diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/pathops/SkDCubicIntersection.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/pathops/SkDCubicIntersection.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,647 @@ +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "SkIntersections.h" +#include "SkPathOpsCubic.h" +#include "SkPathOpsLine.h" +#include "SkPathOpsPoint.h" +#include "SkPathOpsQuad.h" +#include "SkPathOpsRect.h" +#include "SkReduceOrder.h" +#include "SkTSort.h" + +#if ONE_OFF_DEBUG +static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; +static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; +#endif + +#define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 +#define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 +#define SWAP_TOP_DEBUG 0 + +static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision + +static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) { + SkDCubic part = cubic.subDivide(tStart, tEnd); + SkDQuad quad = part.toQuad(); + // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an + // extremely shallow quadratic? + int order = reducer->reduce(quad); +#if DEBUG_QUAD_PART + SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" + " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, + cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, + cubic[3].fX, cubic[3].fY, tStart, tEnd); + SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n" + " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", + part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY, + part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, + quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); +#if DEBUG_QUAD_PART_SHOW_SIMPLE + SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY); + if (order > 1) { + SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); + } + if (order > 2) { + SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); + } + SkDebugf(")\n"); + SkASSERT(order < 4 && order > 0); +#endif +#endif + return order; +} + +static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2, + int order2, SkIntersections& i) { + if (order1 == 3 && order2 == 3) { + i.intersect(simple1, simple2); + } else if (order1 <= 2 && order2 <= 2) { + i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); + } else if (order1 == 3 && order2 <= 2) { + i.intersect(simple1, (const SkDLine&) simple2); + } else { + SkASSERT(order1 <= 2 && order2 == 3); + i.intersect(simple2, (const SkDLine&) simple1); + i.swapPts(); + } +} + +// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently +// chase intersections near quadratic ends, requiring odd hacks to find them. +static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2, + double t2s, double t2e, double precisionScale, SkIntersections& i) { + i.upDepth(); + SkDCubic c1 = cubic1.subDivide(t1s, t1e); + SkDCubic c2 = cubic2.subDivide(t2s, t2e); + SkSTArray ts1; + // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) + c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); + SkSTArray ts2; + c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); + double t1Start = t1s; + int ts1Count = ts1.count(); + for (int i1 = 0; i1 <= ts1Count; ++i1) { + const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; + const double t1 = t1s + (t1e - t1s) * tEnd1; + SkReduceOrder s1; + int o1 = quadPart(cubic1, t1Start, t1, &s1); + double t2Start = t2s; + int ts2Count = ts2.count(); + for (int i2 = 0; i2 <= ts2Count; ++i2) { + const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; + const double t2 = t2s + (t2e - t2s) * tEnd2; + if (&cubic1 == &cubic2 && t1Start >= t2Start) { + t2Start = t2; + continue; + } + SkReduceOrder s2; + int o2 = quadPart(cubic2, t2Start, t2, &s2); + #if ONE_OFF_DEBUG + char tab[] = " "; + if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 + && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { + SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, + __FUNCTION__, t1Start, t1, t2Start, t2); + SkIntersections xlocals; + xlocals.allowNear(false); + intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); + SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); + } + #endif + SkIntersections locals; + locals.allowNear(false); + intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); + int tCount = locals.used(); + for (int tIdx = 0; tIdx < tCount; ++tIdx) { + double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; + double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; + // if the computed t is not sufficiently precise, iterate + SkDPoint p1 = cubic1.ptAtT(to1); + SkDPoint p2 = cubic2.ptAtT(to2); + if (p1.approximatelyEqual(p2)) { + // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller +// SkASSERT(!locals.isCoincident(tIdx)); + if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { + if (i.swapped()) { // FIXME: insert should respect swap + i.insert(to2, to1, p1); + } else { + i.insert(to1, to2, p1); + } + } + } else { + double offset = precisionScale / 16; // FIME: const is arbitrary: test, refine + double c1Bottom = tIdx == 0 ? 0 : + (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2; + double c1Min = SkTMax(c1Bottom, to1 - offset); + double c1Top = tIdx == tCount - 1 ? 1 : + (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2; + double c1Max = SkTMin(c1Top, to1 + offset); + double c2Min = SkTMax(0., to2 - offset); + double c2Max = SkTMin(1., to2 + offset); + #if ONE_OFF_DEBUG + SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, + __FUNCTION__, + c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max + && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, + to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset + && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, + c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max + && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, + to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset + && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); + SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" + " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", + i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., + to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); + SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" + " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, + c1Max, c2Min, c2Max); + #endif + intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); + #if ONE_OFF_DEBUG + SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, + i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); + #endif + if (tCount > 1) { + c1Min = SkTMax(0., to1 - offset); + c1Max = SkTMin(1., to1 + offset); + double c2Bottom = tIdx == 0 ? to2 : + (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2; + double c2Top = tIdx == tCount - 1 ? to2 : + (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2; + if (c2Bottom > c2Top) { + SkTSwap(c2Bottom, c2Top); + } + if (c2Bottom == to2) { + c2Bottom = 0; + } + if (c2Top == to2) { + c2Top = 1; + } + c2Min = SkTMax(c2Bottom, to2 - offset); + c2Max = SkTMin(c2Top, to2 + offset); + #if ONE_OFF_DEBUG + SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, + __FUNCTION__, + c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max + && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, + to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset + && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, + c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max + && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, + to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset + && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); + SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" + " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", + i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, + to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); + SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" + " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, + c1Max, c2Min, c2Max); + #endif + intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); + #if ONE_OFF_DEBUG + SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, + i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); + #endif + c1Min = SkTMax(c1Bottom, to1 - offset); + c1Max = SkTMin(c1Top, to1 + offset); + #if ONE_OFF_DEBUG + SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, + __FUNCTION__, + c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max + && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, + to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset + && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, + c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max + && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, + to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset + && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); + SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" + " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", + i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, + to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); + SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" + " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, + c1Max, c2Min, c2Max); + #endif + intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); + #if ONE_OFF_DEBUG + SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, + i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); + #endif + } + // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); + // FIXME: if no intersection is found, either quadratics intersected where + // cubics did not, or the intersection was missed. In the former case, expect + // the quadratics to be nearly parallel at the point of intersection, and check + // for that. + } + } + t2Start = t2; + } + t1Start = t1; + } + i.downDepth(); +} + + // if two ends intersect, check middle for coincidence +bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) { + if (fUsed < 2) { + return false; + } + int last = fUsed - 1; + double tRange1 = fT[0][last] - fT[0][0]; + double tRange2 = fT[1][last] - fT[1][0]; + for (int index = 1; index < 5; ++index) { + double testT1 = fT[0][0] + tRange1 * index / 5; + double testT2 = fT[1][0] + tRange2 * index / 5; + SkDPoint testPt1 = c1.ptAtT(testT1); + SkDPoint testPt2 = c2.ptAtT(testT2); + if (!testPt1.approximatelyEqual(testPt2)) { + return false; + } + } + if (fUsed > 2) { + fPt[1] = fPt[last]; + fT[0][1] = fT[0][last]; + fT[1][1] = fT[1][last]; + fUsed = 2; + } + fIsCoincident[0] = fIsCoincident[1] = 0x03; + return true; +} + +#define LINE_FRACTION 0.1 + +// intersect the end of the cubic with the other. Try lines from the end to control and opposite +// end to determine range of t on opposite cubic. +bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) { + int t1Index = start ? 0 : 3; + double testT = (double) !start; + bool swap = swapped(); + // quad/quad at this point checks to see if exact matches have already been found + // cubic/cubic can't reject so easily since cubics can intersect same point more than once + SkDLine tmpLine; + tmpLine[0] = tmpLine[1] = cubic2[t1Index]; + tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; + tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; + SkIntersections impTs; + impTs.allowNear(false); + impTs.intersectRay(cubic1, tmpLine); + for (int index = 0; index < impTs.used(); ++index) { + SkDPoint realPt = impTs.pt(index); + if (!tmpLine[0].approximatelyEqual(realPt)) { + continue; + } + if (swap) { + insert(testT, impTs[0][index], tmpLine[0]); + } else { + insert(impTs[0][index], testT, tmpLine[0]); + } + return true; + } + return false; +} + +void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, + const SkDRect& bounds2) { + SkDLine line; + int t1Index = start ? 0 : 3; + double testT = (double) !start; + // don't bother if the two cubics are connnected + static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this + static const int kMaxLineCubicIntersections = 3; + SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals; + line[0] = cubic1[t1Index]; + // this variant looks for intersections with the end point and lines parallel to other points + for (int index = 0; index < kPointsInCubic; ++index) { + if (index == t1Index) { + continue; + } + SkDVector dxy1 = cubic1[index] - line[0]; + dxy1 /= SkDCubic::gPrecisionUnit; + line[1] = line[0] + dxy1; + SkDRect lineBounds; + lineBounds.setBounds(line); + if (!bounds2.intersects(&lineBounds)) { + continue; + } + SkIntersections local; + if (!local.intersect(cubic2, line)) { + continue; + } + for (int idx2 = 0; idx2 < local.used(); ++idx2) { + double foundT = local[0][idx2]; + if (approximately_less_than_zero(foundT) + || approximately_greater_than_one(foundT)) { + continue; + } + if (local.pt(idx2).approximatelyEqual(line[0])) { + if (swapped()) { // FIXME: insert should respect swap + insert(foundT, testT, line[0]); + } else { + insert(testT, foundT, line[0]); + } + } else { + tVals.push_back(foundT); + } + } + } + if (tVals.count() == 0) { + return; + } + SkTQSort(tVals.begin(), tVals.end() - 1); + double tMin1 = start ? 0 : 1 - LINE_FRACTION; + double tMax1 = start ? LINE_FRACTION : 1; + int tIdx = 0; + do { + int tLast = tIdx; + while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { + ++tLast; + } + double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); + double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); + int lastUsed = used(); + ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); + if (lastUsed == used()) { + tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); + tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0); + ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); + } + tIdx = tLast + 1; + } while (tIdx < tVals.count()); + return; +} + +const double CLOSE_ENOUGH = 0.001; + +static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { + if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { + return false; + } + pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); + return true; +} + +static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { + int last = i.used() - 1; + if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { + return false; + } + pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); + return true; +} + +static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) { +// the idea here is to see at minimum do a quick reject by rotating all points +// to either side of the line formed by connecting the endpoints +// if the opposite curves points are on the line or on the other side, the +// curves at most intersect at the endpoints + for (int oddMan = 0; oddMan < 4; ++oddMan) { + const SkDPoint* endPt[3]; + for (int opp = 1; opp < 4; ++opp) { + int end = oddMan ^ opp; // choose a value not equal to oddMan + endPt[opp - 1] = &c1[end]; + } + for (int triTest = 0; triTest < 3; ++triTest) { + double origX = endPt[triTest]->fX; + double origY = endPt[triTest]->fY; + int oppTest = triTest + 1; + if (3 == oppTest) { + oppTest = 0; + } + double adj = endPt[oppTest]->fX - origX; + double opp = endPt[oppTest]->fY - origY; + double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp; + if (approximately_zero(sign)) { + goto tryNextHalfPlane; + } + for (int n = 0; n < 4; ++n) { + double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp; + if (test * sign > 0 && !precisely_zero(test)) { + goto tryNextHalfPlane; + } + } + } + return true; +tryNextHalfPlane: + ; + } + return false; +} + +int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { + if (fMax == 0) { + fMax = 9; + } + bool selfIntersect = &c1 == &c2; + if (selfIntersect) { + if (c1[0].approximatelyEqual(c1[3])) { + insert(0, 1, c1[0]); + return fUsed; + } + } else { + // OPTIMIZATION: set exact end bits here to avoid cubic exact end later + for (int i1 = 0; i1 < 4; i1 += 3) { + for (int i2 = 0; i2 < 4; i2 += 3) { + if (c1[i1].approximatelyEqual(c2[i2])) { + insert(i1 >> 1, i2 >> 1, c1[i1]); + } + } + } + } + SkASSERT(fUsed < 4); + if (!selfIntersect) { + if (only_end_pts_in_common(c1, c2)) { + return fUsed; + } + if (only_end_pts_in_common(c2, c1)) { + return fUsed; + } + } + // quad/quad does linear test here -- cubic does not + // cubics which are really lines should have been detected in reduce step earlier + int exactEndBits = 0; + if (selfIntersect) { + if (fUsed) { + return fUsed; + } + } else { + exactEndBits |= cubicExactEnd(c1, false, c2) << 0; + exactEndBits |= cubicExactEnd(c1, true, c2) << 1; + swap(); + exactEndBits |= cubicExactEnd(c2, false, c1) << 2; + exactEndBits |= cubicExactEnd(c2, true, c1) << 3; + swap(); + } + if (cubicCheckCoincidence(c1, c2)) { + SkASSERT(!selfIntersect); + return fUsed; + } + // FIXME: pass in cached bounds from caller + SkDRect c2Bounds; + c2Bounds.setBounds(c2); + if (!(exactEndBits & 4)) { + cubicNearEnd(c1, false, c2, c2Bounds); + } + if (!(exactEndBits & 8)) { + cubicNearEnd(c1, true, c2, c2Bounds); + } + if (!selfIntersect) { + SkDRect c1Bounds; + c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? + swap(); + if (!(exactEndBits & 1)) { + cubicNearEnd(c2, false, c1, c1Bounds); + } + if (!(exactEndBits & 2)) { + cubicNearEnd(c2, true, c1, c1Bounds); + } + swap(); + } + if (cubicCheckCoincidence(c1, c2)) { + SkASSERT(!selfIntersect); + return fUsed; + } + SkIntersections i; + i.fAllowNear = false; + i.fMax = 9; + ::intersect(c1, 0, 1, c2, 0, 1, 1, i); + int compCount = i.used(); + if (compCount) { + int exactCount = used(); + if (exactCount == 0) { + set(i); + } else { + // at least one is exact or near, and at least one was computed. Eliminate duplicates + for (int exIdx = 0; exIdx < exactCount; ++exIdx) { + for (int cpIdx = 0; cpIdx < compCount; ) { + if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) { + i.removeOne(cpIdx); + --compCount; + continue; + } + double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2; + SkDPoint pt = c1.ptAtT(tAvg); + if (!pt.approximatelyEqual(fPt[exIdx])) { + ++cpIdx; + continue; + } + tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2; + pt = c2.ptAtT(tAvg); + if (!pt.approximatelyEqual(fPt[exIdx])) { + ++cpIdx; + continue; + } + i.removeOne(cpIdx); + --compCount; + } + } + // if mid t evaluates to nearly the same point, skip the t + for (int cpIdx = 0; cpIdx < compCount - 1; ) { + double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2; + SkDPoint pt = c1.ptAtT(tAvg); + if (!pt.approximatelyEqual(fPt[cpIdx])) { + ++cpIdx; + continue; + } + tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2; + pt = c2.ptAtT(tAvg); + if (!pt.approximatelyEqual(fPt[cpIdx])) { + ++cpIdx; + continue; + } + i.removeOne(cpIdx); + --compCount; + } + // in addition to adding below missing function, think about how to say + append(i); + } + } + // If an end point and a second point very close to the end is returned, the second + // point may have been detected because the approximate quads + // intersected at the end and close to it. Verify that the second point is valid. + if (fUsed <= 1) { + return fUsed; + } + SkDPoint pt[2]; + if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) + && pt[0].approximatelyEqual(pt[1])) { + removeOne(1); + } + if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) + && pt[0].approximatelyEqual(pt[1])) { + removeOne(used() - 2); + } + // vet the pairs of t values to see if the mid value is also on the curve. If so, mark + // the span as coincident + if (fUsed >= 2 && !coincidentUsed()) { + int last = fUsed - 1; + int match = 0; + for (int index = 0; index < last; ++index) { + double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; + double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; + pt[0] = c1.ptAtT(mid1); + pt[1] = c2.ptAtT(mid2); + if (pt[0].approximatelyEqual(pt[1])) { + match |= 1 << index; + } + } + if (match) { +#if DEBUG_CONCIDENT + if (((match + 1) & match) != 0) { + SkDebugf("%s coincident hole\n", __FUNCTION__); + } +#endif + // for now, assume that everything from start to finish is coincident + if (fUsed > 2) { + fPt[1] = fPt[last]; + fT[0][1] = fT[0][last]; + fT[1][1] = fT[1][last]; + fIsCoincident[0] = 0x03; + fIsCoincident[1] = 0x03; + fUsed = 2; + } + } + } + return fUsed; +} + +// Up promote the quad to a cubic. +// OPTIMIZATION If this is a common use case, optimize by duplicating +// the intersect 3 loop to avoid the promotion / demotion code +int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { + fMax = 6; + SkDCubic up = quad.toCubic(); + (void) intersect(cubic, up); + return used(); +} + +/* http://www.ag.jku.at/compass/compasssample.pdf +( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen +Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no +SINTEF Applied Mathematics http://www.sintef.no ) +describes a method to find the self intersection of a cubic by taking the gradient of the implicit +form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ + +int SkIntersections::intersect(const SkDCubic& c) { + fMax = 1; + // check to see if x or y end points are the extrema. Are other quick rejects possible? + if (c.endsAreExtremaInXOrY()) { + return false; + } + (void) intersect(c, c); + if (used() > 0) { + SkASSERT(used() == 1); + if (fT[0][0] > fT[1][0]) { + swapPts(); + } + } + return used(); +}