diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/pathops/SkDQuadIntersection.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/pathops/SkDQuadIntersection.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,553 @@ +// Another approach is to start with the implicit form of one curve and solve +// (seek implicit coefficients in QuadraticParameter.cpp +// by substituting in the parametric form of the other. +// The downside of this approach is that early rejects are difficult to come by. +// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step + + +#include "SkDQuadImplicit.h" +#include "SkIntersections.h" +#include "SkPathOpsLine.h" +#include "SkQuarticRoot.h" +#include "SkTArray.h" +#include "SkTSort.h" + +/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F + * and given x = at^2 + bt + c (the parameterized form) + * y = dt^2 + et + f + * then + * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F + */ + +static int findRoots(const SkDQuadImplicit& i, const SkDQuad& quad, double roots[4], + bool oneHint, bool flip, int firstCubicRoot) { + SkDQuad flipped; + const SkDQuad& q = flip ? (flipped = quad.flip()) : quad; + double a, b, c; + SkDQuad::SetABC(&q[0].fX, &a, &b, &c); + double d, e, f; + SkDQuad::SetABC(&q[0].fY, &d, &e, &f); + const double t4 = i.x2() * a * a + + i.xy() * a * d + + i.y2() * d * d; + const double t3 = 2 * i.x2() * a * b + + i.xy() * (a * e + b * d) + + 2 * i.y2() * d * e; + const double t2 = i.x2() * (b * b + 2 * a * c) + + i.xy() * (c * d + b * e + a * f) + + i.y2() * (e * e + 2 * d * f) + + i.x() * a + + i.y() * d; + const double t1 = 2 * i.x2() * b * c + + i.xy() * (c * e + b * f) + + 2 * i.y2() * e * f + + i.x() * b + + i.y() * e; + const double t0 = i.x2() * c * c + + i.xy() * c * f + + i.y2() * f * f + + i.x() * c + + i.y() * f + + i.c(); + int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots); + if (rootCount < 0) { + rootCount = SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots); + } + if (flip) { + for (int index = 0; index < rootCount; ++index) { + roots[index] = 1 - roots[index]; + } + } + return rootCount; +} + +static int addValidRoots(const double roots[4], const int count, double valid[4]) { + int result = 0; + int index; + for (index = 0; index < count; ++index) { + if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) { + continue; + } + double t = 1 - roots[index]; + if (approximately_less_than_zero(t)) { + t = 0; + } else if (approximately_greater_than_one(t)) { + t = 1; + } + valid[result++] = t; + } + return result; +} + +static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2) { +// the idea here is to see at minimum do a quick reject by rotating all points +// to either side of the line formed by connecting the endpoints +// if the opposite curves points are on the line or on the other side, the +// curves at most intersect at the endpoints + for (int oddMan = 0; oddMan < 3; ++oddMan) { + const SkDPoint* endPt[2]; + for (int opp = 1; opp < 3; ++opp) { + int end = oddMan ^ opp; // choose a value not equal to oddMan + if (3 == end) { // and correct so that largest value is 1 or 2 + end = opp; + } + endPt[opp - 1] = &q1[end]; + } + double origX = endPt[0]->fX; + double origY = endPt[0]->fY; + double adj = endPt[1]->fX - origX; + double opp = endPt[1]->fY - origY; + double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp; + if (approximately_zero(sign)) { + goto tryNextHalfPlane; + } + for (int n = 0; n < 3; ++n) { + double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; + if (test * sign > 0 && !precisely_zero(test)) { + goto tryNextHalfPlane; + } + } + return true; +tryNextHalfPlane: + ; + } + return false; +} + +// returns false if there's more than one intercept or the intercept doesn't match the point +// returns true if the intercept was successfully added or if the +// original quads need to be subdivided +static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax, + SkIntersections* i, bool* subDivide) { + double tMid = (tMin + tMax) / 2; + SkDPoint mid = q2.ptAtT(tMid); + SkDLine line; + line[0] = line[1] = mid; + SkDVector dxdy = q2.dxdyAtT(tMid); + line[0] -= dxdy; + line[1] += dxdy; + SkIntersections rootTs; + rootTs.allowNear(false); + int roots = rootTs.intersect(q1, line); + if (roots == 0) { + if (subDivide) { + *subDivide = true; + } + return true; + } + if (roots == 2) { + return false; + } + SkDPoint pt2 = q1.ptAtT(rootTs[0][0]); + if (!pt2.approximatelyEqual(mid)) { + return false; + } + i->insertSwap(rootTs[0][0], tMid, pt2); + return true; +} + +static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2, + double t2s, double t2e, SkIntersections* i, bool* subDivide) { + SkDQuad hull = q1.subDivide(t1s, t1e); + SkDLine line = {{hull[2], hull[0]}}; + const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] }; + const size_t kTestCount = SK_ARRAY_COUNT(testLines); + SkSTArray tsFound; + for (size_t index = 0; index < kTestCount; ++index) { + SkIntersections rootTs; + rootTs.allowNear(false); + int roots = rootTs.intersect(q2, *testLines[index]); + for (int idx2 = 0; idx2 < roots; ++idx2) { + double t = rootTs[0][idx2]; +#ifdef SK_DEBUG + SkDPoint qPt = q2.ptAtT(t); + SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]); + SkASSERT(qPt.approximatelyPEqual(lPt)); +#endif + if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) { + continue; + } + tsFound.push_back(rootTs[0][idx2]); + } + } + int tCount = tsFound.count(); + if (tCount <= 0) { + return true; + } + double tMin, tMax; + if (tCount == 1) { + tMin = tMax = tsFound[0]; + } else { + SkASSERT(tCount > 1); + SkTQSort(tsFound.begin(), tsFound.end() - 1); + tMin = tsFound[0]; + tMax = tsFound[tsFound.count() - 1]; + } + SkDPoint end = q2.ptAtT(t2s); + bool startInTriangle = hull.pointInHull(end); + if (startInTriangle) { + tMin = t2s; + } + end = q2.ptAtT(t2e); + bool endInTriangle = hull.pointInHull(end); + if (endInTriangle) { + tMax = t2e; + } + int split = 0; + SkDVector dxy1, dxy2; + if (tMin != tMax || tCount > 2) { + dxy2 = q2.dxdyAtT(tMin); + for (int index = 1; index < tCount; ++index) { + dxy1 = dxy2; + dxy2 = q2.dxdyAtT(tsFound[index]); + double dot = dxy1.dot(dxy2); + if (dot < 0) { + split = index - 1; + break; + } + } + } + if (split == 0) { // there's one point + if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) { + return true; + } + i->swap(); + return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide); + } + // At this point, we have two ranges of t values -- treat each separately at the split + bool result; + if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) { + result = true; + } else { + i->swap(); + result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide); + } + if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) { + result = true; + } else { + i->swap(); + result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide); + } + return result; +} + +static double flat_measure(const SkDQuad& q) { + SkDVector mid = q[1] - q[0]; + SkDVector dxy = q[2] - q[0]; + double length = dxy.length(); // OPTIMIZE: get rid of sqrt + return fabs(mid.cross(dxy) / length); +} + +// FIXME ? should this measure both and then use the quad that is the flattest as the line? +static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { + double measure = flat_measure(q1); + // OPTIMIZE: (get rid of sqrt) use approximately_zero + if (!approximately_zero_sqrt(measure)) { + return false; + } + return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL); +} + +// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed +// avoid imprecision incurred with chopAt +static void relaxed_is_linear(const SkDQuad* q1, double s1, double e1, const SkDQuad* q2, + double s2, double e2, SkIntersections* i) { + double m1 = flat_measure(*q1); + double m2 = flat_measure(*q2); + i->reset(); + const SkDQuad* rounder, *flatter; + double sf, midf, ef, sr, er; + if (m2 < m1) { + rounder = q1; + sr = s1; + er = e1; + flatter = q2; + sf = s2; + midf = (s2 + e2) / 2; + ef = e2; + } else { + rounder = q2; + sr = s2; + er = e2; + flatter = q1; + sf = s1; + midf = (s1 + e1) / 2; + ef = e1; + } + bool subDivide = false; + is_linear_inner(*flatter, sf, ef, *rounder, sr, er, i, &subDivide); + if (subDivide) { + relaxed_is_linear(flatter, sf, midf, rounder, sr, er, i); + relaxed_is_linear(flatter, midf, ef, rounder, sr, er, i); + } + if (m2 < m1) { + i->swapPts(); + } +} + +// each time through the loop, this computes values it had from the last loop +// if i == j == 1, the center values are still good +// otherwise, for i != 1 or j != 1, four of the values are still good +// and if i == 1 ^ j == 1, an additional value is good +static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed, + double* t2Seed, SkDPoint* pt) { + double tStep = ROUGH_EPSILON; + SkDPoint t1[3], t2[3]; + int calcMask = ~0; + do { + if (calcMask & (1 << 1)) t1[1] = quad1.ptAtT(*t1Seed); + if (calcMask & (1 << 4)) t2[1] = quad2.ptAtT(*t2Seed); + if (t1[1].approximatelyEqual(t2[1])) { + *pt = t1[1]; + #if ONE_OFF_DEBUG + SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__, + t1Seed, t2Seed, t1[1].fX, t1[1].fY, t2[1].fX, t2[1].fY); + #endif + return true; + } + if (calcMask & (1 << 0)) t1[0] = quad1.ptAtT(*t1Seed - tStep); + if (calcMask & (1 << 2)) t1[2] = quad1.ptAtT(*t1Seed + tStep); + if (calcMask & (1 << 3)) t2[0] = quad2.ptAtT(*t2Seed - tStep); + if (calcMask & (1 << 5)) t2[2] = quad2.ptAtT(*t2Seed + tStep); + double dist[3][3]; + // OPTIMIZE: using calcMask value permits skipping some distance calcuations + // if prior loop's results are moved to correct slot for reuse + dist[1][1] = t1[1].distanceSquared(t2[1]); + int best_i = 1, best_j = 1; + for (int i = 0; i < 3; ++i) { + for (int j = 0; j < 3; ++j) { + if (i == 1 && j == 1) { + continue; + } + dist[i][j] = t1[i].distanceSquared(t2[j]); + if (dist[best_i][best_j] > dist[i][j]) { + best_i = i; + best_j = j; + } + } + } + if (best_i == 1 && best_j == 1) { + tStep /= 2; + if (tStep < FLT_EPSILON_HALF) { + break; + } + calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5); + continue; + } + if (best_i == 0) { + *t1Seed -= tStep; + t1[2] = t1[1]; + t1[1] = t1[0]; + calcMask = 1 << 0; + } else if (best_i == 2) { + *t1Seed += tStep; + t1[0] = t1[1]; + t1[1] = t1[2]; + calcMask = 1 << 2; + } else { + calcMask = 0; + } + if (best_j == 0) { + *t2Seed -= tStep; + t2[2] = t2[1]; + t2[1] = t2[0]; + calcMask |= 1 << 3; + } else if (best_j == 2) { + *t2Seed += tStep; + t2[0] = t2[1]; + t2[1] = t2[2]; + calcMask |= 1 << 5; + } + } while (true); +#if ONE_OFF_DEBUG + SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__, + t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY); +#endif + return false; +} + +static void lookNearEnd(const SkDQuad& q1, const SkDQuad& q2, int testT, + const SkIntersections& orig, bool swap, SkIntersections* i) { + if (orig.used() == 1 && orig[!swap][0] == testT) { + return; + } + if (orig.used() == 2 && orig[!swap][1] == testT) { + return; + } + SkDLine tmpLine; + int testTIndex = testT << 1; + tmpLine[0] = tmpLine[1] = q2[testTIndex]; + tmpLine[1].fX += q2[1].fY - q2[testTIndex].fY; + tmpLine[1].fY -= q2[1].fX - q2[testTIndex].fX; + SkIntersections impTs; + impTs.intersectRay(q1, tmpLine); + for (int index = 0; index < impTs.used(); ++index) { + SkDPoint realPt = impTs.pt(index); + if (!tmpLine[0].approximatelyEqual(realPt)) { + continue; + } + if (swap) { + i->insert(testT, impTs[0][index], tmpLine[0]); + } else { + i->insert(impTs[0][index], testT, tmpLine[0]); + } + } +} + +int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) { + fMax = 4; + // if the quads share an end point, check to see if they overlap + for (int i1 = 0; i1 < 3; i1 += 2) { + for (int i2 = 0; i2 < 3; i2 += 2) { + if (q1[i1].asSkPoint() == q2[i2].asSkPoint()) { + insert(i1 >> 1, i2 >> 1, q1[i1]); + } + } + } + SkASSERT(fUsed < 3); + if (only_end_pts_in_common(q1, q2)) { + return fUsed; + } + if (only_end_pts_in_common(q2, q1)) { + return fUsed; + } + // see if either quad is really a line + // FIXME: figure out why reduce step didn't find this earlier + if (is_linear(q1, q2, this)) { + return fUsed; + } + SkIntersections swapped; + swapped.setMax(fMax); + if (is_linear(q2, q1, &swapped)) { + swapped.swapPts(); + set(swapped); + return fUsed; + } + SkIntersections copyI(*this); + lookNearEnd(q1, q2, 0, *this, false, ©I); + lookNearEnd(q1, q2, 1, *this, false, ©I); + lookNearEnd(q2, q1, 0, *this, true, ©I); + lookNearEnd(q2, q1, 1, *this, true, ©I); + int innerEqual = 0; + if (copyI.fUsed >= 2) { + SkASSERT(copyI.fUsed <= 4); + double width = copyI[0][1] - copyI[0][0]; + int midEnd = 1; + for (int index = 2; index < copyI.fUsed; ++index) { + double testWidth = copyI[0][index] - copyI[0][index - 1]; + if (testWidth <= width) { + continue; + } + midEnd = index; + } + for (int index = 0; index < 2; ++index) { + double testT = (copyI[0][midEnd] * (index + 1) + + copyI[0][midEnd - 1] * (2 - index)) / 3; + SkDPoint testPt1 = q1.ptAtT(testT); + testT = (copyI[1][midEnd] * (index + 1) + copyI[1][midEnd - 1] * (2 - index)) / 3; + SkDPoint testPt2 = q2.ptAtT(testT); + innerEqual += testPt1.approximatelyEqual(testPt2); + } + } + bool expectCoincident = copyI.fUsed >= 2 && innerEqual == 2; + if (expectCoincident) { + reset(); + insertCoincident(copyI[0][0], copyI[1][0], copyI.fPt[0]); + int last = copyI.fUsed - 1; + insertCoincident(copyI[0][last], copyI[1][last], copyI.fPt[last]); + return fUsed; + } + SkDQuadImplicit i1(q1); + SkDQuadImplicit i2(q2); + int index; + bool flip1 = q1[2] == q2[0]; + bool flip2 = q1[0] == q2[2]; + bool useCubic = q1[0] == q2[0]; + double roots1[4]; + int rootCount = findRoots(i2, q1, roots1, useCubic, flip1, 0); + // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 + double roots1Copy[4]; + int r1Count = addValidRoots(roots1, rootCount, roots1Copy); + SkDPoint pts1[4]; + for (index = 0; index < r1Count; ++index) { + pts1[index] = q1.ptAtT(roots1Copy[index]); + } + double roots2[4]; + int rootCount2 = findRoots(i1, q2, roots2, useCubic, flip2, 0); + double roots2Copy[4]; + int r2Count = addValidRoots(roots2, rootCount2, roots2Copy); + SkDPoint pts2[4]; + for (index = 0; index < r2Count; ++index) { + pts2[index] = q2.ptAtT(roots2Copy[index]); + } + if (r1Count == r2Count && r1Count <= 1) { + if (r1Count == 1 && used() == 0) { + if (pts1[0].approximatelyEqual(pts2[0])) { + insert(roots1Copy[0], roots2Copy[0], pts1[0]); + } else if (pts1[0].moreRoughlyEqual(pts2[0])) { + // experiment: try to find intersection by chasing t + if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) { + insert(roots1Copy[0], roots2Copy[0], pts1[0]); + } + } + } + return fUsed; + } + int closest[4]; + double dist[4]; + bool foundSomething = false; + for (index = 0; index < r1Count; ++index) { + dist[index] = DBL_MAX; + closest[index] = -1; + for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) { + if (!pts2[ndex2].approximatelyEqual(pts1[index])) { + continue; + } + double dx = pts2[ndex2].fX - pts1[index].fX; + double dy = pts2[ndex2].fY - pts1[index].fY; + double distance = dx * dx + dy * dy; + if (dist[index] <= distance) { + continue; + } + for (int outer = 0; outer < index; ++outer) { + if (closest[outer] != ndex2) { + continue; + } + if (dist[outer] < distance) { + goto next; + } + closest[outer] = -1; + } + dist[index] = distance; + closest[index] = ndex2; + foundSomething = true; + next: + ; + } + } + if (r1Count && r2Count && !foundSomething) { + relaxed_is_linear(&q1, 0, 1, &q2, 0, 1, this); + return fUsed; + } + int used = 0; + do { + double lowest = DBL_MAX; + int lowestIndex = -1; + for (index = 0; index < r1Count; ++index) { + if (closest[index] < 0) { + continue; + } + if (roots1Copy[index] < lowest) { + lowestIndex = index; + lowest = roots1Copy[index]; + } + } + if (lowestIndex < 0) { + break; + } + insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]], + pts1[lowestIndex]); + closest[lowestIndex] = -1; + } while (++used < r1Count); + return fUsed; +}