diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/opts/SkBitmapProcState_opts_SSSE3.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/opts/SkBitmapProcState_opts_SSSE3.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,760 @@ +/* + * Copyright 2012 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "SkBitmapProcState_opts_SSSE3.h" +#include "SkPaint.h" +#include "SkUtils.h" + +/* With the exception of the Android framework we always build the SSSE3 functions + * and enable the caller to determine SSSE3 support. However for the Android framework + * if the device does not support SSSE3 then the compiler will not supply the required + * -mssse3 option needed to build this file, so instead we provide a stub implementation. + */ +#if !defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) || SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 + +#include // SSSE3 + +// adding anonymous namespace seemed to force gcc to inline directly the +// instantiation, instead of creating the functions +// S32_generic_D32_filter_DX_SSSE3 and +// S32_generic_D32_filter_DX_SSSE3 which were then called by the +// external functions. +namespace { +// In this file, variations for alpha and non alpha versions are implemented +// with a template, as it makes the code more compact and a bit easier to +// maintain, while making the compiler generate the same exact code as with +// two functions that only differ by a few lines. + + +// Prepare all necessary constants for a round of processing for two pixel +// pairs. +// @param xy is the location where the xy parameters for four pixels should be +// read from. It is identical in concept with argument two of +// S32_{opaque}_D32_filter_DX methods. +// @param mask_3FFF vector of 32 bit constants containing 3FFF, +// suitable to mask the bottom 14 bits of a XY value. +// @param mask_000F vector of 32 bit constants containing 000F, +// suitable to mask the bottom 4 bits of a XY value. +// @param sixteen_8bit vector of 8 bit components containing the value 16. +// @param mask_dist_select vector of 8 bit components containing the shuffling +// parameters to reorder x[0-3] parameters. +// @param all_x_result vector of 8 bit components that will contain the +// (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return. +// @param sixteen_minus_x vector of 8 bit components, containing +// (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0)) +inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy, + const __m128i& mask_3FFF, + const __m128i& mask_000F, + const __m128i& sixteen_8bit, + const __m128i& mask_dist_select, + __m128i* all_x_result, + __m128i* sixteen_minus_x, + int* x0, + int* x1) { + const __m128i xx = _mm_loadu_si128(reinterpret_cast(xy)); + + // 4 delta X + // (x03, x02, x01, x00) + const __m128i x0_wide = _mm_srli_epi32(xx, 18); + // (x13, x12, x11, x10) + const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF); + + _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide); + _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide); + + __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F); + + // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) + all_x = _mm_shuffle_epi8(all_x, mask_dist_select); + + *all_x_result = all_x; + // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0)) + *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x); +} + +// Prepare all necessary constants for a round of processing for two pixel +// pairs. +// @param xy is the location where the xy parameters for four pixels should be +// read from. It is identical in concept with argument two of +// S32_{opaque}_D32_filter_DXDY methods. +// @param mask_3FFF vector of 32 bit constants containing 3FFF, +// suitable to mask the bottom 14 bits of a XY value. +// @param mask_000F vector of 32 bit constants containing 000F, +// suitable to mask the bottom 4 bits of a XY value. +// @param sixteen_8bit vector of 8 bit components containing the value 16. +// @param mask_dist_select vector of 8 bit components containing the shuffling +// parameters to reorder x[0-3] parameters. +// @param all_xy_result vector of 8 bit components that will contain the +// (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return. +// @param sixteen_minus_x vector of 8 bit components, containing +// (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)). +inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy, + const __m128i& mask_3FFF, + const __m128i& mask_000F, + const __m128i& sixteen_8bit, + const __m128i& mask_dist_select, + __m128i* all_xy_result, + __m128i* sixteen_minus_xy, + int* xy0, int* xy1) { + const __m128i xy_wide = + _mm_loadu_si128(reinterpret_cast(xy)); + + // (x10, y10, x00, y00) + __m128i xy0_wide = _mm_srli_epi32(xy_wide, 18); + // (y10, y00, x10, x00) + xy0_wide = _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1)); + // (x11, y11, x01, y01) + __m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF); + // (y11, y01, x11, x01) + xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1)); + + _mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide); + _mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide); + + // (x1, y1, x0, y0) + __m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F); + // (y1, y0, x1, x0) + all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1)); + // (4x(y1), 4x(y0), 4x(x1), 4x(x0)) + all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select); + + *all_xy_result = all_xy; + // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)) + *sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy); +} + +// Helper function used when processing one pixel pair. +// @param pixel0..3 are the four input pixels +// @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This +// will contain (4x(x1, 16-x1), 4x(x0, 16-x0)) +// or (4x(x3, 16-x3), 4x(x2, 16-x2)) +// @return a vector of 16 bit components containing: +// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) +inline __m128i ProcessPixelPairHelper(uint32_t pixel0, + uint32_t pixel1, + uint32_t pixel2, + uint32_t pixel3, + const __m128i& scale_x) { + __m128i a0, a1, a2, a3; + // Load 2 pairs of pixels + a0 = _mm_cvtsi32_si128(pixel0); + a1 = _mm_cvtsi32_si128(pixel1); + + // Interleave pixels. + // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) + a0 = _mm_unpacklo_epi8(a0, a1); + + a2 = _mm_cvtsi32_si128(pixel2); + a3 = _mm_cvtsi32_si128(pixel3); + // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2) + a2 = _mm_unpacklo_epi8(a2, a3); + + // two pairs of pixel pairs, interleaved. + // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2, + // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) + a0 = _mm_unpacklo_epi64(a0, a2); + + // multiply and sum to 16 bit components. + // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) + // At that point, we use up a bit less than 12 bits for each 16 bit + // component: + // All components are less than 255. So, + // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16. + return _mm_maddubs_epi16(a0, scale_x); +} + +// Scale back the results after multiplications to the [0:255] range, and scale +// by alpha when has_alpha is true. +// Depending on whether one set or two sets of multiplications had been applied, +// the results have to be shifted by four places (dividing by 16), or shifted +// by eight places (dividing by 256), since each multiplication is by a quantity +// in the range [0:16]. +template +inline __m128i ScaleFourPixels(__m128i* pixels, + const __m128i& alpha) { + // Divide each 16 bit component by 16 (or 256 depending on scale). + *pixels = _mm_srli_epi16(*pixels, scale); + + if (has_alpha) { + // Multiply by alpha. + *pixels = _mm_mullo_epi16(*pixels, alpha); + + // Divide each 16 bit component by 256. + *pixels = _mm_srli_epi16(*pixels, 8); + } + return *pixels; +} + +// Wrapper to calculate two output pixels from four input pixels. The +// arguments are the same as ProcessPixelPairHelper. Technically, there are +// eight input pixels, but since sub_y == 0, the factors applied to half of the +// pixels is zero (sub_y), and are therefore omitted here to save on some +// processing. +// @param alpha when has_alpha is true, scale all resulting components by this +// value. +// @return a vector of 16 bit components containing: +// ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ..., +// (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true) +// otherwise +// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) +// In both cases, the results are renormalized (divided by 16) to match the +// expected formats when storing back the results into memory. +template +inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0, + uint32_t pixel1, + uint32_t pixel2, + uint32_t pixel3, + const __m128i& scale_x, + const __m128i& alpha) { + __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, + scale_x); + return ScaleFourPixels(&sum, alpha); +} + +// Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a +// time instead of two. As in the above function, only two pixels are needed +// to generate a single pixel since sub_y == 0. +// @return same as ProcessPixelPairZeroSubY, except that only the bottom 4 +// 16 bit components are set. +template +inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0, + uint32_t pixel1, + __m128i scale_x, + __m128i alpha) { + __m128i a0 = _mm_cvtsi32_si128(pixel0); + __m128i a1 = _mm_cvtsi32_si128(pixel1); + + // Interleave + a0 = _mm_unpacklo_epi8(a0, a1); + + // (a0 * (16-x) + a1 * x) + __m128i sum = _mm_maddubs_epi16(a0, scale_x); + + return ScaleFourPixels(&sum, alpha); +} + +// Methods when sub_y != 0 + + +// Same as ProcessPixelPairHelper, except that the values are scaled by y. +// @param y vector of 16 bit components containing 'y' values. There are two +// cases in practice, where y will contain the sub_y constant, or will +// contain the 16 - sub_y constant. +// @return vector of 16 bit components containing: +// (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0)) +inline __m128i ProcessPixelPair(uint32_t pixel0, + uint32_t pixel1, + uint32_t pixel2, + uint32_t pixel3, + const __m128i& scale_x, + const __m128i& y) { + __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, + scale_x); + + // first row times 16-y or y depending on whether 'y' represents one or + // the other. + // Values will be up to 255 * 16 * 16 = 65280. + // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , + // y * (Ra0 * (16 - x0) + Ra1 * x0)) + sum = _mm_mullo_epi16(sum, y); + + return sum; +} + +// Process two pixel pairs out of eight input pixels. +// In other methods, the distinct pixels are passed one by one, but in this +// case, the rows, and index offsets to the pixels into the row are passed +// to generate the 8 pixels. +// @param row0..1 top and bottom row where to find input pixels. +// @param x0..1 offsets into the row for all eight input pixels. +// @param all_y vector of 16 bit components containing the constant sub_y +// @param neg_y vector of 16 bit components containing the constant 16 - sub_y +// @param alpha vector of 16 bit components containing the alpha value to scale +// the results by, when has_alpha is true. +// @return +// (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + +// y * (Aa2' * (16-x1) + Aa3' * x1)), +// ... +// alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) + +// y * (Ra0' * (16-x0) + Ra1' * x0)) +// With the factor alpha removed when has_alpha is false. +// The values are scaled back to 16 bit components, but with only the bottom +// 8 bits being set. +template +inline __m128i ProcessTwoPixelPairs(const uint32_t* row0, + const uint32_t* row1, + const int* x0, + const int* x1, + const __m128i& scale_x, + const __m128i& all_y, + const __m128i& neg_y, + const __m128i& alpha) { + __m128i sum0 = ProcessPixelPair( + row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], + scale_x, neg_y); + __m128i sum1 = ProcessPixelPair( + row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]], + scale_x, all_y); + + // 2 samples fully summed. + // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + + // y * (Aa2' * (16-x1) + Aa3' * x1), + // ... + // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) + + // y * (Ra0' * (16-x0) + Ra1' * x0)) + // Each component, again can be at most 256 * 255 = 65280, so no overflow. + sum0 = _mm_add_epi16(sum0, sum1); + + return ScaleFourPixels(&sum0, alpha); +} + +// Similar to ProcessTwoPixelPairs except the pixel indexes. +template +inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00, + const uint32_t* row01, + const uint32_t* row10, + const uint32_t* row11, + const int* xy0, + const int* xy1, + const __m128i& scale_x, + const __m128i& all_y, + const __m128i& neg_y, + const __m128i& alpha) { + // first row + __m128i sum0 = ProcessPixelPair( + row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]], + scale_x, neg_y); + // second row + __m128i sum1 = ProcessPixelPair( + row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]], + scale_x, all_y); + + // 2 samples fully summed. + // ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) + + // y0 * (Aa2' * (16-x1) + Aa3' * x1), + // ... + // (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) + + // y0 * (Ra0' * (16-x0) + Ra1' * x0)) + // Each component, again can be at most 256 * 255 = 65280, so no overflow. + sum0 = _mm_add_epi16(sum0, sum1); + + return ScaleFourPixels(&sum0, alpha); +} + + +// Same as ProcessPixelPair, except that performing the math one output pixel +// at a time. This means that only the bottom four 16 bit components are set. +inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1, + const __m128i& scale_x, const __m128i& y) { + __m128i a0 = _mm_cvtsi32_si128(pixel0); + __m128i a1 = _mm_cvtsi32_si128(pixel1); + + // Interleave + // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) + a0 = _mm_unpacklo_epi8(a0, a1); + + // (a0 * (16-x) + a1 * x) + a0 = _mm_maddubs_epi16(a0, scale_x); + + // scale row by y + return _mm_mullo_epi16(a0, y); +} + +// Notes about the various tricks that are used in this implementation: +// - specialization for sub_y == 0. +// Statistically, 1/16th of the samples will have sub_y == 0. When this +// happens, the math goes from: +// (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11 +// to: +// (16 - x)*a00 + 16*x*a01 +// much simpler. The simplification makes for an easy boost in performance. +// - calculating 4 output pixels at a time. +// This allows loading the coefficients x0 and x1 and shuffling them to the +// optimum location only once per loop, instead of twice per loop. +// This also allows us to store the four pixels with a single store. +// - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction +// version): +// _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded +// in 32 bit values to 8 bit values repeated four times. +// _mm_maddubs_epi16 : this allows us to perform multiplications and additions +// in one swoop of 8bit values storing the results in 16 bit values. This +// instruction is actually crucial for the speed of the implementation since +// as one can see in the SSE2 implementation, all inputs have to be used as +// 16 bits because the results are 16 bits. This basically allows us to process +// twice as many pixel components per iteration. +// +// As a result, this method behaves faster than the traditional SSE2. The actual +// boost varies greatly on the underlying architecture. +template +void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + SkASSERT(count > 0 && colors != NULL); + SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel); + SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config); + if (has_alpha) { + SkASSERT(s.fAlphaScale < 256); + } else { + SkASSERT(s.fAlphaScale == 256); + } + + const uint8_t* src_addr = + static_cast(s.fBitmap->getPixels()); + const size_t rb = s.fBitmap->rowBytes(); + const uint32_t XY = *xy++; + const unsigned y0 = XY >> 14; + const uint32_t* row0 = + reinterpret_cast(src_addr + (y0 >> 4) * rb); + const uint32_t* row1 = + reinterpret_cast(src_addr + (XY & 0x3FFF) * rb); + const unsigned sub_y = y0 & 0xF; + + // vector constants + const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, + 8, 8, 8, 8, + 4, 4, 4, 4, + 0, 0, 0, 0); + const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); + const __m128i mask_000F = _mm_set1_epi32(0x000F); + const __m128i sixteen_8bit = _mm_set1_epi8(16); + // (0, 0, 0, 0, 0, 0, 0, 0) + const __m128i zero = _mm_setzero_si128(); + + __m128i alpha = _mm_setzero_si128(); + if (has_alpha) + // 8x(alpha) + alpha = _mm_set1_epi16(s.fAlphaScale); + + if (sub_y == 0) { + // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) + while (count > 3) { + count -= 4; + + int x0[4]; + int x1[4]; + __m128i all_x, sixteen_minus_x; + PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, + sixteen_8bit, mask_dist_select, + &all_x, &sixteen_minus_x, x0, x1); + xy += 4; + + // First pair of pixel pairs. + // (4x(x1, 16-x1), 4x(x0, 16-x0)) + __m128i scale_x; + scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); + + __m128i sum0 = ProcessPixelPairZeroSubY( + row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], + scale_x, alpha); + + // second pair of pixel pairs + // (4x (x3, 16-x3), 4x (16-x2, x2)) + scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); + + __m128i sum1 = ProcessPixelPairZeroSubY( + row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]], + scale_x, alpha); + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum0 = _mm_packus_epi16(sum0, sum1); + + // Extract low int and store. + _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); + + colors += 4; + } + + // handle remainder + while (count-- > 0) { + uint32_t xx = *xy++; // x0:14 | 4 | x1:14 + unsigned x0 = xx >> 18; + unsigned x1 = xx & 0x3FFF; + + // 16x(x) + const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); + + // (16x(16-x)) + __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); + + scale_x = _mm_unpacklo_epi8(scale_x, all_x); + + __m128i sum = ProcessOnePixelZeroSubY( + row0[x0], row0[x1], + scale_x, alpha); + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum = _mm_packus_epi16(sum, zero); + + // Extract low int and store. + *colors++ = _mm_cvtsi128_si32(sum); + } + } else { // more general case, y != 0 + // 8x(16) + const __m128i sixteen_16bit = _mm_set1_epi16(16); + + // 8x (y) + const __m128i all_y = _mm_set1_epi16(sub_y); + + // 8x (16-y) + const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); + + // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) + while (count > 3) { + count -= 4; + + int x0[4]; + int x1[4]; + __m128i all_x, sixteen_minus_x; + PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, + sixteen_8bit, mask_dist_select, + &all_x, &sixteen_minus_x, x0, x1); + xy += 4; + + // First pair of pixel pairs + // (4x(x1, 16-x1), 4x(x0, 16-x0)) + __m128i scale_x; + scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); + + __m128i sum0 = ProcessTwoPixelPairs( + row0, row1, x0, x1, + scale_x, all_y, neg_y, alpha); + + // second pair of pixel pairs + // (4x (x3, 16-x3), 4x (16-x2, x2)) + scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); + + __m128i sum1 = ProcessTwoPixelPairs( + row0, row1, x0 + 2, x1 + 2, + scale_x, all_y, neg_y, alpha); + + // Do the final packing of the two results + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum0 = _mm_packus_epi16(sum0, sum1); + + // Extract low int and store. + _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); + + colors += 4; + } + + // Left over. + while (count-- > 0) { + const uint32_t xx = *xy++; // x0:14 | 4 | x1:14 + const unsigned x0 = xx >> 18; + const unsigned x1 = xx & 0x3FFF; + + // 16x(x) + const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); + + // 16x (16-x) + __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); + + // (8x (x, 16-x)) + scale_x = _mm_unpacklo_epi8(scale_x, all_x); + + // first row. + __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); + // second row. + __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); + + // Add both rows for full sample + sum0 = _mm_add_epi16(sum0, sum1); + + sum0 = ScaleFourPixels(&sum0, alpha); + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum0 = _mm_packus_epi16(sum0, zero); + + // Extract low int and store. + *colors++ = _mm_cvtsi128_si32(sum0); + } + } +} + +/* + * Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the + * special case suby == 0 as suby is changing in every loop. + */ +template +void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + SkASSERT(count > 0 && colors != NULL); + SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel); + SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config); + if (has_alpha) { + SkASSERT(s.fAlphaScale < 256); + } else { + SkASSERT(s.fAlphaScale == 256); + } + + const uint8_t* src_addr = + static_cast(s.fBitmap->getPixels()); + const size_t rb = s.fBitmap->rowBytes(); + + // vector constants + const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, + 8, 8, 8, 8, + 4, 4, 4, 4, + 0, 0, 0, 0); + const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); + const __m128i mask_000F = _mm_set1_epi32(0x000F); + const __m128i sixteen_8bit = _mm_set1_epi8(16); + + __m128i alpha; + if (has_alpha) { + // 8x(alpha) + alpha = _mm_set1_epi16(s.fAlphaScale); + } + + // Unroll 2x, interleave bytes, use pmaddubsw (all_x is small) + while (count >= 2) { + int xy0[4]; + int xy1[4]; + __m128i all_xy, sixteen_minus_xy; + PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F, + sixteen_8bit, mask_dist_select, + &all_xy, &sixteen_minus_xy, xy0, xy1); + + // (4x(x1, 16-x1), 4x(x0, 16-x0)) + __m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy); + // (4x(0, y1), 4x(0, y0)) + __m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128()); + __m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y); + + const uint32_t* row00 = + reinterpret_cast(src_addr + xy0[2] * rb); + const uint32_t* row01 = + reinterpret_cast(src_addr + xy1[2] * rb); + const uint32_t* row10 = + reinterpret_cast(src_addr + xy0[3] * rb); + const uint32_t* row11 = + reinterpret_cast(src_addr + xy1[3] * rb); + + __m128i sum0 = ProcessTwoPixelPairsDXDY( + row00, row01, row10, row11, xy0, xy1, + scale_x, all_y, neg_y, alpha); + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); + + // Extract low int and store. + _mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0); + + xy += 4; + colors += 2; + count -= 2; + } + + // Handle the remainder + while (count-- > 0) { + uint32_t data = *xy++; + unsigned y0 = data >> 14; + unsigned y1 = data & 0x3FFF; + unsigned subY = y0 & 0xF; + y0 >>= 4; + + data = *xy++; + unsigned x0 = data >> 14; + unsigned x1 = data & 0x3FFF; + unsigned subX = x0 & 0xF; + x0 >>= 4; + + const uint32_t* row0 = + reinterpret_cast(src_addr + y0 * rb); + const uint32_t* row1 = + reinterpret_cast(src_addr + y1 * rb); + + // 16x(x) + const __m128i all_x = _mm_set1_epi8(subX); + + // 16x (16-x) + __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); + + // (8x (x, 16-x)) + scale_x = _mm_unpacklo_epi8(scale_x, all_x); + + // 8x(16) + const __m128i sixteen_16bit = _mm_set1_epi16(16); + + // 8x (y) + const __m128i all_y = _mm_set1_epi16(subY); + + // 8x (16-y) + const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); + + // first row. + __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); + // second row. + __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); + + // Add both rows for full sample + sum0 = _mm_add_epi16(sum0, sum1); + + sum0 = ScaleFourPixels(&sum0, alpha); + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); + + // Extract low int and store. + *colors++ = _mm_cvtsi128_si32(sum0); + } +} +} // namepace + +void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + S32_generic_D32_filter_DX_SSSE3(s, xy, count, colors); +} + +void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + S32_generic_D32_filter_DX_SSSE3(s, xy, count, colors); +} + +void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + S32_generic_D32_filter_DXDY_SSSE3(s, xy, count, colors); +} + +void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + S32_generic_D32_filter_DXDY_SSSE3(s, xy, count, colors); +} + +#else // !defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) || SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 + +void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + sk_throw(); +} + +void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + sk_throw(); +} + +void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + sk_throw(); +} + +void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + sk_throw(); +} + +#endif