diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/core/SkRTree.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/core/SkRTree.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,482 @@ +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "SkRTree.h" +#include "SkTSort.h" + +static inline uint32_t get_area(const SkIRect& rect); +static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2); +static inline uint32_t get_margin(const SkIRect& rect); +static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2); +static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out); + +/////////////////////////////////////////////////////////////////////////////////////////////////// + +SkRTree* SkRTree::Create(int minChildren, int maxChildren, SkScalar aspectRatio, + bool sortWhenBulkLoading) { + if (minChildren < maxChildren && (maxChildren + 1) / 2 >= minChildren && + minChildren > 0 && maxChildren < static_cast(SK_MaxU16)) { + return new SkRTree(minChildren, maxChildren, aspectRatio, sortWhenBulkLoading); + } + return NULL; +} + +SkRTree::SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio, + bool sortWhenBulkLoading) + : fMinChildren(minChildren) + , fMaxChildren(maxChildren) + , fNodeSize(sizeof(Node) + sizeof(Branch) * maxChildren) + , fCount(0) + , fNodes(fNodeSize * 256) + , fAspectRatio(aspectRatio) + , fSortWhenBulkLoading(sortWhenBulkLoading) { + SkASSERT(minChildren < maxChildren && minChildren > 0 && maxChildren < + static_cast(SK_MaxU16)); + SkASSERT((maxChildren + 1) / 2 >= minChildren); + this->validate(); +} + +SkRTree::~SkRTree() { + this->clear(); +} + +void SkRTree::insert(void* data, const SkIRect& bounds, bool defer) { + this->validate(); + if (bounds.isEmpty()) { + SkASSERT(false); + return; + } + Branch newBranch; + newBranch.fBounds = bounds; + newBranch.fChild.data = data; + if (this->isEmpty()) { + // since a bulk-load into an existing tree is as of yet unimplemented (and arguably not + // of vital importance right now), we only batch up inserts if the tree is empty. + if (defer) { + fDeferredInserts.push(newBranch); + return; + } else { + fRoot.fChild.subtree = allocateNode(0); + fRoot.fChild.subtree->fNumChildren = 0; + } + } + + Branch* newSibling = insert(fRoot.fChild.subtree, &newBranch); + fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree); + + if (NULL != newSibling) { + Node* oldRoot = fRoot.fChild.subtree; + Node* newRoot = this->allocateNode(oldRoot->fLevel + 1); + newRoot->fNumChildren = 2; + *newRoot->child(0) = fRoot; + *newRoot->child(1) = *newSibling; + fRoot.fChild.subtree = newRoot; + fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree); + } + + ++fCount; + this->validate(); +} + +void SkRTree::flushDeferredInserts() { + this->validate(); + if (this->isEmpty() && fDeferredInserts.count() > 0) { + fCount = fDeferredInserts.count(); + if (1 == fCount) { + fRoot.fChild.subtree = allocateNode(0); + fRoot.fChild.subtree->fNumChildren = 0; + this->insert(fRoot.fChild.subtree, &fDeferredInserts[0]); + fRoot.fBounds = fDeferredInserts[0].fBounds; + } else { + fRoot = this->bulkLoad(&fDeferredInserts); + } + } else { + // TODO: some algorithm for bulk loading into an already populated tree + SkASSERT(0 == fDeferredInserts.count()); + } + fDeferredInserts.rewind(); + this->validate(); +} + +void SkRTree::search(const SkIRect& query, SkTDArray* results) { + this->validate(); + if (0 != fDeferredInserts.count()) { + this->flushDeferredInserts(); + } + if (!this->isEmpty() && SkIRect::IntersectsNoEmptyCheck(fRoot.fBounds, query)) { + this->search(fRoot.fChild.subtree, query, results); + } + this->validate(); +} + +void SkRTree::clear() { + this->validate(); + fNodes.reset(); + fDeferredInserts.rewind(); + fCount = 0; + this->validate(); +} + +SkRTree::Node* SkRTree::allocateNode(uint16_t level) { + Node* out = static_cast(fNodes.allocThrow(fNodeSize)); + out->fNumChildren = 0; + out->fLevel = level; + return out; +} + +SkRTree::Branch* SkRTree::insert(Node* root, Branch* branch, uint16_t level) { + Branch* toInsert = branch; + if (root->fLevel != level) { + int childIndex = this->chooseSubtree(root, branch); + toInsert = this->insert(root->child(childIndex)->fChild.subtree, branch, level); + root->child(childIndex)->fBounds = this->computeBounds( + root->child(childIndex)->fChild.subtree); + } + if (NULL != toInsert) { + if (root->fNumChildren == fMaxChildren) { + // handle overflow by splitting. TODO: opportunistic reinsertion + + // decide on a distribution to divide with + Node* newSibling = this->allocateNode(root->fLevel); + Branch* toDivide = SkNEW_ARRAY(Branch, fMaxChildren + 1); + for (int i = 0; i < fMaxChildren; ++i) { + toDivide[i] = *root->child(i); + } + toDivide[fMaxChildren] = *toInsert; + int splitIndex = this->distributeChildren(toDivide); + + // divide up the branches + root->fNumChildren = splitIndex; + newSibling->fNumChildren = fMaxChildren + 1 - splitIndex; + for (int i = 0; i < splitIndex; ++i) { + *root->child(i) = toDivide[i]; + } + for (int i = splitIndex; i < fMaxChildren + 1; ++i) { + *newSibling->child(i - splitIndex) = toDivide[i]; + } + SkDELETE_ARRAY(toDivide); + + // pass the new sibling branch up to the parent + branch->fChild.subtree = newSibling; + branch->fBounds = this->computeBounds(newSibling); + return branch; + } else { + *root->child(root->fNumChildren) = *toInsert; + ++root->fNumChildren; + return NULL; + } + } + return NULL; +} + +int SkRTree::chooseSubtree(Node* root, Branch* branch) { + SkASSERT(!root->isLeaf()); + if (1 < root->fLevel) { + // root's child pointers do not point to leaves, so minimize area increase + int32_t minAreaIncrease = SK_MaxS32; + int32_t minArea = SK_MaxS32; + int32_t bestSubtree = -1; + for (int i = 0; i < root->fNumChildren; ++i) { + const SkIRect& subtreeBounds = root->child(i)->fBounds; + int32_t areaIncrease = get_area_increase(subtreeBounds, branch->fBounds); + // break ties in favor of subtree with smallest area + if (areaIncrease < minAreaIncrease || (areaIncrease == minAreaIncrease && + static_cast(get_area(subtreeBounds)) < minArea)) { + minAreaIncrease = areaIncrease; + minArea = get_area(subtreeBounds); + bestSubtree = i; + } + } + SkASSERT(-1 != bestSubtree); + return bestSubtree; + } else if (1 == root->fLevel) { + // root's child pointers do point to leaves, so minimize overlap increase + int32_t minOverlapIncrease = SK_MaxS32; + int32_t minAreaIncrease = SK_MaxS32; + int32_t bestSubtree = -1; + for (int32_t i = 0; i < root->fNumChildren; ++i) { + const SkIRect& subtreeBounds = root->child(i)->fBounds; + SkIRect expandedBounds = subtreeBounds; + join_no_empty_check(branch->fBounds, &expandedBounds); + int32_t overlap = 0; + for (int32_t j = 0; j < root->fNumChildren; ++j) { + if (j == i) continue; + // Note: this would be more correct if we subtracted the original pre-expanded + // overlap, but computing overlaps is expensive and omitting it doesn't seem to + // hurt query performance. See get_overlap_increase() + overlap += get_overlap(expandedBounds, root->child(j)->fBounds); + } + // break ties with lowest area increase + if (overlap < minOverlapIncrease || (overlap == minOverlapIncrease && + static_cast(get_area_increase(branch->fBounds, subtreeBounds)) < + minAreaIncrease)) { + minOverlapIncrease = overlap; + minAreaIncrease = get_area_increase(branch->fBounds, subtreeBounds); + bestSubtree = i; + } + } + return bestSubtree; + } else { + SkASSERT(false); + return 0; + } +} + +SkIRect SkRTree::computeBounds(Node* n) { + SkIRect r = n->child(0)->fBounds; + for (int i = 1; i < n->fNumChildren; ++i) { + join_no_empty_check(n->child(i)->fBounds, &r); + } + return r; +} + +int SkRTree::distributeChildren(Branch* children) { + // We have two sides to sort by on each of two axes: + const static SortSide sorts[2][2] = { + {&SkIRect::fLeft, &SkIRect::fRight}, + {&SkIRect::fTop, &SkIRect::fBottom} + }; + + // We want to choose an axis to split on, then a distribution along that axis; we'll need + // three pieces of info: the split axis, the side to sort by on that axis, and the index + // to split the sorted array on. + int32_t sortSide = -1; + int32_t k = -1; + int32_t axis = -1; + int32_t bestS = SK_MaxS32; + + // Evaluate each axis, we want the min summed margin-value (s) over all distributions + for (int i = 0; i < 2; ++i) { + int32_t minOverlap = SK_MaxS32; + int32_t minArea = SK_MaxS32; + int32_t axisBestK = 0; + int32_t axisBestSide = 0; + int32_t s = 0; + + // Evaluate each sort + for (int j = 0; j < 2; ++j) { + SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[i][j])); + + // Evaluate each split index + for (int32_t k = 1; k <= fMaxChildren - 2 * fMinChildren + 2; ++k) { + SkIRect r1 = children[0].fBounds; + SkIRect r2 = children[fMinChildren + k - 1].fBounds; + for (int32_t l = 1; l < fMinChildren - 1 + k; ++l) { + join_no_empty_check(children[l].fBounds, &r1); + } + for (int32_t l = fMinChildren + k; l < fMaxChildren + 1; ++l) { + join_no_empty_check(children[l].fBounds, &r2); + } + + int32_t area = get_area(r1) + get_area(r2); + int32_t overlap = get_overlap(r1, r2); + s += get_margin(r1) + get_margin(r2); + + if (overlap < minOverlap || (overlap == minOverlap && area < minArea)) { + minOverlap = overlap; + minArea = area; + axisBestSide = j; + axisBestK = k; + } + } + } + + if (s < bestS) { + bestS = s; + axis = i; + sortSide = axisBestSide; + k = axisBestK; + } + } + + // replicate the sort of the winning distribution, (we can skip this if the last + // sort ended up being best) + if (!(axis == 1 && sortSide == 1)) { + SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[axis][sortSide])); + } + + return fMinChildren - 1 + k; +} + +void SkRTree::search(Node* root, const SkIRect query, SkTDArray* results) const { + for (int i = 0; i < root->fNumChildren; ++i) { + if (SkIRect::IntersectsNoEmptyCheck(root->child(i)->fBounds, query)) { + if (root->isLeaf()) { + results->push(root->child(i)->fChild.data); + } else { + this->search(root->child(i)->fChild.subtree, query, results); + } + } + } +} + +SkRTree::Branch SkRTree::bulkLoad(SkTDArray* branches, int level) { + if (branches->count() == 1) { + // Only one branch: it will be the root + Branch out = (*branches)[0]; + branches->rewind(); + return out; + } else { + // We sort the whole list by y coordinates, if we are told to do so. + // + // We expect Webkit / Blink to give us a reasonable x,y order. + // Avoiding this call resulted in a 17% win for recording with + // negligible difference in playback speed. + if (fSortWhenBulkLoading) { + SkTQSort(branches->begin(), branches->end() - 1, RectLessY()); + } + + int numBranches = branches->count() / fMaxChildren; + int remainder = branches->count() % fMaxChildren; + int newBranches = 0; + + if (0 != remainder) { + ++numBranches; + // If the remainder isn't enough to fill a node, we'll need to add fewer nodes to + // some other branches to make up for it + if (remainder >= fMinChildren) { + remainder = 0; + } else { + remainder = fMinChildren - remainder; + } + } + + int numStrips = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(numBranches) * + SkScalarInvert(fAspectRatio))); + int numTiles = SkScalarCeilToInt(SkIntToScalar(numBranches) / + SkIntToScalar(numStrips)); + int currentBranch = 0; + + for (int i = 0; i < numStrips; ++i) { + // Once again, if we are told to do so, we sort by x. + if (fSortWhenBulkLoading) { + int begin = currentBranch; + int end = currentBranch + numTiles * fMaxChildren - SkMin32(remainder, + (fMaxChildren - fMinChildren) * numTiles); + if (end > branches->count()) { + end = branches->count(); + } + + // Now we sort horizontal strips of rectangles by their x coords + SkTQSort(branches->begin() + begin, branches->begin() + end - 1, RectLessX()); + } + + for (int j = 0; j < numTiles && currentBranch < branches->count(); ++j) { + int incrementBy = fMaxChildren; + if (remainder != 0) { + // if need be, omit some nodes to make up for remainder + if (remainder <= fMaxChildren - fMinChildren) { + incrementBy -= remainder; + remainder = 0; + } else { + incrementBy = fMinChildren; + remainder -= fMaxChildren - fMinChildren; + } + } + Node* n = allocateNode(level); + n->fNumChildren = 1; + *n->child(0) = (*branches)[currentBranch]; + Branch b; + b.fBounds = (*branches)[currentBranch].fBounds; + b.fChild.subtree = n; + ++currentBranch; + for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) { + b.fBounds.join((*branches)[currentBranch].fBounds); + *n->child(k) = (*branches)[currentBranch]; + ++n->fNumChildren; + ++currentBranch; + } + (*branches)[newBranches] = b; + ++newBranches; + } + } + branches->setCount(newBranches); + return this->bulkLoad(branches, level + 1); + } +} + +void SkRTree::validate() { +#ifdef SK_DEBUG + if (this->isEmpty()) { + return; + } + SkASSERT(fCount == this->validateSubtree(fRoot.fChild.subtree, fRoot.fBounds, true)); +#endif +} + +int SkRTree::validateSubtree(Node* root, SkIRect bounds, bool isRoot) { + // make sure the pointer is pointing to a valid place + SkASSERT(fNodes.contains(static_cast(root))); + + if (isRoot) { + // If the root of this subtree is the overall root, we have looser standards: + if (root->isLeaf()) { + SkASSERT(root->fNumChildren >= 1 && root->fNumChildren <= fMaxChildren); + } else { + SkASSERT(root->fNumChildren >= 2 && root->fNumChildren <= fMaxChildren); + } + } else { + SkASSERT(root->fNumChildren >= fMinChildren && root->fNumChildren <= fMaxChildren); + } + + for (int i = 0; i < root->fNumChildren; ++i) { + SkASSERT(bounds.contains(root->child(i)->fBounds)); + } + + if (root->isLeaf()) { + SkASSERT(0 == root->fLevel); + return root->fNumChildren; + } else { + int childCount = 0; + for (int i = 0; i < root->fNumChildren; ++i) { + SkASSERT(root->child(i)->fChild.subtree->fLevel == root->fLevel - 1); + childCount += this->validateSubtree(root->child(i)->fChild.subtree, + root->child(i)->fBounds); + } + return childCount; + } +} + +void SkRTree::rewindInserts() { + SkASSERT(this->isEmpty()); // Currently only supports deferred inserts + while (!fDeferredInserts.isEmpty() && + fClient->shouldRewind(fDeferredInserts.top().fChild.data)) { + fDeferredInserts.pop(); + } +} + +/////////////////////////////////////////////////////////////////////////////////////////////////// + +static inline uint32_t get_area(const SkIRect& rect) { + return rect.width() * rect.height(); +} + +static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2) { + // I suspect there's a more efficient way of computing this... + return SkMax32(0, SkMin32(rect1.fRight, rect2.fRight) - SkMax32(rect1.fLeft, rect2.fLeft)) * + SkMax32(0, SkMin32(rect1.fBottom, rect2.fBottom) - SkMax32(rect1.fTop, rect2.fTop)); +} + +// Get the margin (aka perimeter) +static inline uint32_t get_margin(const SkIRect& rect) { + return 2 * (rect.width() + rect.height()); +} + +static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2) { + join_no_empty_check(rect1, &rect2); + return get_area(rect2) - get_area(rect1); +} + +// Expand 'out' to include 'joinWith' +static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out) { + // since we check for empty bounds on insert, we know we'll never have empty rects + // and we can save the empty check that SkIRect::join requires + if (joinWith.fLeft < out->fLeft) { out->fLeft = joinWith.fLeft; } + if (joinWith.fTop < out->fTop) { out->fTop = joinWith.fTop; } + if (joinWith.fRight > out->fRight) { out->fRight = joinWith.fRight; } + if (joinWith.fBottom > out->fBottom) { out->fBottom = joinWith.fBottom; } +}