diff -r 000000000000 -r 6474c204b198 gfx/thebes/gfxContext.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gfx/thebes/gfxContext.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,2373 @@ +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifdef _MSC_VER +#define _USE_MATH_DEFINES +#endif +#include + +#include "mozilla/Alignment.h" + +#include "cairo.h" + +#include "gfxContext.h" + +#include "gfxColor.h" +#include "gfxMatrix.h" +#include "gfxASurface.h" +#include "gfxPattern.h" +#include "gfxPlatform.h" +#include "gfxTeeSurface.h" +#include "GeckoProfiler.h" +#include "gfx2DGlue.h" +#include "mozilla/gfx/PathHelpers.h" +#include + +#if CAIRO_HAS_DWRITE_FONT +#include "gfxWindowsPlatform.h" +#endif + +using namespace mozilla; +using namespace mozilla::gfx; + +UserDataKey gfxContext::sDontUseAsSourceKey; + +/* This class lives on the stack and allows gfxContext users to easily, and + * performantly get a gfx::Pattern to use for drawing in their current context. + */ +class GeneralPattern +{ +public: + GeneralPattern(gfxContext *aContext) : mContext(aContext), mPattern(nullptr) {} + ~GeneralPattern() { if (mPattern) { mPattern->~Pattern(); } } + + operator mozilla::gfx::Pattern&() + { + gfxContext::AzureState &state = mContext->CurrentState(); + + if (state.pattern) { + return *state.pattern->GetPattern(mContext->mDT, state.patternTransformChanged ? &state.patternTransform : nullptr); + } else if (state.sourceSurface) { + Matrix transform = state.surfTransform; + + if (state.patternTransformChanged) { + Matrix mat = mContext->GetDTTransform(); + mat.Invert(); + + transform = transform * state.patternTransform * mat; + } + + mPattern = new (mSurfacePattern.addr()) + SurfacePattern(state.sourceSurface, ExtendMode::CLAMP, transform); + return *mPattern; + } else { + mPattern = new (mColorPattern.addr()) + ColorPattern(state.color); + return *mPattern; + } + } + +private: + union { + mozilla::AlignedStorage2 mColorPattern; + mozilla::AlignedStorage2 mSurfacePattern; + }; + + gfxContext *mContext; + Pattern *mPattern; +}; + +gfxContext::gfxContext(gfxASurface *surface) + : mRefCairo(nullptr) + , mSurface(surface) +{ + MOZ_COUNT_CTOR(gfxContext); + + mCairo = cairo_create(surface->CairoSurface()); + mFlags = surface->GetDefaultContextFlags(); + if (mSurface->GetRotateForLandscape()) { + // Rotate page 90 degrees to draw landscape page on portrait paper + gfxIntSize size = mSurface->GetSize(); + Translate(gfxPoint(0, size.width)); + gfxMatrix matrix(0, -1, + 1, 0, + 0, 0); + Multiply(matrix); + } +} + +gfxContext::gfxContext(DrawTarget *aTarget, const Point& aDeviceOffset) + : mPathIsRect(false) + , mTransformChanged(false) + , mCairo(nullptr) + , mRefCairo(nullptr) + , mSurface(nullptr) + , mFlags(0) + , mDT(aTarget) + , mOriginalDT(aTarget) +{ + MOZ_COUNT_CTOR(gfxContext); + + mStateStack.SetLength(1); + CurrentState().drawTarget = mDT; + CurrentState().deviceOffset = aDeviceOffset; + mDT->SetTransform(Matrix()); +} + +/* static */ already_AddRefed +gfxContext::ContextForDrawTarget(DrawTarget* aTarget) +{ + Matrix transform = aTarget->GetTransform(); + nsRefPtr result = new gfxContext(aTarget); + result->SetMatrix(ThebesMatrix(transform)); + return result.forget(); +} + +gfxContext::~gfxContext() +{ + if (mCairo) { + cairo_destroy(mCairo); + } + if (mRefCairo) { + cairo_destroy(mRefCairo); + } + if (mDT) { + for (int i = mStateStack.Length() - 1; i >= 0; i--) { + for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { + mDT->PopClip(); + } + + if (mStateStack[i].clipWasReset) { + break; + } + } + mDT->Flush(); + } + MOZ_COUNT_DTOR(gfxContext); +} + +gfxASurface * +gfxContext::OriginalSurface() +{ + if (mCairo || mSurface) { + return mSurface; + } + + if (mOriginalDT && mOriginalDT->GetType() == BackendType::CAIRO) { + cairo_surface_t *s = + (cairo_surface_t*)mOriginalDT->GetNativeSurface(NativeSurfaceType::CAIRO_SURFACE); + if (s) { + mSurface = gfxASurface::Wrap(s); + return mSurface; + } + } + return nullptr; +} + +already_AddRefed +gfxContext::CurrentSurface(gfxFloat *dx, gfxFloat *dy) +{ + if (mCairo) { + cairo_surface_t *s = cairo_get_group_target(mCairo); + if (s == mSurface->CairoSurface()) { + if (dx && dy) + cairo_surface_get_device_offset(s, dx, dy); + nsRefPtr ret = mSurface; + return ret.forget(); + } + + if (dx && dy) + cairo_surface_get_device_offset(s, dx, dy); + return gfxASurface::Wrap(s); + } else { + if (mDT->GetType() == BackendType::CAIRO) { + cairo_surface_t *s = + (cairo_surface_t*)mDT->GetNativeSurface(NativeSurfaceType::CAIRO_SURFACE); + if (s) { + if (dx && dy) { + *dx = -CurrentState().deviceOffset.x; + *dy = -CurrentState().deviceOffset.y; + } + return gfxASurface::Wrap(s); + } + } + + if (dx && dy) { + *dx = *dy = 0; + } + // An Azure context doesn't have a surface backing it. + return nullptr; + } +} + +cairo_t * +gfxContext::GetCairo() +{ + if (mCairo) { + return mCairo; + } + + if (mDT->GetType() == BackendType::CAIRO) { + cairo_t *ctx = + (cairo_t*)mDT->GetNativeSurface(NativeSurfaceType::CAIRO_CONTEXT); + if (ctx) { + return ctx; + } + } + + if (mRefCairo) { + // Set transform! + return mRefCairo; + } + + mRefCairo = cairo_create(gfxPlatform::GetPlatform()->ScreenReferenceSurface()->CairoSurface()); + + return mRefCairo; +} + +void +gfxContext::Save() +{ + if (mCairo) { + cairo_save(mCairo); + } else { + CurrentState().transform = mTransform; + mStateStack.AppendElement(AzureState(CurrentState())); + CurrentState().clipWasReset = false; + CurrentState().pushedClips.Clear(); + } +} + +void +gfxContext::Restore() +{ + if (mCairo) { + cairo_restore(mCairo); + } else { + for (unsigned int c = 0; c < CurrentState().pushedClips.Length(); c++) { + mDT->PopClip(); + } + + if (CurrentState().clipWasReset && + CurrentState().drawTarget == mStateStack[mStateStack.Length() - 2].drawTarget) { + PushClipsToDT(mDT); + } + + mStateStack.RemoveElementAt(mStateStack.Length() - 1); + + mDT = CurrentState().drawTarget; + + ChangeTransform(CurrentState().transform, false); + } +} + +// drawing +void +gfxContext::NewPath() +{ + if (mCairo) { + cairo_new_path(mCairo); + } else { + mPath = nullptr; + mPathBuilder = nullptr; + mPathIsRect = false; + mTransformChanged = false; + } +} + +void +gfxContext::ClosePath() +{ + if (mCairo) { + cairo_close_path(mCairo); + } else { + EnsurePathBuilder(); + mPathBuilder->Close(); + } +} + +already_AddRefed gfxContext::CopyPath() +{ + nsRefPtr path; + if (mCairo) { + path = new gfxPath(cairo_copy_path(mCairo)); + } else { + EnsurePath(); + path = new gfxPath(mPath); + } + return path.forget(); +} + +void gfxContext::SetPath(gfxPath* path) +{ + if (mCairo) { + cairo_new_path(mCairo); + if (path->mPath->status == CAIRO_STATUS_SUCCESS && path->mPath->num_data != 0) + cairo_append_path(mCairo, path->mPath); + } else { + MOZ_ASSERT(path->mMoz2DPath, "Can't mix cairo and azure paths!"); + MOZ_ASSERT(path->mMoz2DPath->GetBackendType() == mDT->GetType()); + mPath = path->mMoz2DPath; + mPathBuilder = nullptr; + mPathIsRect = false; + mTransformChanged = false; + } +} + +gfxPoint +gfxContext::CurrentPoint() +{ + if (mCairo) { + double x, y; + cairo_get_current_point(mCairo, &x, &y); + return gfxPoint(x, y); + } else { + EnsurePathBuilder(); + return ThebesPoint(mPathBuilder->CurrentPoint()); + } +} + +void +gfxContext::Stroke() +{ + if (mCairo) { + cairo_stroke_preserve(mCairo); + } else { + AzureState &state = CurrentState(); + if (mPathIsRect) { + MOZ_ASSERT(!mTransformChanged); + + mDT->StrokeRect(mRect, GeneralPattern(this), + state.strokeOptions, + DrawOptions(1.0f, GetOp(), state.aaMode)); + } else { + EnsurePath(); + + mDT->Stroke(mPath, GeneralPattern(this), state.strokeOptions, + DrawOptions(1.0f, GetOp(), state.aaMode)); + } + } +} + +void +gfxContext::Fill() +{ + PROFILER_LABEL("gfxContext", "Fill"); + if (mCairo) { + cairo_fill_preserve(mCairo); + } else { + FillAzure(1.0f); + } +} + +void +gfxContext::FillWithOpacity(gfxFloat aOpacity) +{ + if (mCairo) { + // This method exists in the hope that one day cairo gets a direct + // API for this, and then we would change this method to use that + // API instead. + if (aOpacity != 1.0) { + gfxContextAutoSaveRestore saveRestore(this); + Clip(); + Paint(aOpacity); + } else { + Fill(); + } + } else { + FillAzure(Float(aOpacity)); + } +} + +void +gfxContext::MoveTo(const gfxPoint& pt) +{ + if (mCairo) { + cairo_move_to(mCairo, pt.x, pt.y); + } else { + EnsurePathBuilder(); + mPathBuilder->MoveTo(ToPoint(pt)); + } +} + +void +gfxContext::NewSubPath() +{ + if (mCairo) { + cairo_new_sub_path(mCairo); + } else { + // XXX - This has no users, we should kill it, it should be equivelant to a + // MoveTo to the path's current point. + } +} + +void +gfxContext::LineTo(const gfxPoint& pt) +{ + if (mCairo) { + cairo_line_to(mCairo, pt.x, pt.y); + } else { + EnsurePathBuilder(); + mPathBuilder->LineTo(ToPoint(pt)); + } +} + +void +gfxContext::CurveTo(const gfxPoint& pt1, const gfxPoint& pt2, const gfxPoint& pt3) +{ + if (mCairo) { + cairo_curve_to(mCairo, pt1.x, pt1.y, pt2.x, pt2.y, pt3.x, pt3.y); + } else { + EnsurePathBuilder(); + mPathBuilder->BezierTo(ToPoint(pt1), ToPoint(pt2), ToPoint(pt3)); + } +} + +void +gfxContext::QuadraticCurveTo(const gfxPoint& pt1, const gfxPoint& pt2) +{ + if (mCairo) { + double cx, cy; + cairo_get_current_point(mCairo, &cx, &cy); + cairo_curve_to(mCairo, + (cx + pt1.x * 2.0) / 3.0, + (cy + pt1.y * 2.0) / 3.0, + (pt1.x * 2.0 + pt2.x) / 3.0, + (pt1.y * 2.0 + pt2.y) / 3.0, + pt2.x, + pt2.y); + } else { + EnsurePathBuilder(); + mPathBuilder->QuadraticBezierTo(ToPoint(pt1), ToPoint(pt2)); + } +} + +void +gfxContext::Arc(const gfxPoint& center, gfxFloat radius, + gfxFloat angle1, gfxFloat angle2) +{ + if (mCairo) { + cairo_arc(mCairo, center.x, center.y, radius, angle1, angle2); + } else { + EnsurePathBuilder(); + mPathBuilder->Arc(ToPoint(center), Float(radius), Float(angle1), Float(angle2)); + } +} + +void +gfxContext::NegativeArc(const gfxPoint& center, gfxFloat radius, + gfxFloat angle1, gfxFloat angle2) +{ + if (mCairo) { + cairo_arc_negative(mCairo, center.x, center.y, radius, angle1, angle2); + } else { + EnsurePathBuilder(); + mPathBuilder->Arc(ToPoint(center), Float(radius), Float(angle2), Float(angle1)); + } +} + +void +gfxContext::Line(const gfxPoint& start, const gfxPoint& end) +{ + if (mCairo) { + MoveTo(start); + LineTo(end); + } else { + EnsurePathBuilder(); + mPathBuilder->MoveTo(ToPoint(start)); + mPathBuilder->LineTo(ToPoint(end)); + } +} + +// XXX snapToPixels is only valid when snapping for filled +// rectangles and for even-width stroked rectangles. +// For odd-width stroked rectangles, we need to offset x/y by +// 0.5... +void +gfxContext::Rectangle(const gfxRect& rect, bool snapToPixels) +{ + if (mCairo) { + if (snapToPixels) { + gfxRect snappedRect(rect); + + if (UserToDevicePixelSnapped(snappedRect, true)) + { + cairo_matrix_t mat; + cairo_get_matrix(mCairo, &mat); + cairo_identity_matrix(mCairo); + Rectangle(snappedRect); + cairo_set_matrix(mCairo, &mat); + + return; + } + } + + cairo_rectangle(mCairo, rect.X(), rect.Y(), rect.Width(), rect.Height()); + } else { + Rect rec = ToRect(rect); + + if (snapToPixels) { + gfxRect newRect(rect); + if (UserToDevicePixelSnapped(newRect, true)) { + gfxMatrix mat = ThebesMatrix(mTransform); + mat.Invert(); + + // We need the user space rect. + rec = ToRect(mat.TransformBounds(newRect)); + } + } + + if (!mPathBuilder && !mPathIsRect) { + mPathIsRect = true; + mRect = rec; + return; + } + + EnsurePathBuilder(); + + mPathBuilder->MoveTo(rec.TopLeft()); + mPathBuilder->LineTo(rec.TopRight()); + mPathBuilder->LineTo(rec.BottomRight()); + mPathBuilder->LineTo(rec.BottomLeft()); + mPathBuilder->Close(); + } +} + +void +gfxContext::Ellipse(const gfxPoint& center, const gfxSize& dimensions) +{ + gfxSize halfDim = dimensions / 2.0; + gfxRect r(center - gfxPoint(halfDim.width, halfDim.height), dimensions); + gfxCornerSizes c(halfDim, halfDim, halfDim, halfDim); + + RoundedRectangle (r, c); +} + +void +gfxContext::Polygon(const gfxPoint *points, uint32_t numPoints) +{ + if (mCairo) { + if (numPoints == 0) + return; + + cairo_move_to(mCairo, points[0].x, points[0].y); + for (uint32_t i = 1; i < numPoints; ++i) { + cairo_line_to(mCairo, points[i].x, points[i].y); + } + } else { + if (numPoints == 0) { + return; + } + + EnsurePathBuilder(); + + mPathBuilder->MoveTo(ToPoint(points[0])); + for (uint32_t i = 1; i < numPoints; i++) { + mPathBuilder->LineTo(ToPoint(points[i])); + } + } +} + +void +gfxContext::DrawSurface(gfxASurface *surface, const gfxSize& size) +{ + if (mCairo) { + cairo_save(mCairo); + cairo_set_source_surface(mCairo, surface->CairoSurface(), 0, 0); + cairo_new_path(mCairo); + + // pixel-snap this + Rectangle(gfxRect(gfxPoint(0.0, 0.0), size), true); + + cairo_fill(mCairo); + cairo_restore(mCairo); + } else { + // Lifetime needs to be limited here since we may wrap surface's data. + RefPtr surf = + gfxPlatform::GetPlatform()->GetSourceSurfaceForSurface(mDT, surface); + + if (!surf) { + return; + } + + Rect rect(0, 0, Float(size.width), Float(size.height)); + rect.Intersect(Rect(0, 0, Float(surf->GetSize().width), Float(surf->GetSize().height))); + + // XXX - Should fix pixel snapping. + mDT->DrawSurface(surf, rect, rect); + } +} + +// transform stuff +void +gfxContext::Translate(const gfxPoint& pt) +{ + if (mCairo) { + cairo_translate(mCairo, pt.x, pt.y); + } else { + Matrix newMatrix = mTransform; + + ChangeTransform(newMatrix.Translate(Float(pt.x), Float(pt.y))); + } +} + +void +gfxContext::Scale(gfxFloat x, gfxFloat y) +{ + if (mCairo) { + cairo_scale(mCairo, x, y); + } else { + Matrix newMatrix = mTransform; + + ChangeTransform(newMatrix.Scale(Float(x), Float(y))); + } +} + +void +gfxContext::Rotate(gfxFloat angle) +{ + if (mCairo) { + cairo_rotate(mCairo, angle); + } else { + Matrix rotation = Matrix::Rotation(Float(angle)); + ChangeTransform(rotation * mTransform); + } +} + +void +gfxContext::Multiply(const gfxMatrix& matrix) +{ + if (mCairo) { + const cairo_matrix_t& mat = reinterpret_cast(matrix); + cairo_transform(mCairo, &mat); + } else { + ChangeTransform(ToMatrix(matrix) * mTransform); + } +} + +void +gfxContext::MultiplyAndNudgeToIntegers(const gfxMatrix& matrix) +{ + if (mCairo) { + const cairo_matrix_t& mat = reinterpret_cast(matrix); + cairo_transform(mCairo, &mat); + // XXX nudging to integers not currently supported for Thebes + } else { + Matrix transform = ToMatrix(matrix) * mTransform; + transform.NudgeToIntegers(); + ChangeTransform(transform); + } +} + +void +gfxContext::SetMatrix(const gfxMatrix& matrix) +{ + if (mCairo) { + const cairo_matrix_t& mat = reinterpret_cast(matrix); + cairo_set_matrix(mCairo, &mat); + } else { + ChangeTransform(ToMatrix(matrix)); + } +} + +void +gfxContext::IdentityMatrix() +{ + if (mCairo) { + cairo_identity_matrix(mCairo); + } else { + ChangeTransform(Matrix()); + } +} + +gfxMatrix +gfxContext::CurrentMatrix() const +{ + if (mCairo) { + cairo_matrix_t mat; + cairo_get_matrix(mCairo, &mat); + return gfxMatrix(*reinterpret_cast(&mat)); + } else { + return ThebesMatrix(mTransform); + } +} + +void +gfxContext::NudgeCurrentMatrixToIntegers() +{ + if (mCairo) { + cairo_matrix_t mat; + cairo_get_matrix(mCairo, &mat); + gfxMatrix(*reinterpret_cast(&mat)).NudgeToIntegers(); + cairo_set_matrix(mCairo, &mat); + } else { + gfxMatrix matrix = ThebesMatrix(mTransform); + matrix.NudgeToIntegers(); + ChangeTransform(ToMatrix(matrix)); + } +} + +gfxPoint +gfxContext::DeviceToUser(const gfxPoint& point) const +{ + if (mCairo) { + gfxPoint ret = point; + cairo_device_to_user(mCairo, &ret.x, &ret.y); + return ret; + } else { + Matrix matrix = mTransform; + + matrix.Invert(); + + return ThebesPoint(matrix * ToPoint(point)); + } +} + +gfxSize +gfxContext::DeviceToUser(const gfxSize& size) const +{ + if (mCairo) { + gfxSize ret = size; + cairo_device_to_user_distance(mCairo, &ret.width, &ret.height); + return ret; + } else { + Matrix matrix = mTransform; + + matrix.Invert(); + + return ThebesSize(matrix * ToSize(size)); + } +} + +gfxRect +gfxContext::DeviceToUser(const gfxRect& rect) const +{ + if (mCairo) { + gfxRect ret = rect; + cairo_device_to_user(mCairo, &ret.x, &ret.y); + cairo_device_to_user_distance(mCairo, &ret.width, &ret.height); + return ret; + } else { + Matrix matrix = mTransform; + + matrix.Invert(); + + return ThebesRect(matrix.TransformBounds(ToRect(rect))); + } +} + +gfxPoint +gfxContext::UserToDevice(const gfxPoint& point) const +{ + if (mCairo) { + gfxPoint ret = point; + cairo_user_to_device(mCairo, &ret.x, &ret.y); + return ret; + } else { + return ThebesPoint(mTransform * ToPoint(point)); + } +} + +gfxSize +gfxContext::UserToDevice(const gfxSize& size) const +{ + if (mCairo) { + gfxSize ret = size; + cairo_user_to_device_distance(mCairo, &ret.width, &ret.height); + return ret; + } else { + const Matrix &matrix = mTransform; + + gfxSize newSize; + newSize.width = size.width * matrix._11 + size.height * matrix._12; + newSize.height = size.width * matrix._21 + size.height * matrix._22; + return newSize; + } +} + +gfxRect +gfxContext::UserToDevice(const gfxRect& rect) const +{ + if (mCairo) { + double xmin = rect.X(), ymin = rect.Y(), xmax = rect.XMost(), ymax = rect.YMost(); + + double x[3], y[3]; + x[0] = xmin; y[0] = ymax; + x[1] = xmax; y[1] = ymax; + x[2] = xmax; y[2] = ymin; + + cairo_user_to_device(mCairo, &xmin, &ymin); + xmax = xmin; + ymax = ymin; + for (int i = 0; i < 3; i++) { + cairo_user_to_device(mCairo, &x[i], &y[i]); + xmin = std::min(xmin, x[i]); + xmax = std::max(xmax, x[i]); + ymin = std::min(ymin, y[i]); + ymax = std::max(ymax, y[i]); + } + + return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); + } else { + const Matrix &matrix = mTransform; + return ThebesRect(matrix.TransformBounds(ToRect(rect))); + } +} + +bool +gfxContext::UserToDevicePixelSnapped(gfxRect& rect, bool ignoreScale) const +{ + if (GetFlags() & FLAG_DISABLE_SNAPPING) + return false; + + // if we're not at 1.0 scale, don't snap, unless we're + // ignoring the scale. If we're not -just- a scale, + // never snap. + const gfxFloat epsilon = 0.0000001; +#define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon) + if (mCairo) { + cairo_matrix_t mat; + cairo_get_matrix(mCairo, &mat); + if (!ignoreScale && + (!WITHIN_E(mat.xx,1.0) || !WITHIN_E(mat.yy,1.0) || + !WITHIN_E(mat.xy,0.0) || !WITHIN_E(mat.yx,0.0))) + return false; + } else { + Matrix mat = mTransform; + if (!ignoreScale && + (!WITHIN_E(mat._11,1.0) || !WITHIN_E(mat._22,1.0) || + !WITHIN_E(mat._12,0.0) || !WITHIN_E(mat._21,0.0))) + return false; + } +#undef WITHIN_E + + gfxPoint p1 = UserToDevice(rect.TopLeft()); + gfxPoint p2 = UserToDevice(rect.TopRight()); + gfxPoint p3 = UserToDevice(rect.BottomRight()); + + // Check that the rectangle is axis-aligned. For an axis-aligned rectangle, + // two opposite corners define the entire rectangle. So check if + // the axis-aligned rectangle with opposite corners p1 and p3 + // define an axis-aligned rectangle whose other corners are p2 and p4. + // We actually only need to check one of p2 and p4, since an affine + // transform maps parallelograms to parallelograms. + if (p2 == gfxPoint(p1.x, p3.y) || p2 == gfxPoint(p3.x, p1.y)) { + p1.Round(); + p3.Round(); + + rect.MoveTo(gfxPoint(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); + rect.SizeTo(gfxSize(std::max(p1.x, p3.x) - rect.X(), + std::max(p1.y, p3.y) - rect.Y())); + return true; + } + + return false; +} + +bool +gfxContext::UserToDevicePixelSnapped(gfxPoint& pt, bool ignoreScale) const +{ + if (GetFlags() & FLAG_DISABLE_SNAPPING) + return false; + + // if we're not at 1.0 scale, don't snap, unless we're + // ignoring the scale. If we're not -just- a scale, + // never snap. + const gfxFloat epsilon = 0.0000001; +#define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon) + if (mCairo) { + cairo_matrix_t mat; + cairo_get_matrix(mCairo, &mat); + if (!ignoreScale && + (!WITHIN_E(mat.xx,1.0) || !WITHIN_E(mat.yy,1.0) || + !WITHIN_E(mat.xy,0.0) || !WITHIN_E(mat.yx,0.0))) + return false; + } else { + Matrix mat = mTransform; + if (!ignoreScale && + (!WITHIN_E(mat._11,1.0) || !WITHIN_E(mat._22,1.0) || + !WITHIN_E(mat._12,0.0) || !WITHIN_E(mat._21,0.0))) + return false; + } +#undef WITHIN_E + + pt = UserToDevice(pt); + pt.Round(); + return true; +} + +void +gfxContext::PixelSnappedRectangleAndSetPattern(const gfxRect& rect, + gfxPattern *pattern) +{ + gfxRect r(rect); + + // Bob attempts to pixel-snap the rectangle, and returns true if + // the snapping succeeds. If it does, we need to set up an + // identity matrix, because the rectangle given back is in device + // coordinates. + // + // We then have to call a translate to dr.pos afterwards, to make + // sure the image lines up in the right place with our pixel + // snapped rectangle. + // + // If snapping wasn't successful, we just translate to where the + // pattern would normally start (in app coordinates) and do the + // same thing. + Rectangle(r, true); + SetPattern(pattern); +} + +void +gfxContext::SetAntialiasMode(AntialiasMode mode) +{ + if (mCairo) { + if (mode == MODE_ALIASED) { + cairo_set_antialias(mCairo, CAIRO_ANTIALIAS_NONE); + } else if (mode == MODE_COVERAGE) { + cairo_set_antialias(mCairo, CAIRO_ANTIALIAS_DEFAULT); + } + } else { + if (mode == MODE_ALIASED) { + CurrentState().aaMode = gfx::AntialiasMode::NONE; + } else if (mode == MODE_COVERAGE) { + CurrentState().aaMode = gfx::AntialiasMode::SUBPIXEL; + } + } +} + +gfxContext::AntialiasMode +gfxContext::CurrentAntialiasMode() const +{ + if (mCairo) { + cairo_antialias_t aa = cairo_get_antialias(mCairo); + if (aa == CAIRO_ANTIALIAS_NONE) + return MODE_ALIASED; + return MODE_COVERAGE; + } else { + if (CurrentState().aaMode == gfx::AntialiasMode::NONE) { + return MODE_ALIASED; + } + return MODE_COVERAGE; + } +} + +void +gfxContext::SetDash(gfxLineType ltype) +{ + static double dash[] = {5.0, 5.0}; + static double dot[] = {1.0, 1.0}; + + switch (ltype) { + case gfxLineDashed: + SetDash(dash, 2, 0.0); + break; + case gfxLineDotted: + SetDash(dot, 2, 0.0); + break; + case gfxLineSolid: + default: + SetDash(nullptr, 0, 0.0); + break; + } +} + +void +gfxContext::SetDash(gfxFloat *dashes, int ndash, gfxFloat offset) +{ + if (mCairo) { + cairo_set_dash(mCairo, dashes, ndash, offset); + } else { + AzureState &state = CurrentState(); + + state.dashPattern.SetLength(ndash); + for (int i = 0; i < ndash; i++) { + state.dashPattern[i] = Float(dashes[i]); + } + state.strokeOptions.mDashLength = ndash; + state.strokeOptions.mDashOffset = Float(offset); + state.strokeOptions.mDashPattern = ndash ? state.dashPattern.Elements() + : nullptr; + } +} + +bool +gfxContext::CurrentDash(FallibleTArray& dashes, gfxFloat* offset) const +{ + if (mCairo) { + int count = cairo_get_dash_count(mCairo); + if (count <= 0 || !dashes.SetLength(count)) { + return false; + } + cairo_get_dash(mCairo, dashes.Elements(), offset); + return true; + } else { + const AzureState &state = CurrentState(); + int count = state.strokeOptions.mDashLength; + + if (count <= 0 || !dashes.SetLength(count)) { + return false; + } + + for (int i = 0; i < count; i++) { + dashes[i] = state.dashPattern[i]; + } + + *offset = state.strokeOptions.mDashOffset; + + return true; + } +} + +gfxFloat +gfxContext::CurrentDashOffset() const +{ + if (mCairo) { + if (cairo_get_dash_count(mCairo) <= 0) { + return 0.0; + } + gfxFloat offset; + cairo_get_dash(mCairo, nullptr, &offset); + return offset; + } else { + return CurrentState().strokeOptions.mDashOffset; + } +} + +void +gfxContext::SetLineWidth(gfxFloat width) +{ + if (mCairo) { + cairo_set_line_width(mCairo, width); + } else { + CurrentState().strokeOptions.mLineWidth = Float(width); + } +} + +gfxFloat +gfxContext::CurrentLineWidth() const +{ + if (mCairo) { + return cairo_get_line_width(mCairo); + } else { + return CurrentState().strokeOptions.mLineWidth; + } +} + +void +gfxContext::SetOperator(GraphicsOperator op) +{ + if (mCairo) { + if (mFlags & FLAG_SIMPLIFY_OPERATORS) { + if (op != OPERATOR_SOURCE && + op != OPERATOR_CLEAR && + op != OPERATOR_OVER) + op = OPERATOR_OVER; + } + + cairo_set_operator(mCairo, (cairo_operator_t)op); + } else { + if (op == OPERATOR_CLEAR) { + CurrentState().opIsClear = true; + return; + } + CurrentState().opIsClear = false; + CurrentState().op = CompositionOpForOp(op); + } +} + +gfxContext::GraphicsOperator +gfxContext::CurrentOperator() const +{ + if (mCairo) { + return (GraphicsOperator)cairo_get_operator(mCairo); + } else { + return ThebesOp(CurrentState().op); + } +} + +void +gfxContext::SetLineCap(GraphicsLineCap cap) +{ + if (mCairo) { + cairo_set_line_cap(mCairo, (cairo_line_cap_t)cap); + } else { + CurrentState().strokeOptions.mLineCap = ToCapStyle(cap); + } +} + +gfxContext::GraphicsLineCap +gfxContext::CurrentLineCap() const +{ + if (mCairo) { + return (GraphicsLineCap)cairo_get_line_cap(mCairo); + } else { + return ThebesLineCap(CurrentState().strokeOptions.mLineCap); + } +} + +void +gfxContext::SetLineJoin(GraphicsLineJoin join) +{ + if (mCairo) { + cairo_set_line_join(mCairo, (cairo_line_join_t)join); + } else { + CurrentState().strokeOptions.mLineJoin = ToJoinStyle(join); + } +} + +gfxContext::GraphicsLineJoin +gfxContext::CurrentLineJoin() const +{ + if (mCairo) { + return (GraphicsLineJoin)cairo_get_line_join(mCairo); + } else { + return ThebesLineJoin(CurrentState().strokeOptions.mLineJoin); + } +} + +void +gfxContext::SetMiterLimit(gfxFloat limit) +{ + if (mCairo) { + cairo_set_miter_limit(mCairo, limit); + } else { + CurrentState().strokeOptions.mMiterLimit = Float(limit); + } +} + +gfxFloat +gfxContext::CurrentMiterLimit() const +{ + if (mCairo) { + return cairo_get_miter_limit(mCairo); + } else { + return CurrentState().strokeOptions.mMiterLimit; + } +} + +void +gfxContext::SetFillRule(FillRule rule) +{ + if (mCairo) { + cairo_set_fill_rule(mCairo, (cairo_fill_rule_t)rule); + } else { + CurrentState().fillRule = rule == FILL_RULE_WINDING ? gfx::FillRule::FILL_WINDING : gfx::FillRule::FILL_EVEN_ODD; + } +} + +gfxContext::FillRule +gfxContext::CurrentFillRule() const +{ + if (mCairo) { + return (FillRule)cairo_get_fill_rule(mCairo); + } else { + return FILL_RULE_WINDING; + } +} + +// clipping +void +gfxContext::Clip(const gfxRect& rect) +{ + if (mCairo) { + cairo_new_path(mCairo); + cairo_rectangle(mCairo, rect.X(), rect.Y(), rect.Width(), rect.Height()); + cairo_clip(mCairo); + } else { + AzureState::PushedClip clip = { nullptr, ToRect(rect), mTransform }; + CurrentState().pushedClips.AppendElement(clip); + mDT->PushClipRect(ToRect(rect)); + NewPath(); + } +} + +void +gfxContext::Clip() +{ + if (mCairo) { + cairo_clip_preserve(mCairo); + } else { + if (mPathIsRect) { + MOZ_ASSERT(!mTransformChanged); + + AzureState::PushedClip clip = { nullptr, mRect, mTransform }; + CurrentState().pushedClips.AppendElement(clip); + mDT->PushClipRect(mRect); + } else { + EnsurePath(); + mDT->PushClip(mPath); + AzureState::PushedClip clip = { mPath, Rect(), mTransform }; + CurrentState().pushedClips.AppendElement(clip); + } + } +} + +void +gfxContext::ResetClip() +{ + if (mCairo) { + cairo_reset_clip(mCairo); + } else { + for (int i = mStateStack.Length() - 1; i >= 0; i--) { + for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { + mDT->PopClip(); + } + + if (mStateStack[i].clipWasReset) { + break; + } + } + CurrentState().pushedClips.Clear(); + CurrentState().clipWasReset = true; + } +} + +void +gfxContext::UpdateSurfaceClip() +{ + if (mCairo) { + NewPath(); + // we paint an empty rectangle to ensure the clip is propagated to + // the destination surface + SetDeviceColor(gfxRGBA(0,0,0,0)); + Rectangle(gfxRect(0,1,1,0)); + Fill(); + } +} + +gfxRect +gfxContext::GetClipExtents() +{ + if (mCairo) { + double xmin, ymin, xmax, ymax; + cairo_clip_extents(mCairo, &xmin, &ymin, &xmax, &ymax); + return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); + } else { + Rect rect = GetAzureDeviceSpaceClipBounds(); + + if (rect.width == 0 || rect.height == 0) { + return gfxRect(0, 0, 0, 0); + } + + Matrix mat = mTransform; + mat.Invert(); + rect = mat.TransformBounds(rect); + + return ThebesRect(rect); + } +} + +bool +gfxContext::ClipContainsRect(const gfxRect& aRect) +{ + if (mCairo) { + cairo_rectangle_list_t *clip = + cairo_copy_clip_rectangle_list(mCairo); + + bool result = false; + + if (clip->status == CAIRO_STATUS_SUCCESS) { + for (int i = 0; i < clip->num_rectangles; i++) { + gfxRect rect(clip->rectangles[i].x, clip->rectangles[i].y, + clip->rectangles[i].width, clip->rectangles[i].height); + if (rect.Contains(aRect)) { + result = true; + break; + } + } + } + + cairo_rectangle_list_destroy(clip); + return result; + } else { + unsigned int lastReset = 0; + for (int i = mStateStack.Length() - 2; i > 0; i--) { + if (mStateStack[i].clipWasReset) { + lastReset = i; + break; + } + } + + // Since we always return false when the clip list contains a + // non-rectangular clip or a non-rectilinear transform, our 'total' clip + // is always a rectangle if we hit the end of this function. + Rect clipBounds(0, 0, Float(mDT->GetSize().width), Float(mDT->GetSize().height)); + + for (unsigned int i = lastReset; i < mStateStack.Length(); i++) { + for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { + AzureState::PushedClip &clip = mStateStack[i].pushedClips[c]; + if (clip.path || !clip.transform.IsRectilinear()) { + // Cairo behavior is we return false if the clip contains a non- + // rectangle. + return false; + } else { + Rect clipRect = mTransform.TransformBounds(clip.rect); + + clipBounds.IntersectRect(clipBounds, clipRect); + } + } + } + + return clipBounds.Contains(ToRect(aRect)); + } +} + +// rendering sources + +void +gfxContext::SetColor(const gfxRGBA& c) +{ + if (mCairo) { + if (gfxPlatform::GetCMSMode() == eCMSMode_All) { + + gfxRGBA cms; + qcms_transform *transform = gfxPlatform::GetCMSRGBTransform(); + if (transform) + gfxPlatform::TransformPixel(c, cms, transform); + + // Use the original alpha to avoid unnecessary float->byte->float + // conversion errors + cairo_set_source_rgba(mCairo, cms.r, cms.g, cms.b, c.a); + } + else + cairo_set_source_rgba(mCairo, c.r, c.g, c.b, c.a); + } else { + CurrentState().pattern = nullptr; + CurrentState().sourceSurfCairo = nullptr; + CurrentState().sourceSurface = nullptr; + + if (gfxPlatform::GetCMSMode() == eCMSMode_All) { + + gfxRGBA cms; + qcms_transform *transform = gfxPlatform::GetCMSRGBTransform(); + if (transform) + gfxPlatform::TransformPixel(c, cms, transform); + + // Use the original alpha to avoid unnecessary float->byte->float + // conversion errors + CurrentState().color = ToColor(cms); + } + else + CurrentState().color = ToColor(c); + } +} + +void +gfxContext::SetDeviceColor(const gfxRGBA& c) +{ + if (mCairo) { + cairo_set_source_rgba(mCairo, c.r, c.g, c.b, c.a); + } else { + CurrentState().pattern = nullptr; + CurrentState().sourceSurfCairo = nullptr; + CurrentState().sourceSurface = nullptr; + CurrentState().color = ToColor(c); + } +} + +bool +gfxContext::GetDeviceColor(gfxRGBA& c) +{ + if (mCairo) { + return cairo_pattern_get_rgba(cairo_get_source(mCairo), + &c.r, + &c.g, + &c.b, + &c.a) == CAIRO_STATUS_SUCCESS; + } else { + if (CurrentState().sourceSurface) { + return false; + } + if (CurrentState().pattern) { + gfxRGBA color; + return CurrentState().pattern->GetSolidColor(c); + } + + c = ThebesRGBA(CurrentState().color); + return true; + } +} + +void +gfxContext::SetSource(gfxASurface *surface, const gfxPoint& offset) +{ + if (mCairo) { + NS_ASSERTION(surface->GetAllowUseAsSource(), "Surface not allowed to be used as source!"); + cairo_set_source_surface(mCairo, surface->CairoSurface(), offset.x, offset.y); + } else { + CurrentState().surfTransform = Matrix(1.0f, 0, 0, 1.0f, Float(offset.x), Float(offset.y)); + CurrentState().pattern = nullptr; + CurrentState().patternTransformChanged = false; + // Keep the underlying cairo surface around while we keep the + // sourceSurface. + CurrentState().sourceSurfCairo = surface; + CurrentState().sourceSurface = + gfxPlatform::GetPlatform()->GetSourceSurfaceForSurface(mDT, surface); + CurrentState().color = Color(0, 0, 0, 0); + } +} + +void +gfxContext::SetPattern(gfxPattern *pattern) +{ + if (mCairo) { + MOZ_ASSERT(!pattern->IsAzure()); + cairo_set_source(mCairo, pattern->CairoPattern()); + } else { + CurrentState().sourceSurfCairo = nullptr; + CurrentState().sourceSurface = nullptr; + CurrentState().patternTransformChanged = false; + CurrentState().pattern = pattern; + } +} + +already_AddRefed +gfxContext::GetPattern() +{ + if (mCairo) { + cairo_pattern_t *pat = cairo_get_source(mCairo); + NS_ASSERTION(pat, "I was told this couldn't be null"); + + nsRefPtr wrapper; + if (pat) + wrapper = new gfxPattern(pat); + else + wrapper = new gfxPattern(gfxRGBA(0,0,0,0)); + + return wrapper.forget(); + } else { + nsRefPtr pat; + + AzureState &state = CurrentState(); + if (state.pattern) { + pat = state.pattern; + } else if (state.sourceSurface) { + NS_ASSERTION(false, "Ugh, this isn't good."); + } else { + pat = new gfxPattern(ThebesRGBA(state.color)); + } + return pat.forget(); + } +} + + +// masking +void +gfxContext::Mask(gfxPattern *pattern) +{ + if (mCairo) { + MOZ_ASSERT(!pattern->IsAzure()); + cairo_mask(mCairo, pattern->CairoPattern()); + } else { + if (pattern->Extend() == gfxPattern::EXTEND_NONE) { + // In this situation the mask will be fully transparent (i.e. nothing + // will be drawn) outside of the bounds of the surface. We can support + // that by clipping out drawing to that area. + Point offset; + if (pattern->IsAzure()) { + // This is an Azure pattern. i.e. this was the result of a PopGroup and + // then the extend mode was changed to EXTEND_NONE. + // XXX - We may need some additional magic here in theory to support + // device offsets in these patterns, but no problems have been observed + // yet because of this. And it would complicate things a little further. + offset = Point(0.f, 0.f); + } else if (pattern->GetType() == gfxPattern::PATTERN_SURFACE) { + nsRefPtr asurf = pattern->GetSurface(); + gfxPoint deviceOffset = asurf->GetDeviceOffset(); + offset = Point(-deviceOffset.x, -deviceOffset.y); + + // this lets GetAzureSurface work + pattern->GetPattern(mDT); + } + + if (pattern->IsAzure() || pattern->GetType() == gfxPattern::PATTERN_SURFACE) { + RefPtr mask = pattern->GetAzureSurface(); + Matrix mat = ToMatrix(pattern->GetInverseMatrix()); + Matrix old = mTransform; + // add in the inverse of the pattern transform so that when we + // MaskSurface we are transformed to the place matching the pattern transform + mat = mat * mTransform; + + ChangeTransform(mat); + mDT->MaskSurface(GeneralPattern(this), mask, offset, DrawOptions(1.0f, CurrentState().op, CurrentState().aaMode)); + ChangeTransform(old); + return; + } + } + mDT->Mask(GeneralPattern(this), *pattern->GetPattern(mDT), DrawOptions(1.0f, CurrentState().op, CurrentState().aaMode)); + } +} + +void +gfxContext::Mask(gfxASurface *surface, const gfxPoint& offset) +{ + PROFILER_LABEL("gfxContext", "Mask"); + if (mCairo) { + cairo_mask_surface(mCairo, surface->CairoSurface(), offset.x, offset.y); + } else { + // Lifetime needs to be limited here as we may simply wrap surface's data. + RefPtr sourceSurf = + gfxPlatform::GetPlatform()->GetSourceSurfaceForSurface(mDT, surface); + + if (!sourceSurf) { + return; + } + + gfxPoint pt = surface->GetDeviceOffset(); + + Mask(sourceSurf, Point(offset.x - pt.x, offset.y - pt.y)); + } +} + +void +gfxContext::Mask(SourceSurface *surface, const Point& offset) +{ + MOZ_ASSERT(mDT); + + + // We clip here to bind to the mask surface bounds, see above. + mDT->MaskSurface(GeneralPattern(this), + surface, + offset, + DrawOptions(1.0f, CurrentState().op, CurrentState().aaMode)); +} + +void +gfxContext::Paint(gfxFloat alpha) +{ + PROFILER_LABEL("gfxContext", "Paint"); + if (mCairo) { + cairo_paint_with_alpha(mCairo, alpha); + } else { + AzureState &state = CurrentState(); + + if (state.sourceSurface && !state.sourceSurfCairo && + !state.patternTransformChanged && !state.opIsClear) + { + // This is the case where a PopGroupToSource has been done and this + // paint is executed without changing the transform or the source. + Matrix oldMat = mDT->GetTransform(); + + IntSize surfSize = state.sourceSurface->GetSize(); + + Matrix mat; + mat.Translate(-state.deviceOffset.x, -state.deviceOffset.y); + mDT->SetTransform(mat); + + mDT->DrawSurface(state.sourceSurface, + Rect(state.sourceSurfaceDeviceOffset, Size(surfSize.width, surfSize.height)), + Rect(Point(), Size(surfSize.width, surfSize.height)), + DrawSurfaceOptions(), DrawOptions(alpha, GetOp())); + mDT->SetTransform(oldMat); + return; + } + + Matrix mat = mDT->GetTransform(); + mat.Invert(); + Rect paintRect = mat.TransformBounds(Rect(Point(0, 0), Size(mDT->GetSize()))); + + if (state.opIsClear) { + mDT->ClearRect(paintRect); + } else { + mDT->FillRect(paintRect, GeneralPattern(this), + DrawOptions(Float(alpha), GetOp())); + } + } +} + +// groups + +void +gfxContext::PushGroup(gfxContentType content) +{ + if (mCairo) { + cairo_push_group_with_content(mCairo, (cairo_content_t)(int) content); + } else { + PushNewDT(content); + + PushClipsToDT(mDT); + mDT->SetTransform(GetDTTransform()); + } +} + +static gfxRect +GetRoundOutDeviceClipExtents(gfxContext* aCtx) +{ + gfxContextMatrixAutoSaveRestore save(aCtx); + aCtx->IdentityMatrix(); + gfxRect r = aCtx->GetClipExtents(); + r.RoundOut(); + return r; +} + +/** + * Copy the contents of aSrc to aDest, translated by aTranslation. + */ +static void +CopySurface(gfxASurface* aSrc, gfxASurface* aDest, const gfxPoint& aTranslation) +{ + cairo_t *cr = cairo_create(aDest->CairoSurface()); + cairo_set_source_surface(cr, aSrc->CairoSurface(), aTranslation.x, aTranslation.y); + cairo_set_operator(cr, CAIRO_OPERATOR_SOURCE); + cairo_paint(cr); + cairo_destroy(cr); +} + +void +gfxContext::PushGroupAndCopyBackground(gfxContentType content) +{ + if (mCairo) { + if (content == gfxContentType::COLOR_ALPHA && + !(GetFlags() & FLAG_DISABLE_COPY_BACKGROUND)) { + nsRefPtr s = CurrentSurface(); + if ((s->GetAllowUseAsSource() || s->GetType() == gfxSurfaceType::Tee) && + (s->GetContentType() == gfxContentType::COLOR || + s->GetOpaqueRect().Contains(GetRoundOutDeviceClipExtents(this)))) { + cairo_push_group_with_content(mCairo, CAIRO_CONTENT_COLOR); + nsRefPtr d = CurrentSurface(); + + if (d->GetType() == gfxSurfaceType::Tee) { + NS_ASSERTION(s->GetType() == gfxSurfaceType::Tee, "Mismatched types"); + nsAutoTArray,2> ss; + nsAutoTArray,2> ds; + static_cast(s.get())->GetSurfaces(&ss); + static_cast(d.get())->GetSurfaces(&ds); + NS_ASSERTION(ss.Length() == ds.Length(), "Mismatched lengths"); + gfxPoint translation = d->GetDeviceOffset() - s->GetDeviceOffset(); + for (uint32_t i = 0; i < ss.Length(); ++i) { + CopySurface(ss[i], ds[i], translation); + } + } else { + CopySurface(s, d, gfxPoint(0, 0)); + } + d->SetOpaqueRect(s->GetOpaqueRect()); + return; + } + } + } else { + IntRect clipExtents; + if (mDT->GetFormat() != SurfaceFormat::B8G8R8X8) { + gfxRect clipRect = GetRoundOutDeviceClipExtents(this); + clipExtents = IntRect(clipRect.x, clipRect.y, clipRect.width, clipRect.height); + } + if ((mDT->GetFormat() == SurfaceFormat::B8G8R8X8 || + mDT->GetOpaqueRect().Contains(clipExtents)) && + !mDT->GetUserData(&sDontUseAsSourceKey)) { + DrawTarget *oldDT = mDT; + RefPtr source = mDT->Snapshot(); + Point oldDeviceOffset = CurrentState().deviceOffset; + + PushNewDT(gfxContentType::COLOR); + + Point offset = CurrentState().deviceOffset - oldDeviceOffset; + Rect surfRect(0, 0, Float(mDT->GetSize().width), Float(mDT->GetSize().height)); + Rect sourceRect = surfRect; + sourceRect.x += offset.x; + sourceRect.y += offset.y; + + mDT->SetTransform(Matrix()); + mDT->DrawSurface(source, surfRect, sourceRect); + mDT->SetOpaqueRect(oldDT->GetOpaqueRect()); + + PushClipsToDT(mDT); + mDT->SetTransform(GetDTTransform()); + return; + } + } + PushGroup(content); +} + +already_AddRefed +gfxContext::PopGroup() +{ + if (mCairo) { + cairo_pattern_t *pat = cairo_pop_group(mCairo); + nsRefPtr wrapper = new gfxPattern(pat); + cairo_pattern_destroy(pat); + return wrapper.forget(); + } else { + RefPtr src = mDT->Snapshot(); + Point deviceOffset = CurrentState().deviceOffset; + + Restore(); + + Matrix mat = mTransform; + mat.Invert(); + + Matrix deviceOffsetTranslation; + deviceOffsetTranslation.Translate(deviceOffset.x, deviceOffset.y); + + nsRefPtr pat = new gfxPattern(src, deviceOffsetTranslation * mat); + + return pat.forget(); + } +} + +void +gfxContext::PopGroupToSource() +{ + if (mCairo) { + cairo_pop_group_to_source(mCairo); + } else { + RefPtr src = mDT->Snapshot(); + Point deviceOffset = CurrentState().deviceOffset; + Restore(); + CurrentState().sourceSurfCairo = nullptr; + CurrentState().sourceSurface = src; + CurrentState().sourceSurfaceDeviceOffset = deviceOffset; + CurrentState().pattern = nullptr; + CurrentState().patternTransformChanged = false; + + Matrix mat = mTransform; + mat.Invert(); + + Matrix deviceOffsetTranslation; + deviceOffsetTranslation.Translate(deviceOffset.x, deviceOffset.y); + CurrentState().surfTransform = deviceOffsetTranslation * mat; + } +} + +bool +gfxContext::PointInFill(const gfxPoint& pt) +{ + if (mCairo) { + return cairo_in_fill(mCairo, pt.x, pt.y); + } else { + EnsurePath(); + return mPath->ContainsPoint(ToPoint(pt), Matrix()); + } +} + +bool +gfxContext::PointInStroke(const gfxPoint& pt) +{ + if (mCairo) { + return cairo_in_stroke(mCairo, pt.x, pt.y); + } else { + EnsurePath(); + return mPath->StrokeContainsPoint(CurrentState().strokeOptions, + ToPoint(pt), + Matrix()); + } +} + +gfxRect +gfxContext::GetUserPathExtent() +{ + if (mCairo) { + double xmin, ymin, xmax, ymax; + cairo_path_extents(mCairo, &xmin, &ymin, &xmax, &ymax); + return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); + } else { + EnsurePath(); + return ThebesRect(mPath->GetBounds()); + } +} + +gfxRect +gfxContext::GetUserFillExtent() +{ + if (mCairo) { + double xmin, ymin, xmax, ymax; + cairo_fill_extents(mCairo, &xmin, &ymin, &xmax, &ymax); + return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); + } else { + EnsurePath(); + return ThebesRect(mPath->GetBounds()); + } +} + +gfxRect +gfxContext::GetUserStrokeExtent() +{ + if (mCairo) { + double xmin, ymin, xmax, ymax; + cairo_stroke_extents(mCairo, &xmin, &ymin, &xmax, &ymax); + return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); + } else { + EnsurePath(); + return ThebesRect(mPath->GetStrokedBounds(CurrentState().strokeOptions, mTransform)); + } +} + +bool +gfxContext::HasError() +{ + if (mCairo) { + return cairo_status(mCairo) != CAIRO_STATUS_SUCCESS; + } else { + // As far as this is concerned, an Azure context is never in error. + return false; + } +} + +void +gfxContext::RoundedRectangle(const gfxRect& rect, + const gfxCornerSizes& corners, + bool draw_clockwise) +{ + // + // For CW drawing, this looks like: + // + // ...******0** 1 C + // **** + // *** 2 + // ** + // * + // * + // 3 + // * + // * + // + // Where 0, 1, 2, 3 are the control points of the Bezier curve for + // the corner, and C is the actual corner point. + // + // At the start of the loop, the current point is assumed to be + // the point adjacent to the top left corner on the top + // horizontal. Note that corner indices start at the top left and + // continue clockwise, whereas in our loop i = 0 refers to the top + // right corner. + // + // When going CCW, the control points are swapped, and the first + // corner that's drawn is the top left (along with the top segment). + // + // There is considerable latitude in how one chooses the four + // control points for a Bezier curve approximation to an ellipse. + // For the overall path to be continuous and show no corner at the + // endpoints of the arc, points 0 and 3 must be at the ends of the + // straight segments of the rectangle; points 0, 1, and C must be + // collinear; and points 3, 2, and C must also be collinear. This + // leaves only two free parameters: the ratio of the line segments + // 01 and 0C, and the ratio of the line segments 32 and 3C. See + // the following papers for extensive discussion of how to choose + // these ratios: + // + // Dokken, Tor, et al. "Good approximation of circles by + // curvature-continuous Bezier curves." Computer-Aided + // Geometric Design 7(1990) 33--41. + // Goldapp, Michael. "Approximation of circular arcs by cubic + // polynomials." Computer-Aided Geometric Design 8(1991) 227--238. + // Maisonobe, Luc. "Drawing an elliptical arc using polylines, + // quadratic, or cubic Bezier curves." + // http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf + // + // We follow the approach in section 2 of Goldapp (least-error, + // Hermite-type approximation) and make both ratios equal to + // + // 2 2 + n - sqrt(2n + 28) + // alpha = - * --------------------- + // 3 n - 4 + // + // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ). + // + // This is the result of Goldapp's equation (10b) when the angle + // swept out by the arc is pi/2, and the parameter "a-bar" is the + // expression given immediately below equation (21). + // + // Using this value, the maximum radial error for a circle, as a + // fraction of the radius, is on the order of 0.2 x 10^-3. + // Neither Dokken nor Goldapp discusses error for a general + // ellipse; Maisonobe does, but his choice of control points + // follows different constraints, and Goldapp's expression for + // 'alpha' gives much smaller radial error, even for very flat + // ellipses, than Maisonobe's equivalent. + // + // For the various corners and for each axis, the sign of this + // constant changes, or it might be 0 -- it's multiplied by the + // appropriate multiplier from the list before using. + + if (mCairo) { + const gfxFloat alpha = 0.55191497064665766025; + + typedef struct { gfxFloat a, b; } twoFloats; + + twoFloats cwCornerMults[4] = { { -1, 0 }, + { 0, -1 }, + { +1, 0 }, + { 0, +1 } }; + twoFloats ccwCornerMults[4] = { { +1, 0 }, + { 0, -1 }, + { -1, 0 }, + { 0, +1 } }; + + twoFloats *cornerMults = draw_clockwise ? cwCornerMults : ccwCornerMults; + + gfxPoint pc, p0, p1, p2, p3; + + if (draw_clockwise) + cairo_move_to(mCairo, rect.X() + corners[NS_CORNER_TOP_LEFT].width, rect.Y()); + else + cairo_move_to(mCairo, rect.X() + rect.Width() - corners[NS_CORNER_TOP_RIGHT].width, rect.Y()); + + NS_FOR_CSS_CORNERS(i) { + // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) + mozilla::css::Corner c = mozilla::css::Corner(draw_clockwise ? ((i+1) % 4) : ((4-i) % 4)); + + // i+2 and i+3 respectively. These are used to index into the corner + // multiplier table, and were deduced by calculating out the long form + // of each corner and finding a pattern in the signs and values. + int i2 = (i+2) % 4; + int i3 = (i+3) % 4; + + pc = rect.AtCorner(c); + + if (corners[c].width > 0.0 && corners[c].height > 0.0) { + p0.x = pc.x + cornerMults[i].a * corners[c].width; + p0.y = pc.y + cornerMults[i].b * corners[c].height; + + p3.x = pc.x + cornerMults[i3].a * corners[c].width; + p3.y = pc.y + cornerMults[i3].b * corners[c].height; + + p1.x = p0.x + alpha * cornerMults[i2].a * corners[c].width; + p1.y = p0.y + alpha * cornerMults[i2].b * corners[c].height; + + p2.x = p3.x - alpha * cornerMults[i3].a * corners[c].width; + p2.y = p3.y - alpha * cornerMults[i3].b * corners[c].height; + + cairo_line_to (mCairo, p0.x, p0.y); + cairo_curve_to (mCairo, + p1.x, p1.y, + p2.x, p2.y, + p3.x, p3.y); + } else { + cairo_line_to (mCairo, pc.x, pc.y); + } + } + + cairo_close_path (mCairo); + } else { + EnsurePathBuilder(); + Size radii[] = { ToSize(corners[NS_CORNER_TOP_LEFT]), + ToSize(corners[NS_CORNER_TOP_RIGHT]), + ToSize(corners[NS_CORNER_BOTTOM_RIGHT]), + ToSize(corners[NS_CORNER_BOTTOM_LEFT]) }; + AppendRoundedRectToPath(mPathBuilder, ToRect(rect), radii, draw_clockwise); + } +} + +#ifdef MOZ_DUMP_PAINTING +void +gfxContext::WriteAsPNG(const char* aFile) +{ + nsRefPtr surf = CurrentSurface(); + if (surf) { + surf->WriteAsPNG(aFile); + } else { + NS_WARNING("No surface found!"); + } +} + +void +gfxContext::DumpAsDataURL() +{ + nsRefPtr surf = CurrentSurface(); + if (surf) { + surf->DumpAsDataURL(); + } else { + NS_WARNING("No surface found!"); + } +} + +void +gfxContext::CopyAsDataURL() +{ + nsRefPtr surf = CurrentSurface(); + if (surf) { + surf->CopyAsDataURL(); + } else { + NS_WARNING("No surface found!"); + } +} +#endif + +void +gfxContext::EnsurePath() +{ + if (mPathBuilder) { + mPath = mPathBuilder->Finish(); + mPathBuilder = nullptr; + } + + if (mPath) { + if (mTransformChanged) { + Matrix mat = mTransform; + mat.Invert(); + mat = mPathTransform * mat; + mPathBuilder = mPath->TransformedCopyToBuilder(mat, CurrentState().fillRule); + mPath = mPathBuilder->Finish(); + mPathBuilder = nullptr; + + mTransformChanged = false; + } + + if (CurrentState().fillRule == mPath->GetFillRule()) { + return; + } + + mPathBuilder = mPath->CopyToBuilder(CurrentState().fillRule); + + mPath = mPathBuilder->Finish(); + mPathBuilder = nullptr; + return; + } + + EnsurePathBuilder(); + mPath = mPathBuilder->Finish(); + mPathBuilder = nullptr; +} + +void +gfxContext::EnsurePathBuilder() +{ + if (mPathBuilder && !mTransformChanged) { + return; + } + + if (mPath) { + if (!mTransformChanged) { + mPathBuilder = mPath->CopyToBuilder(CurrentState().fillRule); + mPath = nullptr; + } else { + Matrix invTransform = mTransform; + invTransform.Invert(); + Matrix toNewUS = mPathTransform * invTransform; + mPathBuilder = mPath->TransformedCopyToBuilder(toNewUS, CurrentState().fillRule); + } + return; + } + + DebugOnly oldPath = mPathBuilder.get(); + + if (!mPathBuilder) { + mPathBuilder = mDT->CreatePathBuilder(CurrentState().fillRule); + + if (mPathIsRect) { + mPathBuilder->MoveTo(mRect.TopLeft()); + mPathBuilder->LineTo(mRect.TopRight()); + mPathBuilder->LineTo(mRect.BottomRight()); + mPathBuilder->LineTo(mRect.BottomLeft()); + mPathBuilder->Close(); + } + } + + if (mTransformChanged) { + // This could be an else if since this should never happen when + // mPathBuilder is nullptr and mPath is nullptr. But this way we can + // assert if all the state is as expected. + MOZ_ASSERT(oldPath); + MOZ_ASSERT(!mPathIsRect); + + Matrix invTransform = mTransform; + invTransform.Invert(); + Matrix toNewUS = mPathTransform * invTransform; + + RefPtr path = mPathBuilder->Finish(); + mPathBuilder = path->TransformedCopyToBuilder(toNewUS, CurrentState().fillRule); + } + + mPathIsRect = false; +} + +void +gfxContext::FillAzure(Float aOpacity) +{ + AzureState &state = CurrentState(); + + CompositionOp op = GetOp(); + + if (mPathIsRect) { + MOZ_ASSERT(!mTransformChanged); + + if (state.opIsClear) { + mDT->ClearRect(mRect); + } else if (op == CompositionOp::OP_SOURCE) { + // Emulate cairo operator source which is bound by mask! + mDT->ClearRect(mRect); + mDT->FillRect(mRect, GeneralPattern(this), DrawOptions(aOpacity)); + } else { + mDT->FillRect(mRect, GeneralPattern(this), DrawOptions(aOpacity, op, state.aaMode)); + } + } else { + EnsurePath(); + + NS_ASSERTION(!state.opIsClear, "We shouldn't be clearing complex paths!"); + + mDT->Fill(mPath, GeneralPattern(this), DrawOptions(aOpacity, op, state.aaMode)); + } +} + +void +gfxContext::PushClipsToDT(DrawTarget *aDT) +{ + // Tricky, we have to restore all clips -since the last time- the clip + // was reset. If we didn't reset the clip, just popping the clips we + // added was fine. + unsigned int lastReset = 0; + for (int i = mStateStack.Length() - 2; i > 0; i--) { + if (mStateStack[i].clipWasReset) { + lastReset = i; + break; + } + } + + // Don't need to save the old transform, we'll be setting a new one soon! + + // Push all clips from the last state on the stack where the clip was + // reset to the clip before ours. + for (unsigned int i = lastReset; i < mStateStack.Length() - 1; i++) { + for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { + aDT->SetTransform(mStateStack[i].pushedClips[c].transform * GetDeviceTransform()); + if (mStateStack[i].pushedClips[c].path) { + aDT->PushClip(mStateStack[i].pushedClips[c].path); + } else { + aDT->PushClipRect(mStateStack[i].pushedClips[c].rect); + } + } + } +} + +CompositionOp +gfxContext::GetOp() +{ + if (CurrentState().op != CompositionOp::OP_SOURCE) { + return CurrentState().op; + } + + AzureState &state = CurrentState(); + if (state.pattern) { + if (state.pattern->IsOpaque()) { + return CompositionOp::OP_OVER; + } else { + return CompositionOp::OP_SOURCE; + } + } else if (state.sourceSurface) { + if (state.sourceSurface->GetFormat() == SurfaceFormat::B8G8R8X8) { + return CompositionOp::OP_OVER; + } else { + return CompositionOp::OP_SOURCE; + } + } else { + if (state.color.a > 0.999) { + return CompositionOp::OP_OVER; + } else { + return CompositionOp::OP_SOURCE; + } + } +} + +/* SVG font code can change the transform after having set the pattern on the + * context. When the pattern is set it is in user space, if the transform is + * changed after doing so the pattern needs to be converted back into userspace. + * We just store the old pattern transform here so that we only do the work + * needed here if the pattern is actually used. + * We need to avoid doing this when this ChangeTransform comes from a restore, + * since the current pattern and the current transform are both part of the + * state we know the new CurrentState()'s values are valid. But if we assume + * a change they might become invalid since patternTransformChanged is part of + * the state and might be false for the restored AzureState. + */ +void +gfxContext::ChangeTransform(const Matrix &aNewMatrix, bool aUpdatePatternTransform) +{ + AzureState &state = CurrentState(); + + if (aUpdatePatternTransform && (state.pattern || state.sourceSurface) + && !state.patternTransformChanged) { + state.patternTransform = GetDTTransform(); + state.patternTransformChanged = true; + } + + if (mPathIsRect) { + Matrix invMatrix = aNewMatrix; + + invMatrix.Invert(); + + Matrix toNewUS = mTransform * invMatrix; + + if (toNewUS.IsRectilinear()) { + mRect = toNewUS.TransformBounds(mRect); + mRect.NudgeToIntegers(); + } else { + mPathBuilder = mDT->CreatePathBuilder(CurrentState().fillRule); + + mPathBuilder->MoveTo(toNewUS * mRect.TopLeft()); + mPathBuilder->LineTo(toNewUS * mRect.TopRight()); + mPathBuilder->LineTo(toNewUS * mRect.BottomRight()); + mPathBuilder->LineTo(toNewUS * mRect.BottomLeft()); + mPathBuilder->Close(); + + mPathIsRect = false; + } + + // No need to consider the transform changed now! + mTransformChanged = false; + } else if ((mPath || mPathBuilder) && !mTransformChanged) { + mTransformChanged = true; + mPathTransform = mTransform; + } + + mTransform = aNewMatrix; + + mDT->SetTransform(GetDTTransform()); +} + +Rect +gfxContext::GetAzureDeviceSpaceClipBounds() +{ + unsigned int lastReset = 0; + for (int i = mStateStack.Length() - 1; i > 0; i--) { + if (mStateStack[i].clipWasReset) { + lastReset = i; + break; + } + } + + Rect rect(CurrentState().deviceOffset.x, CurrentState().deviceOffset.y, + Float(mDT->GetSize().width), Float(mDT->GetSize().height)); + for (unsigned int i = lastReset; i < mStateStack.Length(); i++) { + for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { + AzureState::PushedClip &clip = mStateStack[i].pushedClips[c]; + if (clip.path) { + Rect bounds = clip.path->GetBounds(clip.transform); + rect.IntersectRect(rect, bounds); + } else { + rect.IntersectRect(rect, clip.transform.TransformBounds(clip.rect)); + } + } + } + + return rect; +} + +Point +gfxContext::GetDeviceOffset() const +{ + return CurrentState().deviceOffset; +} + +Matrix +gfxContext::GetDeviceTransform() const +{ + Matrix mat; + mat.Translate(-CurrentState().deviceOffset.x, -CurrentState().deviceOffset.y); + return mat; +} + +Matrix +gfxContext::GetDTTransform() const +{ + Matrix mat = mTransform; + mat._31 -= CurrentState().deviceOffset.x; + mat._32 -= CurrentState().deviceOffset.y; + return mat; +} + +void +gfxContext::PushNewDT(gfxContentType content) +{ + Rect clipBounds = GetAzureDeviceSpaceClipBounds(); + clipBounds.RoundOut(); + + clipBounds.width = std::max(1.0f, clipBounds.width); + clipBounds.height = std::max(1.0f, clipBounds.height); + + SurfaceFormat format = gfxPlatform::GetPlatform()->Optimal2DFormatForContent(content); + + RefPtr newDT = + mDT->CreateSimilarDrawTarget(IntSize(int32_t(clipBounds.width), int32_t(clipBounds.height)), + format); + + if (!newDT) { + NS_WARNING("Failed to create DrawTarget of sufficient size."); + newDT = mDT->CreateSimilarDrawTarget(IntSize(64, 64), format); + + if (!newDT) { + // If even this fails.. we're most likely just out of memory! + NS_ABORT_OOM(BytesPerPixel(format) * 64 * 64); + } + } + + Save(); + + CurrentState().drawTarget = newDT; + CurrentState().deviceOffset = clipBounds.TopLeft(); + + mDT = newDT; +} + +/** + * Work out whether cairo will snap inter-glyph spacing to pixels. + * + * Layout does not align text to pixel boundaries, so, with font drawing + * backends that snap glyph positions to pixels, it is important that + * inter-glyph spacing within words is always an integer number of pixels. + * This ensures that the drawing backend snaps all of the word's glyphs in the + * same direction and so inter-glyph spacing remains the same. + */ +void +gfxContext::GetRoundOffsetsToPixels(bool *aRoundX, bool *aRoundY) +{ + *aRoundX = false; + // Could do something fancy here for ScaleFactors of + // AxisAlignedTransforms, but we leave things simple. + // Not much point rounding if a matrix will mess things up anyway. + // Also return false for non-cairo contexts. + if (CurrentMatrix().HasNonTranslation() || mDT) { + *aRoundY = false; + return; + } + + // All raster backends snap glyphs to pixels vertically. + // Print backends set CAIRO_HINT_METRICS_OFF. + *aRoundY = true; + + cairo_t *cr = GetCairo(); + cairo_scaled_font_t *scaled_font = cairo_get_scaled_font(cr); + // Sometimes hint metrics gets set for us, most notably for printing. + cairo_font_options_t *font_options = cairo_font_options_create(); + cairo_scaled_font_get_font_options(scaled_font, font_options); + cairo_hint_metrics_t hint_metrics = + cairo_font_options_get_hint_metrics(font_options); + cairo_font_options_destroy(font_options); + + switch (hint_metrics) { + case CAIRO_HINT_METRICS_OFF: + *aRoundY = false; + return; + case CAIRO_HINT_METRICS_DEFAULT: + // Here we mimic what cairo surface/font backends do. Printing + // surfaces have already been handled by hint_metrics. The + // fallback show_glyphs implementation composites pixel-aligned + // glyph surfaces, so we just pick surface/font combinations that + // override this. + switch (cairo_scaled_font_get_type(scaled_font)) { +#if CAIRO_HAS_DWRITE_FONT // dwrite backend is not in std cairo releases yet + case CAIRO_FONT_TYPE_DWRITE: + // show_glyphs is implemented on the font and so is used for + // all surface types; however, it may pixel-snap depending on + // the dwrite rendering mode + if (!cairo_dwrite_scaled_font_get_force_GDI_classic(scaled_font) && + gfxWindowsPlatform::GetPlatform()->DWriteMeasuringMode() == + DWRITE_MEASURING_MODE_NATURAL) { + return; + } +#endif + case CAIRO_FONT_TYPE_QUARTZ: + // Quartz surfaces implement show_glyphs for Quartz fonts + if (cairo_surface_get_type(cairo_get_target(cr)) == + CAIRO_SURFACE_TYPE_QUARTZ) { + return; + } + default: + break; + } + // fall through: + case CAIRO_HINT_METRICS_ON: + break; + } + *aRoundX = true; + return; +}