diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/core/SkPoint.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/core/SkPoint.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,257 @@ + +/* + * Copyright 2008 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#include "SkPoint.h" + +void SkIPoint::rotateCW(SkIPoint* dst) const { + SkASSERT(dst); + + // use a tmp in case this == dst + int32_t tmp = fX; + dst->fX = -fY; + dst->fY = tmp; +} + +void SkIPoint::rotateCCW(SkIPoint* dst) const { + SkASSERT(dst); + + // use a tmp in case this == dst + int32_t tmp = fX; + dst->fX = fY; + dst->fY = -tmp; +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) { + SkASSERT(stride >= sizeof(SkPoint)); + + ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l), + SkIntToScalar(t)); + ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l), + SkIntToScalar(b)); + ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r), + SkIntToScalar(b)); + ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r), + SkIntToScalar(t)); +} + +void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, + size_t stride) { + SkASSERT(stride >= sizeof(SkPoint)); + + ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t); + ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b); + ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b); + ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t); +} + +void SkPoint::rotateCW(SkPoint* dst) const { + SkASSERT(dst); + + // use a tmp in case this == dst + SkScalar tmp = fX; + dst->fX = -fY; + dst->fY = tmp; +} + +void SkPoint::rotateCCW(SkPoint* dst) const { + SkASSERT(dst); + + // use a tmp in case this == dst + SkScalar tmp = fX; + dst->fX = fY; + dst->fY = -tmp; +} + +void SkPoint::scale(SkScalar scale, SkPoint* dst) const { + SkASSERT(dst); + dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale)); +} + +bool SkPoint::normalize() { + return this->setLength(fX, fY, SK_Scalar1); +} + +bool SkPoint::setNormalize(SkScalar x, SkScalar y) { + return this->setLength(x, y, SK_Scalar1); +} + +bool SkPoint::setLength(SkScalar length) { + return this->setLength(fX, fY, length); +} + +// Returns the square of the Euclidian distance to (dx,dy). +static inline float getLengthSquared(float dx, float dy) { + return dx * dx + dy * dy; +} + +// Calculates the square of the Euclidian distance to (dx,dy) and stores it in +// *lengthSquared. Returns true if the distance is judged to be "nearly zero". +// +// This logic is encapsulated in a helper method to make it explicit that we +// always perform this check in the same manner, to avoid inconsistencies +// (see http://code.google.com/p/skia/issues/detail?id=560 ). +static inline bool isLengthNearlyZero(float dx, float dy, + float *lengthSquared) { + *lengthSquared = getLengthSquared(dx, dy); + return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero); +} + +SkScalar SkPoint::Normalize(SkPoint* pt) { + float x = pt->fX; + float y = pt->fY; + float mag2; + if (isLengthNearlyZero(x, y, &mag2)) { + return 0; + } + + float mag, scale; + if (SkScalarIsFinite(mag2)) { + mag = sk_float_sqrt(mag2); + scale = 1 / mag; + } else { + // our mag2 step overflowed to infinity, so use doubles instead. + // much slower, but needed when x or y are very large, other wise we + // divide by inf. and return (0,0) vector. + double xx = x; + double yy = y; + double magmag = sqrt(xx * xx + yy * yy); + mag = (float)magmag; + // we perform the divide with the double magmag, to stay exactly the + // same as setLength. It would be faster to perform the divide with + // mag, but it is possible that mag has overflowed to inf. but still + // have a non-zero value for scale (thanks to denormalized numbers). + scale = (float)(1 / magmag); + } + pt->set(x * scale, y * scale); + return mag; +} + +SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { + float mag2 = dx * dx + dy * dy; + if (SkScalarIsFinite(mag2)) { + return sk_float_sqrt(mag2); + } else { + double xx = dx; + double yy = dy; + return (float)sqrt(xx * xx + yy * yy); + } +} + +/* + * We have to worry about 2 tricky conditions: + * 1. underflow of mag2 (compared against nearlyzero^2) + * 2. overflow of mag2 (compared w/ isfinite) + * + * If we underflow, we return false. If we overflow, we compute again using + * doubles, which is much slower (3x in a desktop test) but will not overflow. + */ +bool SkPoint::setLength(float x, float y, float length) { + float mag2; + if (isLengthNearlyZero(x, y, &mag2)) { + return false; + } + + float scale; + if (SkScalarIsFinite(mag2)) { + scale = length / sk_float_sqrt(mag2); + } else { + // our mag2 step overflowed to infinity, so use doubles instead. + // much slower, but needed when x or y are very large, other wise we + // divide by inf. and return (0,0) vector. + double xx = x; + double yy = y; + scale = (float)(length / sqrt(xx * xx + yy * yy)); + } + fX = x * scale; + fY = y * scale; + return true; +} + +bool SkPoint::setLengthFast(float length) { + return this->setLengthFast(fX, fY, length); +} + +bool SkPoint::setLengthFast(float x, float y, float length) { + float mag2; + if (isLengthNearlyZero(x, y, &mag2)) { + return false; + } + + float scale; + if (SkScalarIsFinite(mag2)) { + scale = length * sk_float_rsqrt(mag2); // <--- this is the difference + } else { + // our mag2 step overflowed to infinity, so use doubles instead. + // much slower, but needed when x or y are very large, other wise we + // divide by inf. and return (0,0) vector. + double xx = x; + double yy = y; + scale = (float)(length / sqrt(xx * xx + yy * yy)); + } + fX = x * scale; + fY = y * scale; + return true; +} + + +/////////////////////////////////////////////////////////////////////////////// + +SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a, + const SkPoint& b, + Side* side) const { + + SkVector u = b - a; + SkVector v = *this - a; + + SkScalar uLengthSqd = u.lengthSqd(); + SkScalar det = u.cross(v); + if (NULL != side) { + SkASSERT(-1 == SkPoint::kLeft_Side && + 0 == SkPoint::kOn_Side && + 1 == kRight_Side); + *side = (Side) SkScalarSignAsInt(det); + } + return SkScalarMulDiv(det, det, uLengthSqd); +} + +SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a, + const SkPoint& b) const { + // See comments to distanceToLineBetweenSqd. If the projection of c onto + // u is between a and b then this returns the same result as that + // function. Otherwise, it returns the distance to the closer of a and + // b. Let the projection of v onto u be v'. There are three cases: + // 1. v' points opposite to u. c is not between a and b and is closer + // to a than b. + // 2. v' points along u and has magnitude less than y. c is between + // a and b and the distance to the segment is the same as distance + // to the line ab. + // 3. v' points along u and has greater magnitude than u. c is not + // not between a and b and is closer to b than a. + // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're + // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise + // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to + // avoid a sqrt to compute |u|. + + SkVector u = b - a; + SkVector v = *this - a; + + SkScalar uLengthSqd = u.lengthSqd(); + SkScalar uDotV = SkPoint::DotProduct(u, v); + + if (uDotV <= 0) { + return v.lengthSqd(); + } else if (uDotV > uLengthSqd) { + return b.distanceToSqd(*this); + } else { + SkScalar det = u.cross(v); + return SkScalarMulDiv(det, det, uLengthSqd); + } +}