diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/opts/SkBlitRow_opts_arm_neon.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/opts/SkBlitRow_opts_arm_neon.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,1422 @@ +/* + * Copyright 2012 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "SkBlitRow_opts_arm_neon.h" + +#include "SkBlitMask.h" +#include "SkBlitRow.h" +#include "SkColorPriv.h" +#include "SkDither.h" +#include "SkMathPriv.h" +#include "SkUtils.h" + +#include "SkCachePreload_arm.h" +#include "SkColor_opts_neon.h" +#include + +void S32_D565_Opaque_neon(uint16_t* SK_RESTRICT dst, + const SkPMColor* SK_RESTRICT src, int count, + U8CPU alpha, int /*x*/, int /*y*/) { + SkASSERT(255 == alpha); + + while (count >= 8) { + uint8x8x4_t vsrc; + uint16x8_t vdst; + + // Load + vsrc = vld4_u8((uint8_t*)src); + + // Convert src to 565 + vdst = SkPixel32ToPixel16_neon8(vsrc); + + // Store + vst1q_u16(dst, vdst); + + // Prepare next iteration + dst += 8; + src += 8; + count -= 8; + }; + + // Leftovers + while (count > 0) { + SkPMColor c = *src++; + SkPMColorAssert(c); + *dst = SkPixel32ToPixel16_ToU16(c); + dst++; + count--; + }; +} + +void S32A_D565_Opaque_neon(uint16_t* SK_RESTRICT dst, + const SkPMColor* SK_RESTRICT src, int count, + U8CPU alpha, int /*x*/, int /*y*/) { + SkASSERT(255 == alpha); + + if (count >= 8) { + uint16_t* SK_RESTRICT keep_dst = 0; + + asm volatile ( + "ands ip, %[count], #7 \n\t" + "vmov.u8 d31, #1<<7 \n\t" + "vld1.16 {q12}, [%[dst]] \n\t" + "vld4.8 {d0-d3}, [%[src]] \n\t" + // Thumb does not support the standard ARM conditional + // instructions but instead requires the 'it' instruction + // to signal conditional execution + "it eq \n\t" + "moveq ip, #8 \n\t" + "mov %[keep_dst], %[dst] \n\t" + + "add %[src], %[src], ip, LSL#2 \n\t" + "add %[dst], %[dst], ip, LSL#1 \n\t" + "subs %[count], %[count], ip \n\t" + "b 9f \n\t" + // LOOP + "2: \n\t" + + "vld1.16 {q12}, [%[dst]]! \n\t" + "vld4.8 {d0-d3}, [%[src]]! \n\t" + "vst1.16 {q10}, [%[keep_dst]] \n\t" + "sub %[keep_dst], %[dst], #8*2 \n\t" + "subs %[count], %[count], #8 \n\t" + "9: \n\t" + "pld [%[dst],#32] \n\t" + // expand 0565 q12 to 8888 {d4-d7} + "vmovn.u16 d4, q12 \n\t" + "vshr.u16 q11, q12, #5 \n\t" + "vshr.u16 q10, q12, #6+5 \n\t" + "vmovn.u16 d5, q11 \n\t" + "vmovn.u16 d6, q10 \n\t" + "vshl.u8 d4, d4, #3 \n\t" + "vshl.u8 d5, d5, #2 \n\t" + "vshl.u8 d6, d6, #3 \n\t" + + "vmovl.u8 q14, d31 \n\t" + "vmovl.u8 q13, d31 \n\t" + "vmovl.u8 q12, d31 \n\t" + + // duplicate in 4/2/1 & 8pix vsns + "vmvn.8 d30, d3 \n\t" + "vmlal.u8 q14, d30, d6 \n\t" + "vmlal.u8 q13, d30, d5 \n\t" + "vmlal.u8 q12, d30, d4 \n\t" + "vshr.u16 q8, q14, #5 \n\t" + "vshr.u16 q9, q13, #6 \n\t" + "vaddhn.u16 d6, q14, q8 \n\t" + "vshr.u16 q8, q12, #5 \n\t" + "vaddhn.u16 d5, q13, q9 \n\t" + "vqadd.u8 d6, d6, d0 \n\t" // moved up + "vaddhn.u16 d4, q12, q8 \n\t" + // intentionally don't calculate alpha + // result in d4-d6 + + "vqadd.u8 d5, d5, d1 \n\t" + "vqadd.u8 d4, d4, d2 \n\t" + + // pack 8888 {d4-d6} to 0565 q10 + "vshll.u8 q10, d6, #8 \n\t" + "vshll.u8 q3, d5, #8 \n\t" + "vshll.u8 q2, d4, #8 \n\t" + "vsri.u16 q10, q3, #5 \n\t" + "vsri.u16 q10, q2, #11 \n\t" + + "bne 2b \n\t" + + "1: \n\t" + "vst1.16 {q10}, [%[keep_dst]] \n\t" + : [count] "+r" (count) + : [dst] "r" (dst), [keep_dst] "r" (keep_dst), [src] "r" (src) + : "ip", "cc", "memory", "d0","d1","d2","d3","d4","d5","d6","d7", + "d16","d17","d18","d19","d20","d21","d22","d23","d24","d25","d26","d27","d28","d29", + "d30","d31" + ); + } + else + { // handle count < 8 + uint16_t* SK_RESTRICT keep_dst = 0; + + asm volatile ( + "vmov.u8 d31, #1<<7 \n\t" + "mov %[keep_dst], %[dst] \n\t" + + "tst %[count], #4 \n\t" + "beq 14f \n\t" + "vld1.16 {d25}, [%[dst]]! \n\t" + "vld1.32 {q1}, [%[src]]! \n\t" + + "14: \n\t" + "tst %[count], #2 \n\t" + "beq 12f \n\t" + "vld1.32 {d24[1]}, [%[dst]]! \n\t" + "vld1.32 {d1}, [%[src]]! \n\t" + + "12: \n\t" + "tst %[count], #1 \n\t" + "beq 11f \n\t" + "vld1.16 {d24[1]}, [%[dst]]! \n\t" + "vld1.32 {d0[1]}, [%[src]]! \n\t" + + "11: \n\t" + // unzips achieve the same as a vld4 operation + "vuzpq.u16 q0, q1 \n\t" + "vuzp.u8 d0, d1 \n\t" + "vuzp.u8 d2, d3 \n\t" + // expand 0565 q12 to 8888 {d4-d7} + "vmovn.u16 d4, q12 \n\t" + "vshr.u16 q11, q12, #5 \n\t" + "vshr.u16 q10, q12, #6+5 \n\t" + "vmovn.u16 d5, q11 \n\t" + "vmovn.u16 d6, q10 \n\t" + "vshl.u8 d4, d4, #3 \n\t" + "vshl.u8 d5, d5, #2 \n\t" + "vshl.u8 d6, d6, #3 \n\t" + + "vmovl.u8 q14, d31 \n\t" + "vmovl.u8 q13, d31 \n\t" + "vmovl.u8 q12, d31 \n\t" + + // duplicate in 4/2/1 & 8pix vsns + "vmvn.8 d30, d3 \n\t" + "vmlal.u8 q14, d30, d6 \n\t" + "vmlal.u8 q13, d30, d5 \n\t" + "vmlal.u8 q12, d30, d4 \n\t" + "vshr.u16 q8, q14, #5 \n\t" + "vshr.u16 q9, q13, #6 \n\t" + "vaddhn.u16 d6, q14, q8 \n\t" + "vshr.u16 q8, q12, #5 \n\t" + "vaddhn.u16 d5, q13, q9 \n\t" + "vqadd.u8 d6, d6, d0 \n\t" // moved up + "vaddhn.u16 d4, q12, q8 \n\t" + // intentionally don't calculate alpha + // result in d4-d6 + + "vqadd.u8 d5, d5, d1 \n\t" + "vqadd.u8 d4, d4, d2 \n\t" + + // pack 8888 {d4-d6} to 0565 q10 + "vshll.u8 q10, d6, #8 \n\t" + "vshll.u8 q3, d5, #8 \n\t" + "vshll.u8 q2, d4, #8 \n\t" + "vsri.u16 q10, q3, #5 \n\t" + "vsri.u16 q10, q2, #11 \n\t" + + // store + "tst %[count], #4 \n\t" + "beq 24f \n\t" + "vst1.16 {d21}, [%[keep_dst]]! \n\t" + + "24: \n\t" + "tst %[count], #2 \n\t" + "beq 22f \n\t" + "vst1.32 {d20[1]}, [%[keep_dst]]! \n\t" + + "22: \n\t" + "tst %[count], #1 \n\t" + "beq 21f \n\t" + "vst1.16 {d20[1]}, [%[keep_dst]]! \n\t" + + "21: \n\t" + : [count] "+r" (count) + : [dst] "r" (dst), [keep_dst] "r" (keep_dst), [src] "r" (src) + : "ip", "cc", "memory", "d0","d1","d2","d3","d4","d5","d6","d7", + "d16","d17","d18","d19","d20","d21","d22","d23","d24","d25","d26","d27","d28","d29", + "d30","d31" + ); + } +} + +static inline uint16x8_t SkDiv255Round_neon8(uint16x8_t prod) { + prod += vdupq_n_u16(128); + prod += vshrq_n_u16(prod, 8); + return vshrq_n_u16(prod, 8); +} + +void S32A_D565_Blend_neon(uint16_t* SK_RESTRICT dst, + const SkPMColor* SK_RESTRICT src, int count, + U8CPU alpha, int /*x*/, int /*y*/) { + SkASSERT(255 > alpha); + + /* This code implements a Neon version of S32A_D565_Blend. The results have + * a few mismatches compared to the original code. These mismatches never + * exceed 1. + */ + + if (count >= 8) { + uint16x8_t valpha_max, vmask_blue; + uint8x8_t valpha; + + // prepare constants + valpha_max = vmovq_n_u16(255); + valpha = vdup_n_u8(alpha); + vmask_blue = vmovq_n_u16(SK_B16_MASK); + + do { + uint16x8_t vdst, vdst_r, vdst_g, vdst_b; + uint16x8_t vres_a, vres_r, vres_g, vres_b; + uint8x8x4_t vsrc; + + // load pixels + vdst = vld1q_u16(dst); +#if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)) + asm ( + "vld4.u8 %h[vsrc], [%[src]]!" + : [vsrc] "=w" (vsrc), [src] "+&r" (src) + : : + ); +#else + register uint8x8_t d0 asm("d0"); + register uint8x8_t d1 asm("d1"); + register uint8x8_t d2 asm("d2"); + register uint8x8_t d3 asm("d3"); + + asm volatile ( + "vld4.u8 {d0-d3},[%[src]]!;" + : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), + [src] "+&r" (src) + : : + ); + vsrc.val[0] = d0; + vsrc.val[1] = d1; + vsrc.val[2] = d2; + vsrc.val[3] = d3; +#endif + + + // deinterleave dst + vdst_g = vshlq_n_u16(vdst, SK_R16_BITS); // shift green to top of lanes + vdst_b = vdst & vmask_blue; // extract blue + vdst_r = vshrq_n_u16(vdst, SK_R16_SHIFT); // extract red + vdst_g = vshrq_n_u16(vdst_g, SK_R16_BITS + SK_B16_BITS); // extract green + + // shift src to 565 + vsrc.val[NEON_R] = vshr_n_u8(vsrc.val[NEON_R], 8 - SK_R16_BITS); + vsrc.val[NEON_G] = vshr_n_u8(vsrc.val[NEON_G], 8 - SK_G16_BITS); + vsrc.val[NEON_B] = vshr_n_u8(vsrc.val[NEON_B], 8 - SK_B16_BITS); + + // calc src * src_scale + vres_a = vmull_u8(vsrc.val[NEON_A], valpha); + vres_r = vmull_u8(vsrc.val[NEON_R], valpha); + vres_g = vmull_u8(vsrc.val[NEON_G], valpha); + vres_b = vmull_u8(vsrc.val[NEON_B], valpha); + + // prepare dst_scale + vres_a = SkDiv255Round_neon8(vres_a); + vres_a = valpha_max - vres_a; // 255 - (sa * src_scale) / 255 + + // add dst * dst_scale to previous result + vres_r = vmlaq_u16(vres_r, vdst_r, vres_a); + vres_g = vmlaq_u16(vres_g, vdst_g, vres_a); + vres_b = vmlaq_u16(vres_b, vdst_b, vres_a); + +#ifdef S32A_D565_BLEND_EXACT + // It is possible to get exact results with this but it is slow, + // even slower than C code in some cases + vres_r = SkDiv255Round_neon8(vres_r); + vres_g = SkDiv255Round_neon8(vres_g); + vres_b = SkDiv255Round_neon8(vres_b); +#else + vres_r = vrshrq_n_u16(vres_r, 8); + vres_g = vrshrq_n_u16(vres_g, 8); + vres_b = vrshrq_n_u16(vres_b, 8); +#endif + // pack result + vres_b = vsliq_n_u16(vres_b, vres_g, SK_G16_SHIFT); // insert green into blue + vres_b = vsliq_n_u16(vres_b, vres_r, SK_R16_SHIFT); // insert red into green/blue + + // store + vst1q_u16(dst, vres_b); + dst += 8; + count -= 8; + } while (count >= 8); + } + + // leftovers + while (count-- > 0) { + SkPMColor sc = *src++; + if (sc) { + uint16_t dc = *dst; + unsigned dst_scale = 255 - SkMulDiv255Round(SkGetPackedA32(sc), alpha); + unsigned dr = SkMulS16(SkPacked32ToR16(sc), alpha) + SkMulS16(SkGetPackedR16(dc), dst_scale); + unsigned dg = SkMulS16(SkPacked32ToG16(sc), alpha) + SkMulS16(SkGetPackedG16(dc), dst_scale); + unsigned db = SkMulS16(SkPacked32ToB16(sc), alpha) + SkMulS16(SkGetPackedB16(dc), dst_scale); + *dst = SkPackRGB16(SkDiv255Round(dr), SkDiv255Round(dg), SkDiv255Round(db)); + } + dst += 1; + } +} + +/* dither matrix for Neon, derived from gDitherMatrix_3Bit_16. + * each dither value is spaced out into byte lanes, and repeated + * to allow an 8-byte load from offsets 0, 1, 2 or 3 from the + * start of each row. + */ +static const uint8_t gDitherMatrix_Neon[48] = { + 0, 4, 1, 5, 0, 4, 1, 5, 0, 4, 1, 5, + 6, 2, 7, 3, 6, 2, 7, 3, 6, 2, 7, 3, + 1, 5, 0, 4, 1, 5, 0, 4, 1, 5, 0, 4, + 7, 3, 6, 2, 7, 3, 6, 2, 7, 3, 6, 2, + +}; + +void S32_D565_Blend_Dither_neon(uint16_t *dst, const SkPMColor *src, + int count, U8CPU alpha, int x, int y) +{ + + SkASSERT(255 > alpha); + + // rescale alpha to range 1 - 256 + int scale = SkAlpha255To256(alpha); + + if (count >= 8) { + /* select row and offset for dither array */ + const uint8_t *dstart = &gDitherMatrix_Neon[(y&3)*12 + (x&3)]; + + uint8x8_t vdither = vld1_u8(dstart); // load dither values + uint8x8_t vdither_g = vshr_n_u8(vdither, 1); // calc. green dither values + + int16x8_t vscale = vdupq_n_s16(scale); // duplicate scale into neon reg + uint16x8_t vmask_b = vdupq_n_u16(0x1F); // set up blue mask + + do { + + uint8x8_t vsrc_r, vsrc_g, vsrc_b; + uint8x8_t vsrc565_r, vsrc565_g, vsrc565_b; + uint16x8_t vsrc_dit_r, vsrc_dit_g, vsrc_dit_b; + uint16x8_t vsrc_res_r, vsrc_res_g, vsrc_res_b; + uint16x8_t vdst; + uint16x8_t vdst_r, vdst_g, vdst_b; + int16x8_t vres_r, vres_g, vres_b; + int8x8_t vres8_r, vres8_g, vres8_b; + + // Load source and add dither + { + register uint8x8_t d0 asm("d0"); + register uint8x8_t d1 asm("d1"); + register uint8x8_t d2 asm("d2"); + register uint8x8_t d3 asm("d3"); + + asm ( + "vld4.8 {d0-d3},[%[src]]! /* r=%P0 g=%P1 b=%P2 a=%P3 */" + : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), [src] "+&r" (src) + : + ); + vsrc_g = d1; +#if SK_PMCOLOR_BYTE_ORDER(B,G,R,A) + vsrc_r = d2; vsrc_b = d0; +#elif SK_PMCOLOR_BYTE_ORDER(R,G,B,A) + vsrc_r = d0; vsrc_b = d2; +#endif + } + + vsrc565_g = vshr_n_u8(vsrc_g, 6); // calc. green >> 6 + vsrc565_r = vshr_n_u8(vsrc_r, 5); // calc. red >> 5 + vsrc565_b = vshr_n_u8(vsrc_b, 5); // calc. blue >> 5 + + vsrc_dit_g = vaddl_u8(vsrc_g, vdither_g); // add in dither to green and widen + vsrc_dit_r = vaddl_u8(vsrc_r, vdither); // add in dither to red and widen + vsrc_dit_b = vaddl_u8(vsrc_b, vdither); // add in dither to blue and widen + + vsrc_dit_r = vsubw_u8(vsrc_dit_r, vsrc565_r); // sub shifted red from result + vsrc_dit_g = vsubw_u8(vsrc_dit_g, vsrc565_g); // sub shifted green from result + vsrc_dit_b = vsubw_u8(vsrc_dit_b, vsrc565_b); // sub shifted blue from result + + vsrc_res_r = vshrq_n_u16(vsrc_dit_r, 3); + vsrc_res_g = vshrq_n_u16(vsrc_dit_g, 2); + vsrc_res_b = vshrq_n_u16(vsrc_dit_b, 3); + + // Load dst and unpack + vdst = vld1q_u16(dst); + vdst_g = vshrq_n_u16(vdst, 5); // shift down to get green + vdst_r = vshrq_n_u16(vshlq_n_u16(vdst, 5), 5+5); // double shift to extract red + vdst_b = vandq_u16(vdst, vmask_b); // mask to get blue + + // subtract dst from src and widen + vres_r = vsubq_s16(vreinterpretq_s16_u16(vsrc_res_r), vreinterpretq_s16_u16(vdst_r)); + vres_g = vsubq_s16(vreinterpretq_s16_u16(vsrc_res_g), vreinterpretq_s16_u16(vdst_g)); + vres_b = vsubq_s16(vreinterpretq_s16_u16(vsrc_res_b), vreinterpretq_s16_u16(vdst_b)); + + // multiply diffs by scale and shift + vres_r = vmulq_s16(vres_r, vscale); + vres_g = vmulq_s16(vres_g, vscale); + vres_b = vmulq_s16(vres_b, vscale); + + vres8_r = vshrn_n_s16(vres_r, 8); + vres8_g = vshrn_n_s16(vres_g, 8); + vres8_b = vshrn_n_s16(vres_b, 8); + + // add dst to result + vres_r = vaddw_s8(vreinterpretq_s16_u16(vdst_r), vres8_r); + vres_g = vaddw_s8(vreinterpretq_s16_u16(vdst_g), vres8_g); + vres_b = vaddw_s8(vreinterpretq_s16_u16(vdst_b), vres8_b); + + // put result into 565 format + vres_b = vsliq_n_s16(vres_b, vres_g, 5); // shift up green and insert into blue + vres_b = vsliq_n_s16(vres_b, vres_r, 6+5); // shift up red and insert into blue + + // Store result + vst1q_u16(dst, vreinterpretq_u16_s16(vres_b)); + + // Next iteration + dst += 8; + count -= 8; + + } while (count >= 8); + } + + // Leftovers + if (count > 0) { + int scale = SkAlpha255To256(alpha); + DITHER_565_SCAN(y); + do { + SkPMColor c = *src++; + SkPMColorAssert(c); + + int dither = DITHER_VALUE(x); + int sr = SkGetPackedR32(c); + int sg = SkGetPackedG32(c); + int sb = SkGetPackedB32(c); + sr = SkDITHER_R32To565(sr, dither); + sg = SkDITHER_G32To565(sg, dither); + sb = SkDITHER_B32To565(sb, dither); + + uint16_t d = *dst; + *dst++ = SkPackRGB16(SkAlphaBlend(sr, SkGetPackedR16(d), scale), + SkAlphaBlend(sg, SkGetPackedG16(d), scale), + SkAlphaBlend(sb, SkGetPackedB16(d), scale)); + DITHER_INC_X(x); + } while (--count != 0); + } +} + +void S32A_Opaque_BlitRow32_neon(SkPMColor* SK_RESTRICT dst, + const SkPMColor* SK_RESTRICT src, + int count, U8CPU alpha) { + + SkASSERT(255 == alpha); + if (count > 0) { + + + uint8x8_t alpha_mask; + + static const uint8_t alpha_mask_setup[] = {3,3,3,3,7,7,7,7}; + alpha_mask = vld1_u8(alpha_mask_setup); + + /* do the NEON unrolled code */ +#define UNROLL 4 + while (count >= UNROLL) { + uint8x8_t src_raw, dst_raw, dst_final; + uint8x8_t src_raw_2, dst_raw_2, dst_final_2; + + /* The two prefetches below may make the code slighlty + * slower for small values of count but are worth having + * in the general case. + */ + __builtin_prefetch(src+32); + __builtin_prefetch(dst+32); + + /* get the source */ + src_raw = vreinterpret_u8_u32(vld1_u32(src)); +#if UNROLL > 2 + src_raw_2 = vreinterpret_u8_u32(vld1_u32(src+2)); +#endif + + /* get and hold the dst too */ + dst_raw = vreinterpret_u8_u32(vld1_u32(dst)); +#if UNROLL > 2 + dst_raw_2 = vreinterpret_u8_u32(vld1_u32(dst+2)); +#endif + + /* 1st and 2nd bits of the unrolling */ + { + uint8x8_t dst_cooked; + uint16x8_t dst_wide; + uint8x8_t alpha_narrow; + uint16x8_t alpha_wide; + + /* get the alphas spread out properly */ + alpha_narrow = vtbl1_u8(src_raw, alpha_mask); + alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow); + + /* spread the dest */ + dst_wide = vmovl_u8(dst_raw); + + /* alpha mul the dest */ + dst_wide = vmulq_u16 (dst_wide, alpha_wide); + dst_cooked = vshrn_n_u16(dst_wide, 8); + + /* sum -- ignoring any byte lane overflows */ + dst_final = vadd_u8(src_raw, dst_cooked); + } + +#if UNROLL > 2 + /* the 3rd and 4th bits of our unrolling */ + { + uint8x8_t dst_cooked; + uint16x8_t dst_wide; + uint8x8_t alpha_narrow; + uint16x8_t alpha_wide; + + alpha_narrow = vtbl1_u8(src_raw_2, alpha_mask); + alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow); + + /* spread the dest */ + dst_wide = vmovl_u8(dst_raw_2); + + /* alpha mul the dest */ + dst_wide = vmulq_u16 (dst_wide, alpha_wide); + dst_cooked = vshrn_n_u16(dst_wide, 8); + + /* sum -- ignoring any byte lane overflows */ + dst_final_2 = vadd_u8(src_raw_2, dst_cooked); + } +#endif + + vst1_u32(dst, vreinterpret_u32_u8(dst_final)); +#if UNROLL > 2 + vst1_u32(dst+2, vreinterpret_u32_u8(dst_final_2)); +#endif + + src += UNROLL; + dst += UNROLL; + count -= UNROLL; + } +#undef UNROLL + + /* do any residual iterations */ + while (--count >= 0) { + *dst = SkPMSrcOver(*src, *dst); + src += 1; + dst += 1; + } + } +} + +void S32A_Opaque_BlitRow32_neon_src_alpha(SkPMColor* SK_RESTRICT dst, + const SkPMColor* SK_RESTRICT src, + int count, U8CPU alpha) { + SkASSERT(255 == alpha); + + if (count <= 0) + return; + + /* Use these to check if src is transparent or opaque */ + const unsigned int ALPHA_OPAQ = 0xFF000000; + const unsigned int ALPHA_TRANS = 0x00FFFFFF; + +#define UNROLL 4 + const SkPMColor* SK_RESTRICT src_end = src + count - (UNROLL + 1); + const SkPMColor* SK_RESTRICT src_temp = src; + + /* set up the NEON variables */ + uint8x8_t alpha_mask; + static const uint8_t alpha_mask_setup[] = {3,3,3,3,7,7,7,7}; + alpha_mask = vld1_u8(alpha_mask_setup); + + uint8x8_t src_raw, dst_raw, dst_final; + uint8x8_t src_raw_2, dst_raw_2, dst_final_2; + uint8x8_t dst_cooked; + uint16x8_t dst_wide; + uint8x8_t alpha_narrow; + uint16x8_t alpha_wide; + + /* choose the first processing type */ + if( src >= src_end) + goto TAIL; + if(*src <= ALPHA_TRANS) + goto ALPHA_0; + if(*src >= ALPHA_OPAQ) + goto ALPHA_255; + /* fall-thru */ + +ALPHA_1_TO_254: + do { + + /* get the source */ + src_raw = vreinterpret_u8_u32(vld1_u32(src)); + src_raw_2 = vreinterpret_u8_u32(vld1_u32(src+2)); + + /* get and hold the dst too */ + dst_raw = vreinterpret_u8_u32(vld1_u32(dst)); + dst_raw_2 = vreinterpret_u8_u32(vld1_u32(dst+2)); + + + /* get the alphas spread out properly */ + alpha_narrow = vtbl1_u8(src_raw, alpha_mask); + /* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */ + /* we collapsed (255-a)+1 ... */ + alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow); + + /* spread the dest */ + dst_wide = vmovl_u8(dst_raw); + + /* alpha mul the dest */ + dst_wide = vmulq_u16 (dst_wide, alpha_wide); + dst_cooked = vshrn_n_u16(dst_wide, 8); + + /* sum -- ignoring any byte lane overflows */ + dst_final = vadd_u8(src_raw, dst_cooked); + + alpha_narrow = vtbl1_u8(src_raw_2, alpha_mask); + /* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */ + /* we collapsed (255-a)+1 ... */ + alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow); + + /* spread the dest */ + dst_wide = vmovl_u8(dst_raw_2); + + /* alpha mul the dest */ + dst_wide = vmulq_u16 (dst_wide, alpha_wide); + dst_cooked = vshrn_n_u16(dst_wide, 8); + + /* sum -- ignoring any byte lane overflows */ + dst_final_2 = vadd_u8(src_raw_2, dst_cooked); + + vst1_u32(dst, vreinterpret_u32_u8(dst_final)); + vst1_u32(dst+2, vreinterpret_u32_u8(dst_final_2)); + + src += UNROLL; + dst += UNROLL; + + /* if 2 of the next pixels aren't between 1 and 254 + it might make sense to go to the optimized loops */ + if((src[0] <= ALPHA_TRANS && src[1] <= ALPHA_TRANS) || (src[0] >= ALPHA_OPAQ && src[1] >= ALPHA_OPAQ)) + break; + + } while(src < src_end); + + if (src >= src_end) + goto TAIL; + + if(src[0] >= ALPHA_OPAQ && src[1] >= ALPHA_OPAQ) + goto ALPHA_255; + + /*fall-thru*/ + +ALPHA_0: + + /*In this state, we know the current alpha is 0 and + we optimize for the next alpha also being zero. */ + src_temp = src; //so we don't have to increment dst every time + do { + if(*(++src) > ALPHA_TRANS) + break; + if(*(++src) > ALPHA_TRANS) + break; + if(*(++src) > ALPHA_TRANS) + break; + if(*(++src) > ALPHA_TRANS) + break; + } while(src < src_end); + + dst += (src - src_temp); + + /* no longer alpha 0, so determine where to go next. */ + if( src >= src_end) + goto TAIL; + if(*src >= ALPHA_OPAQ) + goto ALPHA_255; + else + goto ALPHA_1_TO_254; + +ALPHA_255: + while((src[0] & src[1] & src[2] & src[3]) >= ALPHA_OPAQ) { + dst[0]=src[0]; + dst[1]=src[1]; + dst[2]=src[2]; + dst[3]=src[3]; + src+=UNROLL; + dst+=UNROLL; + if(src >= src_end) + goto TAIL; + } + + //Handle remainder. + if(*src >= ALPHA_OPAQ) { *dst++ = *src++; + if(*src >= ALPHA_OPAQ) { *dst++ = *src++; + if(*src >= ALPHA_OPAQ) { *dst++ = *src++; } + } + } + + if( src >= src_end) + goto TAIL; + if(*src <= ALPHA_TRANS) + goto ALPHA_0; + else + goto ALPHA_1_TO_254; + +TAIL: + /* do any residual iterations */ + src_end += UNROLL + 1; //goto the real end + while(src != src_end) { + if( *src != 0 ) { + if( *src >= ALPHA_OPAQ ) { + *dst = *src; + } + else { + *dst = SkPMSrcOver(*src, *dst); + } + } + src++; + dst++; + } + +#undef UNROLL + return; +} + +/* Neon version of S32_Blend_BlitRow32() + * portable version is in src/core/SkBlitRow_D32.cpp + */ +void S32_Blend_BlitRow32_neon(SkPMColor* SK_RESTRICT dst, + const SkPMColor* SK_RESTRICT src, + int count, U8CPU alpha) { + SkASSERT(alpha <= 255); + + if (count <= 0) { + return; + } + + uint16_t src_scale = SkAlpha255To256(alpha); + uint16_t dst_scale = 256 - src_scale; + + while (count >= 2) { + uint8x8_t vsrc, vdst, vres; + uint16x8_t vsrc_wide, vdst_wide; + + /* These commented prefetches are a big win for count + * values > 64 on an A9 (Pandaboard) but hurt by 10% for count = 4. + * They also hurt a little (<5%) on an A15 + */ + //__builtin_prefetch(src+32); + //__builtin_prefetch(dst+32); + + // Load + vsrc = vreinterpret_u8_u32(vld1_u32(src)); + vdst = vreinterpret_u8_u32(vld1_u32(dst)); + + // Process src + vsrc_wide = vmovl_u8(vsrc); + vsrc_wide = vmulq_u16(vsrc_wide, vdupq_n_u16(src_scale)); + + // Process dst + vdst_wide = vmull_u8(vdst, vdup_n_u8(dst_scale)); + + // Combine + vres = vshrn_n_u16(vdst_wide, 8) + vshrn_n_u16(vsrc_wide, 8); + + // Store + vst1_u32(dst, vreinterpret_u32_u8(vres)); + + src += 2; + dst += 2; + count -= 2; + } + + if (count == 1) { + uint8x8_t vsrc = vdup_n_u8(0), vdst = vdup_n_u8(0), vres; + uint16x8_t vsrc_wide, vdst_wide; + + // Load + vsrc = vreinterpret_u8_u32(vld1_lane_u32(src, vreinterpret_u32_u8(vsrc), 0)); + vdst = vreinterpret_u8_u32(vld1_lane_u32(dst, vreinterpret_u32_u8(vdst), 0)); + + // Process + vsrc_wide = vmovl_u8(vsrc); + vsrc_wide = vmulq_u16(vsrc_wide, vdupq_n_u16(src_scale)); + vdst_wide = vmull_u8(vdst, vdup_n_u8(dst_scale)); + vres = vshrn_n_u16(vdst_wide, 8) + vshrn_n_u16(vsrc_wide, 8); + + // Store + vst1_lane_u32(dst, vreinterpret_u32_u8(vres), 0); + } +} + +void S32A_Blend_BlitRow32_neon(SkPMColor* SK_RESTRICT dst, + const SkPMColor* SK_RESTRICT src, + int count, U8CPU alpha) { + + SkASSERT(255 >= alpha); + + if (count <= 0) { + return; + } + + unsigned alpha256 = SkAlpha255To256(alpha); + + // First deal with odd counts + if (count & 1) { + uint8x8_t vsrc = vdup_n_u8(0), vdst = vdup_n_u8(0), vres; + uint16x8_t vdst_wide, vsrc_wide; + unsigned dst_scale; + + // Load + vsrc = vreinterpret_u8_u32(vld1_lane_u32(src, vreinterpret_u32_u8(vsrc), 0)); + vdst = vreinterpret_u8_u32(vld1_lane_u32(dst, vreinterpret_u32_u8(vdst), 0)); + + // Calc dst_scale + dst_scale = vget_lane_u8(vsrc, 3); + dst_scale *= alpha256; + dst_scale >>= 8; + dst_scale = 256 - dst_scale; + + // Process src + vsrc_wide = vmovl_u8(vsrc); + vsrc_wide = vmulq_n_u16(vsrc_wide, alpha256); + + // Process dst + vdst_wide = vmovl_u8(vdst); + vdst_wide = vmulq_n_u16(vdst_wide, dst_scale); + + // Combine + vres = vshrn_n_u16(vdst_wide, 8) + vshrn_n_u16(vsrc_wide, 8); + + vst1_lane_u32(dst, vreinterpret_u32_u8(vres), 0); + dst++; + src++; + count--; + } + + if (count) { + uint8x8_t alpha_mask; + static const uint8_t alpha_mask_setup[] = {3,3,3,3,7,7,7,7}; + alpha_mask = vld1_u8(alpha_mask_setup); + + do { + + uint8x8_t vsrc, vdst, vres, vsrc_alphas; + uint16x8_t vdst_wide, vsrc_wide, vsrc_scale, vdst_scale; + + __builtin_prefetch(src+32); + __builtin_prefetch(dst+32); + + // Load + vsrc = vreinterpret_u8_u32(vld1_u32(src)); + vdst = vreinterpret_u8_u32(vld1_u32(dst)); + + // Prepare src_scale + vsrc_scale = vdupq_n_u16(alpha256); + + // Calc dst_scale + vsrc_alphas = vtbl1_u8(vsrc, alpha_mask); + vdst_scale = vmovl_u8(vsrc_alphas); + vdst_scale *= vsrc_scale; + vdst_scale = vshrq_n_u16(vdst_scale, 8); + vdst_scale = vsubq_u16(vdupq_n_u16(256), vdst_scale); + + // Process src + vsrc_wide = vmovl_u8(vsrc); + vsrc_wide *= vsrc_scale; + + // Process dst + vdst_wide = vmovl_u8(vdst); + vdst_wide *= vdst_scale; + + // Combine + vres = vshrn_n_u16(vdst_wide, 8) + vshrn_n_u16(vsrc_wide, 8); + + vst1_u32(dst, vreinterpret_u32_u8(vres)); + + src += 2; + dst += 2; + count -= 2; + } while(count); + } +} + +/////////////////////////////////////////////////////////////////////////////// + +#undef DEBUG_OPAQUE_DITHER + +#if defined(DEBUG_OPAQUE_DITHER) +static void showme8(char *str, void *p, int len) +{ + static char buf[256]; + char tbuf[32]; + int i; + char *pc = (char*) p; + sprintf(buf,"%8s:", str); + for(i=0;i= UNROLL) { + +#if defined(DEBUG_OPAQUE_DITHER) + uint16_t tmpbuf[UNROLL]; + int td[UNROLL]; + int tdv[UNROLL]; + int ta[UNROLL]; + int tap[UNROLL]; + uint16_t in_dst[UNROLL]; + int offset = 0; + int noisy = 0; +#endif + + uint8x8_t dbase; + const uint8_t *dstart = &gDitherMatrix_Neon[(y&3)*12 + (x&3)]; + dbase = vld1_u8(dstart); + + do { + uint8x8_t sr, sg, sb, sa, d; + uint16x8_t dst8, scale8, alpha8; + uint16x8_t dst_r, dst_g, dst_b; + +#if defined(DEBUG_OPAQUE_DITHER) + // calculate 8 elements worth into a temp buffer + { + int my_y = y; + int my_x = x; + SkPMColor* my_src = (SkPMColor*)src; + uint16_t* my_dst = dst; + int i; + + DITHER_565_SCAN(my_y); + for(i = 0; i < UNROLL; i++) { + SkPMColor c = *my_src++; + SkPMColorAssert(c); + if (c) { + unsigned a = SkGetPackedA32(c); + + int d = SkAlphaMul(DITHER_VALUE(my_x), SkAlpha255To256(a)); + tdv[i] = DITHER_VALUE(my_x); + ta[i] = a; + tap[i] = SkAlpha255To256(a); + td[i] = d; + + unsigned sr = SkGetPackedR32(c); + unsigned sg = SkGetPackedG32(c); + unsigned sb = SkGetPackedB32(c); + sr = SkDITHER_R32_FOR_565(sr, d); + sg = SkDITHER_G32_FOR_565(sg, d); + sb = SkDITHER_B32_FOR_565(sb, d); + + uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2); + uint32_t dst_expanded = SkExpand_rgb_16(*my_dst); + dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3); + // now src and dst expanded are in g:11 r:10 x:1 b:10 + tmpbuf[i] = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5); + td[i] = d; + } else { + tmpbuf[i] = *my_dst; + ta[i] = tdv[i] = td[i] = 0xbeef; + } + in_dst[i] = *my_dst; + my_dst += 1; + DITHER_INC_X(my_x); + } + } +#endif + + + { + register uint8x8_t d0 asm("d0"); + register uint8x8_t d1 asm("d1"); + register uint8x8_t d2 asm("d2"); + register uint8x8_t d3 asm("d3"); + + asm ("vld4.8 {d0-d3},[%[src]]! /* r=%P0 g=%P1 b=%P2 a=%P3 */" + : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), [src] "+r" (src) + : + ); +#if SK_PMCOLOR_BYTE_ORDER(B,G,R,A) + sr = d2; sg = d1; sb = d0; sa = d3; +#elif SK_PMCOLOR_BYTE_ORDER(R,G,B,A) + sr = d0; sg = d1; sb = d2; sa = d3; +#endif + } + + /* calculate 'd', which will be 0..7 + * dbase[] is 0..7; alpha is 0..256; 16 bits suffice + */ + alpha8 = vmovl_u8(dbase); + alpha8 = vmlal_u8(alpha8, sa, dbase); + d = vshrn_n_u16(alpha8, 8); // narrowing too + + // sr = sr - (sr>>5) + d + /* watching for 8-bit overflow. d is 0..7; risky range of + * sr is >248; and then (sr>>5) is 7 so it offsets 'd'; + * safe as long as we do ((sr-sr>>5) + d) + */ + sr = vsub_u8(sr, vshr_n_u8(sr, 5)); + sr = vadd_u8(sr, d); + + // sb = sb - (sb>>5) + d + sb = vsub_u8(sb, vshr_n_u8(sb, 5)); + sb = vadd_u8(sb, d); + + // sg = sg - (sg>>6) + d>>1; similar logic for overflows + sg = vsub_u8(sg, vshr_n_u8(sg, 6)); + sg = vadd_u8(sg, vshr_n_u8(d,1)); + + // need to pick up 8 dst's -- at 16 bits each, 128 bits + dst8 = vld1q_u16(dst); + dst_b = vandq_u16(dst8, vdupq_n_u16(SK_B16_MASK)); + dst_g = vshrq_n_u16(vshlq_n_u16(dst8, SK_R16_BITS), SK_R16_BITS + SK_B16_BITS); + dst_r = vshrq_n_u16(dst8, SK_R16_SHIFT); // clearing hi bits + + // blend + scale8 = vsubw_u8(vdupq_n_u16(256), sa); + + // combine the addq and mul, save 3 insns + scale8 = vshrq_n_u16(scale8, 3); + dst_b = vmlaq_u16(vshll_n_u8(sb,2), dst_b, scale8); + dst_g = vmlaq_u16(vshll_n_u8(sg,3), dst_g, scale8); + dst_r = vmlaq_u16(vshll_n_u8(sr,2), dst_r, scale8); + + // repack to store + dst8 = vshrq_n_u16(dst_b, 5); + dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dst_g, 5), 5); + dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dst_r,5), 11); + + vst1q_u16(dst, dst8); + +#if defined(DEBUG_OPAQUE_DITHER) + // verify my 8 elements match the temp buffer + { + int i, bad=0; + static int invocation; + + for (i = 0; i < UNROLL; i++) { + if (tmpbuf[i] != dst[i]) { + bad=1; + } + } + if (bad) { + SkDebugf("BAD S32A_D565_Opaque_Dither_neon(); invocation %d offset %d\n", + invocation, offset); + SkDebugf(" alpha 0x%x\n", alpha); + for (i = 0; i < UNROLL; i++) + SkDebugf("%2d: %s %04x w %04x id %04x s %08x d %04x %04x %04x %04x\n", + i, ((tmpbuf[i] != dst[i])?"BAD":"got"), dst[i], tmpbuf[i], + in_dst[i], src[i-8], td[i], tdv[i], tap[i], ta[i]); + + showme16("alpha8", &alpha8, sizeof(alpha8)); + showme16("scale8", &scale8, sizeof(scale8)); + showme8("d", &d, sizeof(d)); + showme16("dst8", &dst8, sizeof(dst8)); + showme16("dst_b", &dst_b, sizeof(dst_b)); + showme16("dst_g", &dst_g, sizeof(dst_g)); + showme16("dst_r", &dst_r, sizeof(dst_r)); + showme8("sb", &sb, sizeof(sb)); + showme8("sg", &sg, sizeof(sg)); + showme8("sr", &sr, sizeof(sr)); + + return; + } + offset += UNROLL; + invocation++; + } +#endif + dst += UNROLL; + count -= UNROLL; + // skip x += UNROLL, since it's unchanged mod-4 + } while (count >= UNROLL); + } +#undef UNROLL + + // residuals + if (count > 0) { + DITHER_565_SCAN(y); + do { + SkPMColor c = *src++; + SkPMColorAssert(c); + if (c) { + unsigned a = SkGetPackedA32(c); + + // dither and alpha are just temporary variables to work-around + // an ICE in debug. + unsigned dither = DITHER_VALUE(x); + unsigned alpha = SkAlpha255To256(a); + int d = SkAlphaMul(dither, alpha); + + unsigned sr = SkGetPackedR32(c); + unsigned sg = SkGetPackedG32(c); + unsigned sb = SkGetPackedB32(c); + sr = SkDITHER_R32_FOR_565(sr, d); + sg = SkDITHER_G32_FOR_565(sg, d); + sb = SkDITHER_B32_FOR_565(sb, d); + + uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2); + uint32_t dst_expanded = SkExpand_rgb_16(*dst); + dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3); + // now src and dst expanded are in g:11 r:10 x:1 b:10 + *dst = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5); + } + dst += 1; + DITHER_INC_X(x); + } while (--count != 0); + } +} + +/////////////////////////////////////////////////////////////////////////////// + +#undef DEBUG_S32_OPAQUE_DITHER + +void S32_D565_Opaque_Dither_neon(uint16_t* SK_RESTRICT dst, + const SkPMColor* SK_RESTRICT src, + int count, U8CPU alpha, int x, int y) { + SkASSERT(255 == alpha); + +#define UNROLL 8 + if (count >= UNROLL) { + uint8x8_t d; + const uint8_t *dstart = &gDitherMatrix_Neon[(y&3)*12 + (x&3)]; + d = vld1_u8(dstart); + + while (count >= UNROLL) { + uint8x8_t sr, sg, sb; + uint16x8_t dr, dg, db; + uint16x8_t dst8; + + { + register uint8x8_t d0 asm("d0"); + register uint8x8_t d1 asm("d1"); + register uint8x8_t d2 asm("d2"); + register uint8x8_t d3 asm("d3"); + + asm ( + "vld4.8 {d0-d3},[%[src]]! /* r=%P0 g=%P1 b=%P2 a=%P3 */" + : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), [src] "+&r" (src) + : + ); + sg = d1; +#if SK_PMCOLOR_BYTE_ORDER(B,G,R,A) + sr = d2; sb = d0; +#elif SK_PMCOLOR_BYTE_ORDER(R,G,B,A) + sr = d0; sb = d2; +#endif + } + /* XXX: if we want to prefetch, hide it in the above asm() + * using the gcc __builtin_prefetch(), the prefetch will + * fall to the bottom of the loop -- it won't stick up + * at the top of the loop, just after the vld4. + */ + + // sr = sr - (sr>>5) + d + sr = vsub_u8(sr, vshr_n_u8(sr, 5)); + dr = vaddl_u8(sr, d); + + // sb = sb - (sb>>5) + d + sb = vsub_u8(sb, vshr_n_u8(sb, 5)); + db = vaddl_u8(sb, d); + + // sg = sg - (sg>>6) + d>>1; similar logic for overflows + sg = vsub_u8(sg, vshr_n_u8(sg, 6)); + dg = vaddl_u8(sg, vshr_n_u8(d, 1)); + + // pack high bits of each into 565 format (rgb, b is lsb) + dst8 = vshrq_n_u16(db, 3); + dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dg, 2), 5); + dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dr, 3), 11); + + // store it + vst1q_u16(dst, dst8); + +#if defined(DEBUG_S32_OPAQUE_DITHER) + // always good to know if we generated good results + { + int i, myx = x, myy = y; + DITHER_565_SCAN(myy); + for (i=0;i 0) { + DITHER_565_SCAN(y); + do { + SkPMColor c = *src++; + SkPMColorAssert(c); + SkASSERT(SkGetPackedA32(c) == 255); + + unsigned dither = DITHER_VALUE(x); + *dst++ = SkDitherRGB32To565(c, dither); + DITHER_INC_X(x); + } while (--count != 0); + } +} + +void Color32_arm_neon(SkPMColor* dst, const SkPMColor* src, int count, + SkPMColor color) { + if (count <= 0) { + return; + } + + if (0 == color) { + if (src != dst) { + memcpy(dst, src, count * sizeof(SkPMColor)); + } + return; + } + + unsigned colorA = SkGetPackedA32(color); + if (255 == colorA) { + sk_memset32(dst, color, count); + } else { + unsigned scale = 256 - SkAlpha255To256(colorA); + + if (count >= 8) { + // at the end of this assembly, count will have been decremented + // to a negative value. That is, if count mod 8 = x, it will be + // -8 +x coming out. + asm volatile ( + PLD128(src, 0) + + "vdup.32 q0, %[color] \n\t" + + PLD128(src, 128) + + // scale numerical interval [0-255], so load as 8 bits + "vdup.8 d2, %[scale] \n\t" + + PLD128(src, 256) + + "subs %[count], %[count], #8 \n\t" + + PLD128(src, 384) + + "Loop_Color32: \n\t" + + // load src color, 8 pixels, 4 64 bit registers + // (and increment src). + "vld1.32 {d4-d7}, [%[src]]! \n\t" + + PLD128(src, 384) + + // multiply long by scale, 64 bits at a time, + // destination into a 128 bit register. + "vmull.u8 q4, d4, d2 \n\t" + "vmull.u8 q5, d5, d2 \n\t" + "vmull.u8 q6, d6, d2 \n\t" + "vmull.u8 q7, d7, d2 \n\t" + + // shift the 128 bit registers, containing the 16 + // bit scaled values back to 8 bits, narrowing the + // results to 64 bit registers. + "vshrn.i16 d8, q4, #8 \n\t" + "vshrn.i16 d9, q5, #8 \n\t" + "vshrn.i16 d10, q6, #8 \n\t" + "vshrn.i16 d11, q7, #8 \n\t" + + // adding back the color, using 128 bit registers. + "vadd.i8 q6, q4, q0 \n\t" + "vadd.i8 q7, q5, q0 \n\t" + + // store back the 8 calculated pixels (2 128 bit + // registers), and increment dst. + "vst1.32 {d12-d15}, [%[dst]]! \n\t" + + "subs %[count], %[count], #8 \n\t" + "bge Loop_Color32 \n\t" + : [src] "+r" (src), [dst] "+r" (dst), [count] "+r" (count) + : [color] "r" (color), [scale] "r" (scale) + : "cc", "memory", + "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", + "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15" + ); + // At this point, if we went through the inline assembly, count is + // a negative value: + // if the value is -8, there is no pixel left to process. + // if the value is -7, there is one pixel left to process + // ... + // And'ing it with 7 will give us the number of pixels + // left to process. + count = count & 0x7; + } + + while (count > 0) { + *dst = color + SkAlphaMulQ(*src, scale); + src += 1; + dst += 1; + count--; + } + } +} + +/////////////////////////////////////////////////////////////////////////////// + +const SkBlitRow::Proc sk_blitrow_platform_565_procs_arm_neon[] = { + // no dither + // NOTE: For the S32_D565_Blend function below, we don't have a special + // version that assumes that each source pixel is opaque. But our + // S32A is still faster than the default, so use it. + S32_D565_Opaque_neon, + S32A_D565_Blend_neon, // really S32_D565_Blend + S32A_D565_Opaque_neon, + S32A_D565_Blend_neon, + + // dither + S32_D565_Opaque_Dither_neon, + S32_D565_Blend_Dither_neon, + S32A_D565_Opaque_Dither_neon, + NULL, // S32A_D565_Blend_Dither +}; + +const SkBlitRow::Proc32 sk_blitrow_platform_32_procs_arm_neon[] = { + NULL, // S32_Opaque, + S32_Blend_BlitRow32_neon, // S32_Blend, + /* + * We have two choices for S32A_Opaque procs. The one reads the src alpha + * value and attempts to optimize accordingly. The optimization is + * sensitive to the source content and is not a win in all cases. For + * example, if there are a lot of transitions between the alpha states, + * the performance will almost certainly be worse. However, for many + * common cases the performance is equivalent or better than the standard + * case where we do not inspect the src alpha. + */ +#if SK_A32_SHIFT == 24 + // This proc assumes the alpha value occupies bits 24-32 of each SkPMColor + S32A_Opaque_BlitRow32_neon_src_alpha, // S32A_Opaque, +#else + S32A_Opaque_BlitRow32_neon, // S32A_Opaque, +#endif + S32A_Blend_BlitRow32_neon // S32A_Blend +};