (*pathRef)->currSize(); + (*pathRef)->fGenerationID = 0; + (*pathRef)->fConicWeights.rewind(); + (*pathRef)->fSegmentMask = 0; + (*pathRef)->fIsOval = false; + SkDEBUGCODE((*pathRef)->validate();) + } else { + int oldVCnt = (*pathRef)->countVerbs(); + int oldPCnt = (*pathRef)->countPoints(); + pathRef->reset(SkNEW(SkPathRef)); + (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt); + } +} + +bool SkPathRef::operator== (const SkPathRef& ref) const { + SkDEBUGCODE(this->validate();) + SkDEBUGCODE(ref.validate();) + + // We explicitly check fSegmentMask as a quick-reject. We could skip it, + // since it is only a cache of info in the fVerbs, but its a fast way to + // notice a difference + if (fSegmentMask != ref.fSegmentMask) { + return false; + } + + bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; +#ifdef SK_RELEASE + if (genIDMatch) { + return true; + } +#endif + if (fPointCnt != ref.fPointCnt || + fVerbCnt != ref.fVerbCnt) { + SkASSERT(!genIDMatch); + return false; + } + if (0 != memcmp(this->verbsMemBegin(), + ref.verbsMemBegin(), + ref.fVerbCnt * sizeof(uint8_t))) { + SkASSERT(!genIDMatch); + return false; + } + if (0 != memcmp(this->points(), + ref.points(), + ref.fPointCnt * sizeof(SkPoint))) { + SkASSERT(!genIDMatch); + return false; + } + if (fConicWeights != ref.fConicWeights) { + SkASSERT(!genIDMatch); + return false; + } + // We've done the work to determine that these are equal. If either has a zero genID, copy + // the other's. If both are 0 then genID() will compute the next ID. + if (0 == fGenerationID) { + fGenerationID = ref.genID(); + } else if (0 == ref.fGenerationID) { + ref.fGenerationID = this->genID(); + } + return true; +} + +void SkPathRef::writeToBuffer(SkWBuffer* buffer) const { + SkDEBUGCODE(this->validate();) + SkDEBUGCODE(size_t beforePos = buffer->pos();) + + // Call getBounds() to ensure (as a side-effect) that fBounds + // and fIsFinite are computed. + const SkRect& bounds = this->getBounds(); + + int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) | + ((fIsOval & 1) << kIsOval_SerializationShift) | + (fSegmentMask << kSegmentMask_SerializationShift); + buffer->write32(packed); + + // TODO: write gen ID here. Problem: We don't know if we're cross process or not from + // SkWBuffer. Until this is fixed we write 0. + buffer->write32(0); + buffer->write32(fVerbCnt); + buffer->write32(fPointCnt); + buffer->write32(fConicWeights.count()); + buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t)); + buffer->write(fPoints, fPointCnt * sizeof(SkPoint)); + buffer->write(fConicWeights.begin(), fConicWeights.bytes()); + buffer->write(&bounds, sizeof(bounds)); + + SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize()); +} + +uint32_t SkPathRef::writeSize() const { + return uint32_t(5 * sizeof(uint32_t) + + fVerbCnt * sizeof(uint8_t) + + fPointCnt * sizeof(SkPoint) + + fConicWeights.bytes() + + sizeof(SkRect)); +} + +void SkPathRef::copy(const SkPathRef& ref, + int additionalReserveVerbs, + int additionalReservePoints) { + SkDEBUGCODE(this->validate();) + this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(), + additionalReserveVerbs, additionalReservePoints); + memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t)); + memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint)); + fConicWeights = ref.fConicWeights; + // We could call genID() here to force a real ID (instead of 0). However, if we're making + // a copy then presumably we intend to make a modification immediately afterwards. + fGenerationID = ref.fGenerationID; + fBoundsIsDirty = ref.fBoundsIsDirty; + if (!fBoundsIsDirty) { + fBounds = ref.fBounds; + fIsFinite = ref.fIsFinite; + } + fSegmentMask = ref.fSegmentMask; + fIsOval = ref.fIsOval; + SkDEBUGCODE(this->validate();) +} + +SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb, + int numVbs, + SkScalar** weights) { + // This value is just made-up for now. When count is 4, calling memset was much + // slower than just writing the loop. This seems odd, and hopefully in the + // future this will appear to have been a fluke... + static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16; + + SkDEBUGCODE(this->validate();) + int pCnt; + bool dirtyAfterEdit = true; + switch (verb) { + case SkPath::kMove_Verb: + pCnt = numVbs; + dirtyAfterEdit = false; + break; + case SkPath::kLine_Verb: + fSegmentMask |= SkPath::kLine_SegmentMask; + pCnt = numVbs; + break; + case SkPath::kQuad_Verb: + fSegmentMask |= SkPath::kQuad_SegmentMask; + pCnt = 2 * numVbs; + break; + case SkPath::kConic_Verb: + fSegmentMask |= SkPath::kConic_SegmentMask; + pCnt = 2 * numVbs; + break; + case SkPath::kCubic_Verb: + fSegmentMask |= SkPath::kCubic_SegmentMask; + pCnt = 3 * numVbs; + break; + case SkPath::kClose_Verb: + SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb"); + pCnt = 0; + dirtyAfterEdit = false; + break; + case SkPath::kDone_Verb: + SkDEBUGFAIL("growForRepeatedVerb called for kDone"); + // fall through + default: + SkDEBUGFAIL("default should not be reached"); + pCnt = 0; + dirtyAfterEdit = false; + } + + size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint); + this->makeSpace(space); + + SkPoint* ret = fPoints + fPointCnt; + uint8_t* vb = fVerbs - fVerbCnt; + + // cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to + // be 0, the compiler will remove the test/branch entirely. + if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) { + memset(vb - numVbs, verb, numVbs); + } else { + for (int i = 0; i < numVbs; ++i) { + vb[~i] = verb; + } + } + + fVerbCnt += numVbs; + fPointCnt += pCnt; + fFreeSpace -= space; + fBoundsIsDirty = true; // this also invalidates fIsFinite + if (dirtyAfterEdit) { + fIsOval = false; + } + + if (SkPath::kConic_Verb == verb) { + SkASSERT(NULL != weights); + *weights = fConicWeights.append(numVbs); + } + + SkDEBUGCODE(this->validate();) + return ret; +} + +SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) { + SkDEBUGCODE(this->validate();) + int pCnt; + bool dirtyAfterEdit = true; + switch (verb) { + case SkPath::kMove_Verb: + pCnt = 1; + dirtyAfterEdit = false; + break; + case SkPath::kLine_Verb: + fSegmentMask |= SkPath::kLine_SegmentMask; + pCnt = 1; + break; + case SkPath::kQuad_Verb: + fSegmentMask |= SkPath::kQuad_SegmentMask; + pCnt = 2; + break; + case SkPath::kConic_Verb: + fSegmentMask |= SkPath::kConic_SegmentMask; + pCnt = 2; + break; + case SkPath::kCubic_Verb: + fSegmentMask |= SkPath::kCubic_SegmentMask; + pCnt = 3; + break; + case SkPath::kClose_Verb: + pCnt = 0; + dirtyAfterEdit = false; + break; + case SkPath::kDone_Verb: + SkDEBUGFAIL("growForVerb called for kDone"); + // fall through + default: + SkDEBUGFAIL("default is not reached"); + dirtyAfterEdit = false; + pCnt = 0; + } + size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint); + this->makeSpace(space); + this->fVerbs[~fVerbCnt] = verb; + SkPoint* ret = fPoints + fPointCnt; + fVerbCnt += 1; + fPointCnt += pCnt; + fFreeSpace -= space; + fBoundsIsDirty = true; // this also invalidates fIsFinite + if (dirtyAfterEdit) { + fIsOval = false; + } + + if (SkPath::kConic_Verb == verb) { + *fConicWeights.append() = weight; + } + + SkDEBUGCODE(this->validate();) + return ret; +} + +uint32_t SkPathRef::genID() const { + SkASSERT(!fEditorsAttached); + static const uint32_t kMask = (static_cast(1) << SkPath::kPathRefGenIDBitCnt) - 1; + if (!fGenerationID) { + if (0 == fPointCnt && 0 == fVerbCnt) { + fGenerationID = kEmptyGenID; + } else { + static int32_t gPathRefGenerationID; + // do a loop in case our global wraps around, as we never want to return a 0 or the + // empty ID + do { + fGenerationID = (sk_atomic_inc(&gPathRefGenerationID) + 1) & kMask; + } while (fGenerationID <= kEmptyGenID); + } + } + return fGenerationID; +} + +#ifdef SK_DEBUG +void SkPathRef::validate() const { + this->INHERITED::validate(); + SkASSERT(static_cast(fFreeSpace) >= 0); + SkASSERT(reinterpret_cast(fVerbs) - reinterpret_cast(fPoints) >= 0); + SkASSERT((NULL == fPoints) == (NULL == fVerbs)); + SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); + SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); + SkASSERT(!(NULL == fPoints && fPointCnt)); + SkASSERT(!(NULL == fVerbs && fVerbCnt)); + SkASSERT(this->currSize() == + fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt); + + if (!fBoundsIsDirty && !fBounds.isEmpty()) { + bool isFinite = true; + for (int i = 0; i < fPointCnt; ++i) { + SkASSERT(!fPoints[i].isFinite() || ( + fBounds.fLeft - fPoints[i].fX < SK_ScalarNearlyZero && + fPoints[i].fX - fBounds.fRight < SK_ScalarNearlyZero && + fBounds.fTop - fPoints[i].fY < SK_ScalarNearlyZero && + fPoints[i].fY - fBounds.fBottom < SK_ScalarNearlyZero)); + if (!fPoints[i].isFinite()) { + isFinite = false; + } + } + SkASSERT(SkToBool(fIsFinite) == isFinite); + } + +#ifdef SK_DEBUG_PATH + uint32_t mask = 0; + for (int i = 0; i < fVerbCnt; ++i) { + switch (fVerbs[~i]) { + case SkPath::kMove_Verb: + break; + case SkPath::kLine_Verb: + mask |= SkPath::kLine_SegmentMask; + break; + case SkPath::kQuad_Verb: + mask |= SkPath::kQuad_SegmentMask; + break; + case SkPath::kConic_Verb: + mask |= SkPath::kConic_SegmentMask; + break; + case SkPath::kCubic_Verb: + mask |= SkPath::kCubic_SegmentMask; + break; + case SkPath::kClose_Verb: + break; + case SkPath::kDone_Verb: + SkDEBUGFAIL("Done verb shouldn't be recorded."); + break; + default: + SkDEBUGFAIL("Unknown Verb"); + break; + } + } + SkASSERT(mask == fSegmentMask); +#endif // SK_DEBUG_PATH +} +#endif