diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/opts/SkBitmapProcState_arm_neon.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/opts/SkBitmapProcState_arm_neon.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,511 @@ + +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ +#include "SkBitmapProcState.h" +#include "SkBitmapProcState_filter.h" +#include "SkColorPriv.h" +#include "SkFilterProc.h" +#include "SkPaint.h" +#include "SkShader.h" // for tilemodes +#include "SkUtilsArm.h" + +// Required to ensure the table is part of the final binary. +extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; +extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; + +#define NAME_WRAP(x) x ## _neon +#include "SkBitmapProcState_filter_neon.h" +#include "SkBitmapProcState_procs.h" + +const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = { + S32_opaque_D32_nofilter_DXDY_neon, + S32_alpha_D32_nofilter_DXDY_neon, + S32_opaque_D32_nofilter_DX_neon, + S32_alpha_D32_nofilter_DX_neon, + S32_opaque_D32_filter_DXDY_neon, + S32_alpha_D32_filter_DXDY_neon, + S32_opaque_D32_filter_DX_neon, + S32_alpha_D32_filter_DX_neon, + + S16_opaque_D32_nofilter_DXDY_neon, + S16_alpha_D32_nofilter_DXDY_neon, + S16_opaque_D32_nofilter_DX_neon, + S16_alpha_D32_nofilter_DX_neon, + S16_opaque_D32_filter_DXDY_neon, + S16_alpha_D32_filter_DXDY_neon, + S16_opaque_D32_filter_DX_neon, + S16_alpha_D32_filter_DX_neon, + + SI8_opaque_D32_nofilter_DXDY_neon, + SI8_alpha_D32_nofilter_DXDY_neon, + SI8_opaque_D32_nofilter_DX_neon, + SI8_alpha_D32_nofilter_DX_neon, + SI8_opaque_D32_filter_DXDY_neon, + SI8_alpha_D32_filter_DXDY_neon, + SI8_opaque_D32_filter_DX_neon, + SI8_alpha_D32_filter_DX_neon, + + S4444_opaque_D32_nofilter_DXDY_neon, + S4444_alpha_D32_nofilter_DXDY_neon, + S4444_opaque_D32_nofilter_DX_neon, + S4444_alpha_D32_nofilter_DX_neon, + S4444_opaque_D32_filter_DXDY_neon, + S4444_alpha_D32_filter_DXDY_neon, + S4444_opaque_D32_filter_DX_neon, + S4444_alpha_D32_filter_DX_neon, + + // A8 treats alpha/opauqe the same (equally efficient) + SA8_alpha_D32_nofilter_DXDY_neon, + SA8_alpha_D32_nofilter_DXDY_neon, + SA8_alpha_D32_nofilter_DX_neon, + SA8_alpha_D32_nofilter_DX_neon, + SA8_alpha_D32_filter_DXDY_neon, + SA8_alpha_D32_filter_DXDY_neon, + SA8_alpha_D32_filter_DX_neon, + SA8_alpha_D32_filter_DX_neon +}; + +const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = { + S32_D16_nofilter_DXDY_neon, + S32_D16_nofilter_DX_neon, + S32_D16_filter_DXDY_neon, + S32_D16_filter_DX_neon, + + S16_D16_nofilter_DXDY_neon, + S16_D16_nofilter_DX_neon, + S16_D16_filter_DXDY_neon, + S16_D16_filter_DX_neon, + + SI8_D16_nofilter_DXDY_neon, + SI8_D16_nofilter_DX_neon, + SI8_D16_filter_DXDY_neon, + SI8_D16_filter_DX_neon, + + // Don't support 4444 -> 565 + NULL, NULL, NULL, NULL, + // Don't support A8 -> 565 + NULL, NULL, NULL, NULL +}; + +/////////////////////////////////////////////////////////////////////////////// + +#include +#include "SkConvolver.h" + +// Convolves horizontally along a single row. The row data is given in +// |srcData| and continues for the numValues() of the filter. +void convolveHorizontally_neon(const unsigned char* srcData, + const SkConvolutionFilter1D& filter, + unsigned char* outRow, + bool hasAlpha) { + // Loop over each pixel on this row in the output image. + int numValues = filter.numValues(); + for (int outX = 0; outX < numValues; outX++) { + uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); + uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); + uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); + uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); + // Get the filter that determines the current output pixel. + int filterOffset, filterLength; + const SkConvolutionFilter1D::ConvolutionFixed* filterValues = + filter.FilterForValue(outX, &filterOffset, &filterLength); + + // Compute the first pixel in this row that the filter affects. It will + // touch |filterLength| pixels (4 bytes each) after this. + const unsigned char* rowToFilter = &srcData[filterOffset * 4]; + + // Apply the filter to the row to get the destination pixel in |accum|. + int32x4_t accum = vdupq_n_s32(0); + for (int filterX = 0; filterX < filterLength >> 2; filterX++) { + // Load 4 coefficients + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; + coeffs = vld1_s16(filterValues); + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); + + // Load pixels and calc + uint8x16_t pixels = vld1q_u8(rowToFilter); + int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); + int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); + + int16x4_t p0_src = vget_low_s16(p01_16); + int16x4_t p1_src = vget_high_s16(p01_16); + int16x4_t p2_src = vget_low_s16(p23_16); + int16x4_t p3_src = vget_high_s16(p23_16); + + int32x4_t p0 = vmull_s16(p0_src, coeff0); + int32x4_t p1 = vmull_s16(p1_src, coeff1); + int32x4_t p2 = vmull_s16(p2_src, coeff2); + int32x4_t p3 = vmull_s16(p3_src, coeff3); + + accum += p0; + accum += p1; + accum += p2; + accum += p3; + + // Advance the pointers + rowToFilter += 16; + filterValues += 4; + } + int r = filterLength & 3; + if (r) { + const uint16_t mask[4][4] = { + {0, 0, 0, 0}, + {0xFFFF, 0, 0, 0}, + {0xFFFF, 0xFFFF, 0, 0}, + {0xFFFF, 0xFFFF, 0xFFFF, 0} + }; + uint16x4_t coeffs; + int16x4_t coeff0, coeff1, coeff2; + coeffs = vld1_u16(reinterpret_cast(filterValues)); + coeffs &= vld1_u16(&mask[r][0]); + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0)); + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1)); + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2)); + + // Load pixels and calc + uint8x16_t pixels = vld1q_u8(rowToFilter); + int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); + int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); + int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); + int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); + int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); + + accum += p0; + accum += p1; + accum += p2; + } + + // Bring this value back in range. All of the filter scaling factors + // are in fixed point with kShiftBits bits of fractional part. + accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); + + // Pack and store the new pixel. + int16x4_t accum16 = vqmovn_s32(accum); + uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); + vst1_lane_u32(reinterpret_cast(outRow), vreinterpret_u32_u8(accum8), 0); + outRow += 4; + } +} + +// Does vertical convolution to produce one output row. The filter values and +// length are given in the first two parameters. These are applied to each +// of the rows pointed to in the |sourceDataRows| array, with each row +// being |pixelWidth| wide. +// +// The output must have room for |pixelWidth * 4| bytes. +template +void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, + int filterLength, + unsigned char* const* sourceDataRows, + int pixelWidth, + unsigned char* outRow) { + int width = pixelWidth & ~3; + + int32x4_t accum0, accum1, accum2, accum3; + int16x4_t coeff16; + + // Output four pixels per iteration (16 bytes). + for (int outX = 0; outX < width; outX += 4) { + + // Accumulated result for each pixel. 32 bits per RGBA channel. + accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); + + // Convolve with one filter coefficient per iteration. + for (int filterY = 0; filterY < filterLength; filterY++) { + + // Duplicate the filter coefficient 4 times. + // [16] cj cj cj cj + coeff16 = vdup_n_s16(filterValues[filterY]); + + // Load four pixels (16 bytes) together. + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 + uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); + + int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); + int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); + int16x4_t src16_0 = vget_low_s16(src16_01); + int16x4_t src16_1 = vget_high_s16(src16_01); + int16x4_t src16_2 = vget_low_s16(src16_23); + int16x4_t src16_3 = vget_high_s16(src16_23); + + accum0 += vmull_s16(src16_0, coeff16); + accum1 += vmull_s16(src16_1, coeff16); + accum2 += vmull_s16(src16_2, coeff16); + accum3 += vmull_s16(src16_3, coeff16); + } + + // Shift right for fixed point implementation. + accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); + accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); + accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); + accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); + + // Packing 32 bits |accum| to 16 bits per channel (signed saturation). + // [16] a1 b1 g1 r1 a0 b0 g0 r0 + int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); + // [16] a3 b3 g3 r3 a2 b2 g2 r2 + int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); + + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 + uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); + + if (hasAlpha) { + // Compute the max(ri, gi, bi) for each pixel. + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 + uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 + uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 + a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 + b = vmaxq_u8(a, b); // Max of r and g and b. + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 + b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); + + // Make sure the value of alpha channel is always larger than maximum + // value of color channels. + accum8 = vmaxq_u8(b, accum8); + } else { + // Set value of alpha channels to 0xFF. + accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); + } + + // Store the convolution result (16 bytes) and advance the pixel pointers. + vst1q_u8(outRow, accum8); + outRow += 16; + } + + // Process the leftovers when the width of the output is not divisible + // by 4, that is at most 3 pixels. + int r = pixelWidth & 3; + if (r) { + + accum0 = accum1 = accum2 = vdupq_n_s32(0); + + for (int filterY = 0; filterY < filterLength; ++filterY) { + coeff16 = vdup_n_s16(filterValues[filterY]); + + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 + uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); + + int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); + int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); + int16x4_t src16_0 = vget_low_s16(src16_01); + int16x4_t src16_1 = vget_high_s16(src16_01); + int16x4_t src16_2 = vget_low_s16(src16_23); + + accum0 += vmull_s16(src16_0, coeff16); + accum1 += vmull_s16(src16_1, coeff16); + accum2 += vmull_s16(src16_2, coeff16); + } + + accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); + accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); + accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); + + int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); + int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); + + uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); + + if (hasAlpha) { + // Compute the max(ri, gi, bi) for each pixel. + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 + uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 + uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 + a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 + b = vmaxq_u8(a, b); // Max of r and g and b. + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 + b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); + + // Make sure the value of alpha channel is always larger than maximum + // value of color channels. + accum8 = vmaxq_u8(b, accum8); + } else { + // Set value of alpha channels to 0xFF. + accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); + } + + switch(r) { + case 1: + vst1q_lane_u32(reinterpret_cast(outRow), vreinterpretq_u32_u8(accum8), 0); + break; + case 2: + vst1_u32(reinterpret_cast(outRow), + vreinterpret_u32_u8(vget_low_u8(accum8))); + break; + case 3: + vst1_u32(reinterpret_cast(outRow), + vreinterpret_u32_u8(vget_low_u8(accum8))); + vst1q_lane_u32(reinterpret_cast(outRow+8), vreinterpretq_u32_u8(accum8), 2); + break; + } + } +} + +void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, + int filterLength, + unsigned char* const* sourceDataRows, + int pixelWidth, + unsigned char* outRow, + bool sourceHasAlpha) { + if (sourceHasAlpha) { + convolveVertically_neon(filterValues, filterLength, + sourceDataRows, pixelWidth, + outRow); + } else { + convolveVertically_neon(filterValues, filterLength, + sourceDataRows, pixelWidth, + outRow); + } +} + +// Convolves horizontally along four rows. The row data is given in +// |src_data| and continues for the num_values() of the filter. +// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please +// refer to that function for detailed comments. +void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], + const SkConvolutionFilter1D& filter, + unsigned char* outRow[4]) { + + uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); + uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); + uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); + uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); + int num_values = filter.numValues(); + + int filterOffset, filterLength; + // |mask| will be used to decimate all extra filter coefficients that are + // loaded by SIMD when |filter_length| is not divisible by 4. + // mask[0] is not used in following algorithm. + const uint16_t mask[4][4] = { + {0, 0, 0, 0}, + {0xFFFF, 0, 0, 0}, + {0xFFFF, 0xFFFF, 0, 0}, + {0xFFFF, 0xFFFF, 0xFFFF, 0} + }; + + // Output one pixel each iteration, calculating all channels (RGBA) together. + for (int outX = 0; outX < num_values; outX++) { + + const SkConvolutionFilter1D::ConvolutionFixed* filterValues = + filter.FilterForValue(outX, &filterOffset, &filterLength); + + // four pixels in a column per iteration. + int32x4_t accum0 = vdupq_n_s32(0); + int32x4_t accum1 = vdupq_n_s32(0); + int32x4_t accum2 = vdupq_n_s32(0); + int32x4_t accum3 = vdupq_n_s32(0); + + int start = (filterOffset<<2); + + // We will load and accumulate with four coefficients per iteration. + for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; + + coeffs = vld1_s16(filterValues); + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); + + uint8x16_t pixels; + int16x8_t p01_16, p23_16; + int32x4_t p0, p1, p2, p3; + + +#define ITERATION(src, accum) \ + pixels = vld1q_u8(src); \ + p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ + p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ + p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ + p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ + p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ + p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ + accum += p0; \ + accum += p1; \ + accum += p2; \ + accum += p3 + + ITERATION(srcData[0] + start, accum0); + ITERATION(srcData[1] + start, accum1); + ITERATION(srcData[2] + start, accum2); + ITERATION(srcData[3] + start, accum3); + + start += 16; + filterValues += 4; + } + + int r = filterLength & 3; + if (r) { + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; + coeffs = vld1_s16(filterValues); + coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); + + uint8x16_t pixels; + int16x8_t p01_16, p23_16; + int32x4_t p0, p1, p2, p3; + + ITERATION(srcData[0] + start, accum0); + ITERATION(srcData[1] + start, accum1); + ITERATION(srcData[2] + start, accum2); + ITERATION(srcData[3] + start, accum3); + } + + int16x4_t accum16; + uint8x8_t res0, res1, res2, res3; + +#define PACK_RESULT(accum, res) \ + accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ + accum16 = vqmovn_s32(accum); \ + res = vqmovun_s16(vcombine_s16(accum16, accum16)); + + PACK_RESULT(accum0, res0); + PACK_RESULT(accum1, res1); + PACK_RESULT(accum2, res2); + PACK_RESULT(accum3, res3); + + vst1_lane_u32(reinterpret_cast(outRow[0]), vreinterpret_u32_u8(res0), 0); + vst1_lane_u32(reinterpret_cast(outRow[1]), vreinterpret_u32_u8(res1), 0); + vst1_lane_u32(reinterpret_cast(outRow[2]), vreinterpret_u32_u8(res2), 0); + vst1_lane_u32(reinterpret_cast(outRow[3]), vreinterpret_u32_u8(res3), 0); + outRow[0] += 4; + outRow[1] += 4; + outRow[2] += 4; + outRow[3] += 4; + } +} + +void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { + // Padding |paddingCount| of more dummy coefficients after the coefficients + // of last filter to prevent SIMD instructions which load 8 or 16 bytes + // together to access invalid memory areas. We are not trying to align the + // coefficients right now due to the opaqueness of implementation. + // This has to be done after all |AddFilter| calls. + for (int i = 0; i < 8; ++i) { + filter->addFilterValue(static_cast(0)); + } +} + +void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { + procs->fExtraHorizontalReads = 3; + procs->fConvolveVertically = &convolveVertically_neon; + procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; + procs->fConvolveHorizontally = &convolveHorizontally_neon; + procs->fApplySIMDPadding = &applySIMDPadding_neon; +}