diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/pathops/SkDQuadImplicit.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/pathops/SkDQuadImplicit.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,117 @@ +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ +#include "SkDQuadImplicit.h" + +/* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 + * + * This paper proves that Syvester's method can compute the implicit form of + * the quadratic from the parameterized form. + * + * Given x = a*t*t + b*t + c (the parameterized form) + * y = d*t*t + e*t + f + * + * we want to find an equation of the implicit form: + * + * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0 + * + * The implicit form can be expressed as a 4x4 determinant, as shown. + * + * The resultant obtained by Syvester's method is + * + * | a b (c - x) 0 | + * | 0 a b (c - x) | + * | d e (f - y) 0 | + * | 0 d e (f - y) | + * + * which expands to + * + * d*d*x*x + -2*a*d*x*y + a*a*y*y + * + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x + * + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y + * + + * | a b c 0 | + * | 0 a b c | == 0. + * | d e f 0 | + * | 0 d e f | + * + * Expanding the constant determinant results in + * + * | a b c | | b c 0 | + * a*| e f 0 | + d*| a b c | == + * | d e f | | d e f | + * + * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b) + * + */ + +// use the tricky arithmetic path, but leave the original to compare just in case +static bool straight_forward = false; + +SkDQuadImplicit::SkDQuadImplicit(const SkDQuad& q) { + double a, b, c; + SkDQuad::SetABC(&q[0].fX, &a, &b, &c); + double d, e, f; + SkDQuad::SetABC(&q[0].fY, &d, &e, &f); + // compute the implicit coefficients + if (straight_forward) { // 42 muls, 13 adds + fP[kXx_Coeff] = d * d; + fP[kXy_Coeff] = -2 * a * d; + fP[kYy_Coeff] = a * a; + fP[kX_Coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d; + fP[kY_Coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a; + fP[kC_Coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f) + + d*(b*b*f + c*c*d - c*a*f - c*e*b); + } else { // 26 muls, 11 adds + double aa = a * a; + double ad = a * d; + double dd = d * d; + fP[kXx_Coeff] = dd; + fP[kXy_Coeff] = -2 * ad; + fP[kYy_Coeff] = aa; + double be = b * e; + double bde = be * d; + double cdd = c * dd; + double ee = e * e; + fP[kX_Coeff] = -2*cdd + bde - a*ee + 2*ad*f; + double aaf = aa * f; + double abe = a * be; + double ac = a * c; + double bb_2ac = b*b - 2*ac; + fP[kY_Coeff] = -2*aaf + abe - d*bb_2ac; + fP[kC_Coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde; + } +} + + /* Given a pair of quadratics, determine their parametric coefficients. + * If the scaled coefficients are nearly equal, then the part of the quadratics + * may be coincident. + * OPTIMIZATION -- since comparison short-circuits on no match, + * lazily compute the coefficients, comparing the easiest to compute first. + * xx and yy first; then xy; and so on. + */ +bool SkDQuadImplicit::match(const SkDQuadImplicit& p2) const { + int first = 0; + for (int index = 0; index <= kC_Coeff; ++index) { + if (approximately_zero(fP[index]) && approximately_zero(p2.fP[index])) { + first += first == index; + continue; + } + if (first == index) { + continue; + } + if (!AlmostDequalUlps(fP[index] * p2.fP[first], fP[first] * p2.fP[index])) { + return false; + } + } + return true; +} + +bool SkDQuadImplicit::Match(const SkDQuad& quad1, const SkDQuad& quad2) { + SkDQuadImplicit i1(quad1); // a'xx , b'xy , c'yy , d'x , e'y , f + SkDQuadImplicit i2(quad2); + return i1.match(i2); +}