diff -r 000000000000 -r 6474c204b198 gfx/skia/trunk/src/pathops/SkPathOpsLine.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/skia/trunk/src/pathops/SkPathOpsLine.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,201 @@ +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ +#include "SkPathOpsLine.h" + +SkDLine SkDLine::subDivide(double t1, double t2) const { + SkDVector delta = tangent(); + SkDLine dst = {{{ + fPts[0].fX - t1 * delta.fX, fPts[0].fY - t1 * delta.fY}, { + fPts[0].fX - t2 * delta.fX, fPts[0].fY - t2 * delta.fY}}}; + return dst; +} + +// may have this below somewhere else already: +// copying here because I thought it was clever + +// Copyright 2001, softSurfer (www.softsurfer.com) +// This code may be freely used and modified for any purpose +// providing that this copyright notice is included with it. +// SoftSurfer makes no warranty for this code, and cannot be held +// liable for any real or imagined damage resulting from its use. +// Users of this code must verify correctness for their application. + +// Assume that a class is already given for the object: +// Point with coordinates {float x, y;} +//=================================================================== + +// isLeft(): tests if a point is Left|On|Right of an infinite line. +// Input: three points P0, P1, and P2 +// Return: >0 for P2 left of the line through P0 and P1 +// =0 for P2 on the line +// <0 for P2 right of the line +// See: the January 2001 Algorithm on Area of Triangles +// return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y)); +double SkDLine::isLeft(const SkDPoint& pt) const { + SkDVector p0 = fPts[1] - fPts[0]; + SkDVector p2 = pt - fPts[0]; + return p0.cross(p2); +} + +SkDPoint SkDLine::ptAtT(double t) const { + if (0 == t) { + return fPts[0]; + } + if (1 == t) { + return fPts[1]; + } + double one_t = 1 - t; + SkDPoint result = { one_t * fPts[0].fX + t * fPts[1].fX, one_t * fPts[0].fY + t * fPts[1].fY }; + return result; +} + +double SkDLine::exactPoint(const SkDPoint& xy) const { + if (xy == fPts[0]) { // do cheapest test first + return 0; + } + if (xy == fPts[1]) { + return 1; + } + return -1; +} + +double SkDLine::nearPoint(const SkDPoint& xy) const { + if (!AlmostBetweenUlps(fPts[0].fX, xy.fX, fPts[1].fX) + || !AlmostBetweenUlps(fPts[0].fY, xy.fY, fPts[1].fY)) { + return -1; + } + // project a perpendicular ray from the point to the line; find the T on the line + SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line + double denom = len.fX * len.fX + len.fY * len.fY; // see DLine intersectRay + SkDVector ab0 = xy - fPts[0]; + double numer = len.fX * ab0.fX + ab0.fY * len.fY; + if (!between(0, numer, denom)) { + return -1; + } + double t = numer / denom; + SkDPoint realPt = ptAtT(t); + double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against distSq instead ? + // find the ordinal in the original line with the largest unsigned exponent + double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); + double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); + largest = SkTMax(largest, -tiniest); + if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? + return -1; + } + t = SkPinT(t); + SkASSERT(between(0, t, 1)); + return t; +} + +bool SkDLine::nearRay(const SkDPoint& xy) const { + // project a perpendicular ray from the point to the line; find the T on the line + SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line + double denom = len.fX * len.fX + len.fY * len.fY; // see DLine intersectRay + SkDVector ab0 = xy - fPts[0]; + double numer = len.fX * ab0.fX + ab0.fY * len.fY; + double t = numer / denom; + SkDPoint realPt = ptAtT(t); + double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against distSq instead ? + // find the ordinal in the original line with the largest unsigned exponent + double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); + double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); + largest = SkTMax(largest, -tiniest); + return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS tolerance? +} + +// Returns true if a ray from (0,0) to (x1,y1) is coincident with a ray (0,0) to (x2,y2) +// OPTIMIZE: a specialty routine could speed this up -- may not be called very often though +bool SkDLine::NearRay(double x1, double y1, double x2, double y2) { + double denom1 = x1 * x1 + y1 * y1; + double denom2 = x2 * x2 + y2 * y2; + SkDLine line = {{{0, 0}, {x1, y1}}}; + SkDPoint pt = {x2, y2}; + if (denom2 > denom1) { + SkTSwap(line[1], pt); + } + return line.nearRay(pt); +} + +double SkDLine::ExactPointH(const SkDPoint& xy, double left, double right, double y) { + if (xy.fY == y) { + if (xy.fX == left) { + return 0; + } + if (xy.fX == right) { + return 1; + } + } + return -1; +} + +double SkDLine::NearPointH(const SkDPoint& xy, double left, double right, double y) { + if (!AlmostBequalUlps(xy.fY, y)) { + return -1; + } + if (!AlmostBetweenUlps(left, xy.fX, right)) { + return -1; + } + double t = (xy.fX - left) / (right - left); + t = SkPinT(t); + SkASSERT(between(0, t, 1)); + double realPtX = (1 - t) * left + t * right; + SkDVector distU = {xy.fY - y, xy.fX - realPtX}; + double distSq = distU.fX * distU.fX + distU.fY * distU.fY; + double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ? + double tiniest = SkTMin(SkTMin(y, left), right); + double largest = SkTMax(SkTMax(y, left), right); + largest = SkTMax(largest, -tiniest); + if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? + return -1; + } + return t; +} + +double SkDLine::ExactPointV(const SkDPoint& xy, double top, double bottom, double x) { + if (xy.fX == x) { + if (xy.fY == top) { + return 0; + } + if (xy.fY == bottom) { + return 1; + } + } + return -1; +} + +double SkDLine::NearPointV(const SkDPoint& xy, double top, double bottom, double x) { + if (!AlmostBequalUlps(xy.fX, x)) { + return -1; + } + if (!AlmostBetweenUlps(top, xy.fY, bottom)) { + return -1; + } + double t = (xy.fY - top) / (bottom - top); + t = SkPinT(t); + SkASSERT(between(0, t, 1)); + double realPtY = (1 - t) * top + t * bottom; + SkDVector distU = {xy.fX - x, xy.fY - realPtY}; + double distSq = distU.fX * distU.fX + distU.fY * distU.fY; + double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ? + double tiniest = SkTMin(SkTMin(x, top), bottom); + double largest = SkTMax(SkTMax(x, top), bottom); + largest = SkTMax(largest, -tiniest); + if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? + return -1; + } + return t; +} + +#ifdef SK_DEBUG +void SkDLine::dump() { + SkDebugf("{{"); + fPts[0].dump(); + SkDebugf(", "); + fPts[1].dump(); + SkDebugf("}}\n"); +} +#endif