diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/gpu/GrRedBlackTree.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/gpu/GrRedBlackTree.h Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,948 @@ +/* + * Copyright 2011 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef GrRedBlackTree_DEFINED +#define GrRedBlackTree_DEFINED + +#include "GrConfig.h" +#include "SkTypes.h" + +template +class GrLess { +public: + bool operator()(const T& a, const T& b) const { return a < b; } +}; + +template +class GrLess { +public: + bool operator()(const T* a, const T* b) const { return *a < *b; } +}; + +class GrStrLess { +public: + bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; } +}; + +/** + * In debug build this will cause full traversals of the tree when the validate + * is called on insert and remove. Useful for debugging but very slow. + */ +#define DEEP_VALIDATE 0 + +/** + * A sorted tree that uses the red-black tree algorithm. Allows duplicate + * entries. Data is of type T and is compared using functor C. A single C object + * will be created and used for all comparisons. + */ +template > +class GrRedBlackTree : public SkNoncopyable { +public: + /** + * Creates an empty tree. + */ + GrRedBlackTree(); + virtual ~GrRedBlackTree(); + + /** + * Class used to iterater through the tree. The valid range of the tree + * is given by [begin(), end()). It is legal to dereference begin() but not + * end(). The iterator has preincrement and predecrement operators, it is + * legal to decerement end() if the tree is not empty to get the last + * element. However, a last() helper is provided. + */ + class Iter; + + /** + * Add an element to the tree. Duplicates are allowed. + * @param t the item to add. + * @return an iterator to the item. + */ + Iter insert(const T& t); + + /** + * Removes all items in the tree. + */ + void reset(); + + /** + * @return true if there are no items in the tree, false otherwise. + */ + bool empty() const {return 0 == fCount;} + + /** + * @return the number of items in the tree. + */ + int count() const {return fCount;} + + /** + * @return an iterator to the first item in sorted order, or end() if empty + */ + Iter begin(); + /** + * Gets the last valid iterator. This is always valid, even on an empty. + * However, it can never be dereferenced. Useful as a loop terminator. + * @return an iterator that is just beyond the last item in sorted order. + */ + Iter end(); + /** + * @return an iterator that to the last item in sorted order, or end() if + * empty. + */ + Iter last(); + + /** + * Finds an occurrence of an item. + * @param t the item to find. + * @return an iterator to a tree element equal to t or end() if none exists. + */ + Iter find(const T& t); + /** + * Finds the first of an item in iterator order. + * @param t the item to find. + * @return an iterator to the first element equal to t or end() if + * none exists. + */ + Iter findFirst(const T& t); + /** + * Finds the last of an item in iterator order. + * @param t the item to find. + * @return an iterator to the last element equal to t or end() if + * none exists. + */ + Iter findLast(const T& t); + /** + * Gets the number of items in the tree equal to t. + * @param t the item to count. + * @return number of items equal to t in the tree + */ + int countOf(const T& t) const; + + /** + * Removes the item indicated by an iterator. The iterator will not be valid + * afterwards. + * + * @param iter iterator of item to remove. Must be valid (not end()). + */ + void remove(const Iter& iter) { deleteAtNode(iter.fN); } + +private: + enum Color { + kRed_Color, + kBlack_Color + }; + + enum Child { + kLeft_Child = 0, + kRight_Child = 1 + }; + + struct Node { + T fItem; + Color fColor; + + Node* fParent; + Node* fChildren[2]; + }; + + void rotateRight(Node* n); + void rotateLeft(Node* n); + + static Node* SuccessorNode(Node* x); + static Node* PredecessorNode(Node* x); + + void deleteAtNode(Node* x); + static void RecursiveDelete(Node* x); + + int onCountOf(const Node* n, const T& t) const; + +#ifdef SK_DEBUG + void validate() const; + int checkNode(Node* n, int* blackHeight) const; + // checks relationship between a node and its children. allowRedRed means + // node may be in an intermediate state where a red parent has a red child. + bool validateChildRelations(const Node* n, bool allowRedRed) const; + // place to stick break point if validateChildRelations is failing. + bool validateChildRelationsFailed() const { return false; } +#else + void validate() const {} +#endif + + int fCount; + Node* fRoot; + Node* fFirst; + Node* fLast; + + const C fComp; +}; + +template +class GrRedBlackTree::Iter { +public: + Iter() {}; + Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;} + Iter& operator =(const Iter& i) { + fN = i.fN; + fTree = i.fTree; + return *this; + } + // altering the sort value of the item using this method will cause + // errors. + T& operator *() const { return fN->fItem; } + bool operator ==(const Iter& i) const { + return fN == i.fN && fTree == i.fTree; + } + bool operator !=(const Iter& i) const { return !(*this == i); } + Iter& operator ++() { + SkASSERT(*this != fTree->end()); + fN = SuccessorNode(fN); + return *this; + } + Iter& operator --() { + SkASSERT(*this != fTree->begin()); + if (NULL != fN) { + fN = PredecessorNode(fN); + } else { + *this = fTree->last(); + } + return *this; + } + +private: + friend class GrRedBlackTree; + explicit Iter(Node* n, GrRedBlackTree* tree) { + fN = n; + fTree = tree; + } + Node* fN; + GrRedBlackTree* fTree; +}; + +template +GrRedBlackTree::GrRedBlackTree() : fComp() { + fRoot = NULL; + fFirst = NULL; + fLast = NULL; + fCount = 0; + validate(); +} + +template +GrRedBlackTree::~GrRedBlackTree() { + RecursiveDelete(fRoot); +} + +template +typename GrRedBlackTree::Iter GrRedBlackTree::begin() { + return Iter(fFirst, this); +} + +template +typename GrRedBlackTree::Iter GrRedBlackTree::end() { + return Iter(NULL, this); +} + +template +typename GrRedBlackTree::Iter GrRedBlackTree::last() { + return Iter(fLast, this); +} + +template +typename GrRedBlackTree::Iter GrRedBlackTree::find(const T& t) { + Node* n = fRoot; + while (NULL != n) { + if (fComp(t, n->fItem)) { + n = n->fChildren[kLeft_Child]; + } else { + if (!fComp(n->fItem, t)) { + return Iter(n, this); + } + n = n->fChildren[kRight_Child]; + } + } + return end(); +} + +template +typename GrRedBlackTree::Iter GrRedBlackTree::findFirst(const T& t) { + Node* n = fRoot; + Node* leftMost = NULL; + while (NULL != n) { + if (fComp(t, n->fItem)) { + n = n->fChildren[kLeft_Child]; + } else { + if (!fComp(n->fItem, t)) { + // found one. check if another in left subtree. + leftMost = n; + n = n->fChildren[kLeft_Child]; + } else { + n = n->fChildren[kRight_Child]; + } + } + } + return Iter(leftMost, this); +} + +template +typename GrRedBlackTree::Iter GrRedBlackTree::findLast(const T& t) { + Node* n = fRoot; + Node* rightMost = NULL; + while (NULL != n) { + if (fComp(t, n->fItem)) { + n = n->fChildren[kLeft_Child]; + } else { + if (!fComp(n->fItem, t)) { + // found one. check if another in right subtree. + rightMost = n; + } + n = n->fChildren[kRight_Child]; + } + } + return Iter(rightMost, this); +} + +template +int GrRedBlackTree::countOf(const T& t) const { + return onCountOf(fRoot, t); +} + +template +int GrRedBlackTree::onCountOf(const Node* n, const T& t) const { + // this is count*log(n) :( + while (NULL != n) { + if (fComp(t, n->fItem)) { + n = n->fChildren[kLeft_Child]; + } else { + if (!fComp(n->fItem, t)) { + int count = 1; + count += onCountOf(n->fChildren[kLeft_Child], t); + count += onCountOf(n->fChildren[kRight_Child], t); + return count; + } + n = n->fChildren[kRight_Child]; + } + } + return 0; + +} + +template +void GrRedBlackTree::reset() { + RecursiveDelete(fRoot); + fRoot = NULL; + fFirst = NULL; + fLast = NULL; + fCount = 0; +} + +template +typename GrRedBlackTree::Iter GrRedBlackTree::insert(const T& t) { + validate(); + + ++fCount; + + Node* x = SkNEW(Node); + x->fChildren[kLeft_Child] = NULL; + x->fChildren[kRight_Child] = NULL; + x->fItem = t; + + Node* returnNode = x; + + Node* gp = NULL; + Node* p = NULL; + Node* n = fRoot; + Child pc = kLeft_Child; // suppress uninit warning + Child gpc = kLeft_Child; + + bool first = true; + bool last = true; + while (NULL != n) { + gpc = pc; + pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child; + first = first && kLeft_Child == pc; + last = last && kRight_Child == pc; + gp = p; + p = n; + n = p->fChildren[pc]; + } + if (last) { + fLast = x; + } + if (first) { + fFirst = x; + } + + if (NULL == p) { + fRoot = x; + x->fColor = kBlack_Color; + x->fParent = NULL; + SkASSERT(1 == fCount); + return Iter(returnNode, this); + } + p->fChildren[pc] = x; + x->fColor = kRed_Color; + x->fParent = p; + + do { + // assumptions at loop start. + SkASSERT(NULL != x); + SkASSERT(kRed_Color == x->fColor); + // can't have a grandparent but no parent. + SkASSERT(!(NULL != gp && NULL == p)); + // make sure pc and gpc are correct + SkASSERT(NULL == p || p->fChildren[pc] == x); + SkASSERT(NULL == gp || gp->fChildren[gpc] == p); + + // if x's parent is black then we didn't violate any of the + // red/black properties when we added x as red. + if (kBlack_Color == p->fColor) { + return Iter(returnNode, this); + } + // gp must be valid because if p was the root then it is black + SkASSERT(NULL != gp); + // gp must be black since it's child, p, is red. + SkASSERT(kBlack_Color == gp->fColor); + + + // x and its parent are red, violating red-black property. + Node* u = gp->fChildren[1-gpc]; + // if x's uncle (p's sibling) is also red then we can flip + // p and u to black and make gp red. But then we have to recurse + // up to gp since it's parent may also be red. + if (NULL != u && kRed_Color == u->fColor) { + p->fColor = kBlack_Color; + u->fColor = kBlack_Color; + gp->fColor = kRed_Color; + x = gp; + p = x->fParent; + if (NULL == p) { + // x (prev gp) is the root, color it black and be done. + SkASSERT(fRoot == x); + x->fColor = kBlack_Color; + validate(); + return Iter(returnNode, this); + } + gp = p->fParent; + pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child : + kRight_Child; + if (NULL != gp) { + gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child : + kRight_Child; + } + continue; + } break; + } while (true); + // Here p is red but u is black and we still have to resolve the fact + // that x and p are both red. + SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor); + SkASSERT(kRed_Color == x->fColor); + SkASSERT(kRed_Color == p->fColor); + SkASSERT(kBlack_Color == gp->fColor); + + // make x be on the same side of p as p is of gp. If it isn't already + // the case then rotate x up to p and swap their labels. + if (pc != gpc) { + if (kRight_Child == pc) { + rotateLeft(p); + Node* temp = p; + p = x; + x = temp; + pc = kLeft_Child; + } else { + rotateRight(p); + Node* temp = p; + p = x; + x = temp; + pc = kRight_Child; + } + } + // we now rotate gp down, pulling up p to be it's new parent. + // gp's child, u, that is not affected we know to be black. gp's new + // child is p's previous child (x's pre-rotation sibling) which must be + // black since p is red. + SkASSERT(NULL == p->fChildren[1-pc] || + kBlack_Color == p->fChildren[1-pc]->fColor); + // Since gp's two children are black it can become red if p is made + // black. This leaves the black-height of both of p's new subtrees + // preserved and removes the red/red parent child relationship. + p->fColor = kBlack_Color; + gp->fColor = kRed_Color; + if (kLeft_Child == pc) { + rotateRight(gp); + } else { + rotateLeft(gp); + } + validate(); + return Iter(returnNode, this); +} + + +template +void GrRedBlackTree::rotateRight(Node* n) { + /* d? d? + * / / + * n s + * / \ ---> / \ + * s a? c? n + * / \ / \ + * c? b? b? a? + */ + Node* d = n->fParent; + Node* s = n->fChildren[kLeft_Child]; + SkASSERT(NULL != s); + Node* b = s->fChildren[kRight_Child]; + + if (NULL != d) { + Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child : + kRight_Child; + d->fChildren[c] = s; + } else { + SkASSERT(fRoot == n); + fRoot = s; + } + s->fParent = d; + s->fChildren[kRight_Child] = n; + n->fParent = s; + n->fChildren[kLeft_Child] = b; + if (NULL != b) { + b->fParent = n; + } + + GR_DEBUGASSERT(validateChildRelations(d, true)); + GR_DEBUGASSERT(validateChildRelations(s, true)); + GR_DEBUGASSERT(validateChildRelations(n, false)); + GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true)); + GR_DEBUGASSERT(validateChildRelations(b, true)); + GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true)); +} + +template +void GrRedBlackTree::rotateLeft(Node* n) { + + Node* d = n->fParent; + Node* s = n->fChildren[kRight_Child]; + SkASSERT(NULL != s); + Node* b = s->fChildren[kLeft_Child]; + + if (NULL != d) { + Child c = d->fChildren[kRight_Child] == n ? kRight_Child : + kLeft_Child; + d->fChildren[c] = s; + } else { + SkASSERT(fRoot == n); + fRoot = s; + } + s->fParent = d; + s->fChildren[kLeft_Child] = n; + n->fParent = s; + n->fChildren[kRight_Child] = b; + if (NULL != b) { + b->fParent = n; + } + + GR_DEBUGASSERT(validateChildRelations(d, true)); + GR_DEBUGASSERT(validateChildRelations(s, true)); + GR_DEBUGASSERT(validateChildRelations(n, true)); + GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true)); + GR_DEBUGASSERT(validateChildRelations(b, true)); + GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true)); +} + +template +typename GrRedBlackTree::Node* GrRedBlackTree::SuccessorNode(Node* x) { + SkASSERT(NULL != x); + if (NULL != x->fChildren[kRight_Child]) { + x = x->fChildren[kRight_Child]; + while (NULL != x->fChildren[kLeft_Child]) { + x = x->fChildren[kLeft_Child]; + } + return x; + } + while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) { + x = x->fParent; + } + return x->fParent; +} + +template +typename GrRedBlackTree::Node* GrRedBlackTree::PredecessorNode(Node* x) { + SkASSERT(NULL != x); + if (NULL != x->fChildren[kLeft_Child]) { + x = x->fChildren[kLeft_Child]; + while (NULL != x->fChildren[kRight_Child]) { + x = x->fChildren[kRight_Child]; + } + return x; + } + while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) { + x = x->fParent; + } + return x->fParent; +} + +template +void GrRedBlackTree::deleteAtNode(Node* x) { + SkASSERT(NULL != x); + validate(); + --fCount; + + bool hasLeft = NULL != x->fChildren[kLeft_Child]; + bool hasRight = NULL != x->fChildren[kRight_Child]; + Child c = hasLeft ? kLeft_Child : kRight_Child; + + if (hasLeft && hasRight) { + // first and last can't have two children. + SkASSERT(fFirst != x); + SkASSERT(fLast != x); + // if x is an interior node then we find it's successor + // and swap them. + Node* s = x->fChildren[kRight_Child]; + while (NULL != s->fChildren[kLeft_Child]) { + s = s->fChildren[kLeft_Child]; + } + SkASSERT(NULL != s); + // this might be expensive relative to swapping node ptrs around. + // depends on T. + x->fItem = s->fItem; + x = s; + c = kRight_Child; + } else if (NULL == x->fParent) { + // if x was the root we just replace it with its child and make + // the new root (if the tree is not empty) black. + SkASSERT(fRoot == x); + fRoot = x->fChildren[c]; + if (NULL != fRoot) { + fRoot->fParent = NULL; + fRoot->fColor = kBlack_Color; + if (x == fLast) { + SkASSERT(c == kLeft_Child); + fLast = fRoot; + } else if (x == fFirst) { + SkASSERT(c == kRight_Child); + fFirst = fRoot; + } + } else { + SkASSERT(fFirst == fLast && x == fFirst); + fFirst = NULL; + fLast = NULL; + SkASSERT(0 == fCount); + } + delete x; + validate(); + return; + } + + Child pc; + Node* p = x->fParent; + pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child; + + if (NULL == x->fChildren[c]) { + if (fLast == x) { + fLast = p; + SkASSERT(p == PredecessorNode(x)); + } else if (fFirst == x) { + fFirst = p; + SkASSERT(p == SuccessorNode(x)); + } + // x has two implicit black children. + Color xcolor = x->fColor; + p->fChildren[pc] = NULL; + delete x; + x = NULL; + // when x is red it can be with an implicit black leaf without + // violating any of the red-black tree properties. + if (kRed_Color == xcolor) { + validate(); + return; + } + // s is p's other child (x's sibling) + Node* s = p->fChildren[1-pc]; + + //s cannot be an implicit black node because the original + // black-height at x was >= 2 and s's black-height must equal the + // initial black height of x. + SkASSERT(NULL != s); + SkASSERT(p == s->fParent); + + // assigned in loop + Node* sl; + Node* sr; + bool slRed; + bool srRed; + + do { + // When we start this loop x may already be deleted it is/was + // p's child on its pc side. x's children are/were black. The + // first time through the loop they are implict children. + // On later passes we will be walking up the tree and they will + // be real nodes. + // The x side of p has a black-height that is one less than the + // s side. It must be rebalanced. + SkASSERT(NULL != s); + SkASSERT(p == s->fParent); + SkASSERT(NULL == x || x->fParent == p); + + //sl and sr are s's children, which may be implicit. + sl = s->fChildren[kLeft_Child]; + sr = s->fChildren[kRight_Child]; + + // if the s is red we will rotate s and p, swap their colors so + // that x's new sibling is black + if (kRed_Color == s->fColor) { + // if s is red then it's parent must be black. + SkASSERT(kBlack_Color == p->fColor); + // s's children must also be black since s is red. They can't + // be implicit since s is red and it's black-height is >= 2. + SkASSERT(NULL != sl && kBlack_Color == sl->fColor); + SkASSERT(NULL != sr && kBlack_Color == sr->fColor); + p->fColor = kRed_Color; + s->fColor = kBlack_Color; + if (kLeft_Child == pc) { + rotateLeft(p); + s = sl; + } else { + rotateRight(p); + s = sr; + } + sl = s->fChildren[kLeft_Child]; + sr = s->fChildren[kRight_Child]; + } + // x and s are now both black. + SkASSERT(kBlack_Color == s->fColor); + SkASSERT(NULL == x || kBlack_Color == x->fColor); + SkASSERT(p == s->fParent); + SkASSERT(NULL == x || p == x->fParent); + + // when x is deleted its subtree will have reduced black-height. + slRed = (NULL != sl && kRed_Color == sl->fColor); + srRed = (NULL != sr && kRed_Color == sr->fColor); + if (!slRed && !srRed) { + // if s can be made red that will balance out x's removal + // to make both subtrees of p have the same black-height. + if (kBlack_Color == p->fColor) { + s->fColor = kRed_Color; + // now subtree at p has black-height of one less than + // p's parent's other child's subtree. We move x up to + // p and go through the loop again. At the top of loop + // we assumed x and x's children are black, which holds + // by above ifs. + // if p is the root there is no other subtree to balance + // against. + x = p; + p = x->fParent; + if (NULL == p) { + SkASSERT(fRoot == x); + validate(); + return; + } else { + pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : + kRight_Child; + + } + s = p->fChildren[1-pc]; + SkASSERT(NULL != s); + SkASSERT(p == s->fParent); + continue; + } else if (kRed_Color == p->fColor) { + // we can make p black and s red. This balance out p's + // two subtrees and keep the same black-height as it was + // before the delete. + s->fColor = kRed_Color; + p->fColor = kBlack_Color; + validate(); + return; + } + } + break; + } while (true); + // if we made it here one or both of sl and sr is red. + // s and x are black. We make sure that a red child is on + // the same side of s as s is of p. + SkASSERT(slRed || srRed); + if (kLeft_Child == pc && !srRed) { + s->fColor = kRed_Color; + sl->fColor = kBlack_Color; + rotateRight(s); + sr = s; + s = sl; + //sl = s->fChildren[kLeft_Child]; don't need this + } else if (kRight_Child == pc && !slRed) { + s->fColor = kRed_Color; + sr->fColor = kBlack_Color; + rotateLeft(s); + sl = s; + s = sr; + //sr = s->fChildren[kRight_Child]; don't need this + } + // now p is either red or black, x and s are red and s's 1-pc + // child is red. + // We rotate p towards x, pulling s up to replace p. We make + // p be black and s takes p's old color. + // Whether p was red or black, we've increased its pc subtree + // rooted at x by 1 (balancing the imbalance at the start) and + // we've also its subtree rooted at s's black-height by 1. This + // can be balanced by making s's red child be black. + s->fColor = p->fColor; + p->fColor = kBlack_Color; + if (kLeft_Child == pc) { + SkASSERT(NULL != sr && kRed_Color == sr->fColor); + sr->fColor = kBlack_Color; + rotateLeft(p); + } else { + SkASSERT(NULL != sl && kRed_Color == sl->fColor); + sl->fColor = kBlack_Color; + rotateRight(p); + } + } + else { + // x has exactly one implicit black child. x cannot be red. + // Proof by contradiction: Assume X is red. Let c0 be x's implicit + // child and c1 be its non-implicit child. c1 must be black because + // red nodes always have two black children. Then the two subtrees + // of x rooted at c0 and c1 will have different black-heights. + SkASSERT(kBlack_Color == x->fColor); + // So we know x is black and has one implicit black child, c0. c1 + // must be red, otherwise the subtree at c1 will have a different + // black-height than the subtree rooted at c0. + SkASSERT(kRed_Color == x->fChildren[c]->fColor); + // replace x with c1, making c1 black, preserves all red-black tree + // props. + Node* c1 = x->fChildren[c]; + if (x == fFirst) { + SkASSERT(c == kRight_Child); + fFirst = c1; + while (NULL != fFirst->fChildren[kLeft_Child]) { + fFirst = fFirst->fChildren[kLeft_Child]; + } + SkASSERT(fFirst == SuccessorNode(x)); + } else if (x == fLast) { + SkASSERT(c == kLeft_Child); + fLast = c1; + while (NULL != fLast->fChildren[kRight_Child]) { + fLast = fLast->fChildren[kRight_Child]; + } + SkASSERT(fLast == PredecessorNode(x)); + } + c1->fParent = p; + p->fChildren[pc] = c1; + c1->fColor = kBlack_Color; + delete x; + validate(); + } + validate(); +} + +template +void GrRedBlackTree::RecursiveDelete(Node* x) { + if (NULL != x) { + RecursiveDelete(x->fChildren[kLeft_Child]); + RecursiveDelete(x->fChildren[kRight_Child]); + delete x; + } +} + +#ifdef SK_DEBUG +template +void GrRedBlackTree::validate() const { + if (fCount) { + SkASSERT(NULL == fRoot->fParent); + SkASSERT(NULL != fFirst); + SkASSERT(NULL != fLast); + + SkASSERT(kBlack_Color == fRoot->fColor); + if (1 == fCount) { + SkASSERT(fFirst == fRoot); + SkASSERT(fLast == fRoot); + SkASSERT(0 == fRoot->fChildren[kLeft_Child]); + SkASSERT(0 == fRoot->fChildren[kRight_Child]); + } + } else { + SkASSERT(NULL == fRoot); + SkASSERT(NULL == fFirst); + SkASSERT(NULL == fLast); + } +#if DEEP_VALIDATE + int bh; + int count = checkNode(fRoot, &bh); + SkASSERT(count == fCount); +#endif +} + +template +int GrRedBlackTree::checkNode(Node* n, int* bh) const { + if (NULL != n) { + SkASSERT(validateChildRelations(n, false)); + if (kBlack_Color == n->fColor) { + *bh += 1; + } + SkASSERT(!fComp(n->fItem, fFirst->fItem)); + SkASSERT(!fComp(fLast->fItem, n->fItem)); + int leftBh = *bh; + int rightBh = *bh; + int cl = checkNode(n->fChildren[kLeft_Child], &leftBh); + int cr = checkNode(n->fChildren[kRight_Child], &rightBh); + SkASSERT(leftBh == rightBh); + *bh = leftBh; + return 1 + cl + cr; + } + return 0; +} + +template +bool GrRedBlackTree::validateChildRelations(const Node* n, + bool allowRedRed) const { + if (NULL != n) { + if (NULL != n->fChildren[kLeft_Child] || + NULL != n->fChildren[kRight_Child]) { + if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) { + return validateChildRelationsFailed(); + } + if (n->fChildren[kLeft_Child] == n->fParent && + NULL != n->fParent) { + return validateChildRelationsFailed(); + } + if (n->fChildren[kRight_Child] == n->fParent && + NULL != n->fParent) { + return validateChildRelationsFailed(); + } + if (NULL != n->fChildren[kLeft_Child]) { + if (!allowRedRed && + kRed_Color == n->fChildren[kLeft_Child]->fColor && + kRed_Color == n->fColor) { + return validateChildRelationsFailed(); + } + if (n->fChildren[kLeft_Child]->fParent != n) { + return validateChildRelationsFailed(); + } + if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) || + (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) && + !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) { + return validateChildRelationsFailed(); + } + } + if (NULL != n->fChildren[kRight_Child]) { + if (!allowRedRed && + kRed_Color == n->fChildren[kRight_Child]->fColor && + kRed_Color == n->fColor) { + return validateChildRelationsFailed(); + } + if (n->fChildren[kRight_Child]->fParent != n) { + return validateChildRelationsFailed(); + } + if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) || + (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) && + !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) { + return validateChildRelationsFailed(); + } + } + } + } + return true; +} +#endif + +#endif