diff -r 000000000000 -r 6474c204b198 intl/icu/source/common/dictbe.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/intl/icu/source/common/dictbe.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,1145 @@ +/** + ******************************************************************************* + * Copyright (C) 2006-2013, International Business Machines Corporation + * and others. All Rights Reserved. + ******************************************************************************* + */ + +#include "unicode/utypes.h" + +#if !UCONFIG_NO_BREAK_ITERATION + +#include "brkeng.h" +#include "dictbe.h" +#include "unicode/uniset.h" +#include "unicode/chariter.h" +#include "unicode/ubrk.h" +#include "uvector.h" +#include "uassert.h" +#include "unicode/normlzr.h" +#include "cmemory.h" +#include "dictionarydata.h" + +U_NAMESPACE_BEGIN + +/* + ****************************************************************** + */ + +DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) { + fTypes = breakTypes; +} + +DictionaryBreakEngine::~DictionaryBreakEngine() { +} + +UBool +DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const { + return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes) + && fSet.contains(c)); +} + +int32_t +DictionaryBreakEngine::findBreaks( UText *text, + int32_t startPos, + int32_t endPos, + UBool reverse, + int32_t breakType, + UStack &foundBreaks ) const { + int32_t result = 0; + + // Find the span of characters included in the set. + int32_t start = (int32_t)utext_getNativeIndex(text); + int32_t current; + int32_t rangeStart; + int32_t rangeEnd; + UChar32 c = utext_current32(text); + if (reverse) { + UBool isDict = fSet.contains(c); + while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) { + c = utext_previous32(text); + isDict = fSet.contains(c); + } + rangeStart = (current < startPos) ? startPos : current+(isDict ? 0 : 1); + rangeEnd = start + 1; + } + else { + while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { + utext_next32(text); // TODO: recast loop for postincrement + c = utext_current32(text); + } + rangeStart = start; + rangeEnd = current; + } + if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) { + result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); + utext_setNativeIndex(text, current); + } + + return result; +} + +void +DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { + fSet = set; + // Compact for caching + fSet.compact(); +} + +/* + ****************************************************************** + * PossibleWord + */ + +// Helper class for improving readability of the Thai/Lao/Khmer word break +// algorithm. The implementation is completely inline. + +// List size, limited by the maximum number of words in the dictionary +// that form a nested sequence. +#define POSSIBLE_WORD_LIST_MAX 20 + +class PossibleWord { +private: + // list of word candidate lengths, in increasing length order + int32_t lengths[POSSIBLE_WORD_LIST_MAX]; + int32_t count; // Count of candidates + int32_t prefix; // The longest match with a dictionary word + int32_t offset; // Offset in the text of these candidates + int mark; // The preferred candidate's offset + int current; // The candidate we're currently looking at + +public: + PossibleWord(); + ~PossibleWord(); + + // Fill the list of candidates if needed, select the longest, and return the number found + int candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); + + // Select the currently marked candidate, point after it in the text, and invalidate self + int32_t acceptMarked( UText *text ); + + // Back up from the current candidate to the next shorter one; return TRUE if that exists + // and point the text after it + UBool backUp( UText *text ); + + // Return the longest prefix this candidate location shares with a dictionary word + int32_t longestPrefix(); + + // Mark the current candidate as the one we like + void markCurrent(); +}; + +inline +PossibleWord::PossibleWord() { + offset = -1; +} + +inline +PossibleWord::~PossibleWord() { +} + +inline int +PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { + // TODO: If getIndex is too slow, use offset < 0 and add discardAll() + int32_t start = (int32_t)utext_getNativeIndex(text); + if (start != offset) { + offset = start; + prefix = dict->matches(text, rangeEnd-start, lengths, count, sizeof(lengths)/sizeof(lengths[0])); + // Dictionary leaves text after longest prefix, not longest word. Back up. + if (count <= 0) { + utext_setNativeIndex(text, start); + } + } + if (count > 0) { + utext_setNativeIndex(text, start+lengths[count-1]); + } + current = count-1; + mark = current; + return count; +} + +inline int32_t +PossibleWord::acceptMarked( UText *text ) { + utext_setNativeIndex(text, offset + lengths[mark]); + return lengths[mark]; +} + +inline UBool +PossibleWord::backUp( UText *text ) { + if (current > 0) { + utext_setNativeIndex(text, offset + lengths[--current]); + return TRUE; + } + return FALSE; +} + +inline int32_t +PossibleWord::longestPrefix() { + return prefix; +} + +inline void +PossibleWord::markCurrent() { + mark = current; +} + +/* + ****************************************************************** + * ThaiBreakEngine + */ + +// How many words in a row are "good enough"? +#define THAI_LOOKAHEAD 3 + +// Will not combine a non-word with a preceding dictionary word longer than this +#define THAI_ROOT_COMBINE_THRESHOLD 3 + +// Will not combine a non-word that shares at least this much prefix with a +// dictionary word, with a preceding word +#define THAI_PREFIX_COMBINE_THRESHOLD 3 + +// Ellision character +#define THAI_PAIYANNOI 0x0E2F + +// Repeat character +#define THAI_MAIYAMOK 0x0E46 + +// Minimum word size +#define THAI_MIN_WORD 2 + +// Minimum number of characters for two words +#define THAI_MIN_WORD_SPAN (THAI_MIN_WORD * 2) + +ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) + : DictionaryBreakEngine((1< 1) { + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + do { + int wordsMatched = 1; + if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { + if (wordsMatched < 2) { + // Followed by another dictionary word; mark first word as a good candidate + words[wordsFound%THAI_LOOKAHEAD].markCurrent(); + wordsMatched = 2; + } + + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + + // See if any of the possible second words is followed by a third word + do { + // If we find a third word, stop right away + if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { + words[wordsFound % THAI_LOOKAHEAD].markCurrent(); + goto foundBest; + } + } + while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); + } + } + while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); +foundBest: + wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); + wordsFound += 1; + } + + // We come here after having either found a word or not. We look ahead to the + // next word. If it's not a dictionary word, we will combine it withe the word we + // just found (if there is one), but only if the preceding word does not exceed + // the threshold. + // The text iterator should now be positioned at the end of the word we found. + if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < THAI_ROOT_COMBINE_THRESHOLD) { + // if it is a dictionary word, do nothing. If it isn't, then if there is + // no preceding word, or the non-word shares less than the minimum threshold + // of characters with a dictionary word, then scan to resynchronize + if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 + && (wordLength == 0 + || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { + // Look for a plausible word boundary + //TODO: This section will need a rework for UText. + int32_t remaining = rangeEnd - (current+wordLength); + UChar32 pc = utext_current32(text); + int32_t chars = 0; + for (;;) { + utext_next32(text); + uc = utext_current32(text); + // TODO: Here we're counting on the fact that the SA languages are all + // in the BMP. This should get fixed with the UText rework. + chars += 1; + if (--remaining <= 0) { + break; + } + if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { + // Maybe. See if it's in the dictionary. + // NOTE: In the original Apple code, checked that the next + // two characters after uc were not 0x0E4C THANTHAKHAT before + // checking the dictionary. That is just a performance filter, + // but it's not clear it's faster than checking the trie. + int candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + utext_setNativeIndex(text, current + wordLength + chars); + if (candidates > 0) { + break; + } + } + pc = uc; + } + + // Bump the word count if there wasn't already one + if (wordLength <= 0) { + wordsFound += 1; + } + + // Update the length with the passed-over characters + wordLength += chars; + } + else { + // Back up to where we were for next iteration + utext_setNativeIndex(text, current+wordLength); + } + } + + // Never stop before a combining mark. + int32_t currPos; + while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { + utext_next32(text); + wordLength += (int32_t)utext_getNativeIndex(text) - currPos; + } + + // Look ahead for possible suffixes if a dictionary word does not follow. + // We do this in code rather than using a rule so that the heuristic + // resynch continues to function. For example, one of the suffix characters + // could be a typo in the middle of a word. + if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { + if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 + && fSuffixSet.contains(uc = utext_current32(text))) { + if (uc == THAI_PAIYANNOI) { + if (!fSuffixSet.contains(utext_previous32(text))) { + // Skip over previous end and PAIYANNOI + utext_next32(text); + utext_next32(text); + wordLength += 1; // Add PAIYANNOI to word + uc = utext_current32(text); // Fetch next character + } + else { + // Restore prior position + utext_next32(text); + } + } + if (uc == THAI_MAIYAMOK) { + if (utext_previous32(text) != THAI_MAIYAMOK) { + // Skip over previous end and MAIYAMOK + utext_next32(text); + utext_next32(text); + wordLength += 1; // Add MAIYAMOK to word + } + else { + // Restore prior position + utext_next32(text); + } + } + } + else { + utext_setNativeIndex(text, current+wordLength); + } + } + + // Did we find a word on this iteration? If so, push it on the break stack + if (wordLength > 0) { + foundBreaks.push((current+wordLength), status); + } + } + + // Don't return a break for the end of the dictionary range if there is one there. + if (foundBreaks.peeki() >= rangeEnd) { + (void) foundBreaks.popi(); + wordsFound -= 1; + } + + return wordsFound; +} + +/* + ****************************************************************** + * LaoBreakEngine + */ + +// How many words in a row are "good enough"? +#define LAO_LOOKAHEAD 3 + +// Will not combine a non-word with a preceding dictionary word longer than this +#define LAO_ROOT_COMBINE_THRESHOLD 3 + +// Will not combine a non-word that shares at least this much prefix with a +// dictionary word, with a preceding word +#define LAO_PREFIX_COMBINE_THRESHOLD 3 + +// Minimum word size +#define LAO_MIN_WORD 2 + +// Minimum number of characters for two words +#define LAO_MIN_WORD_SPAN (LAO_MIN_WORD * 2) + +LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) + : DictionaryBreakEngine((1< 1) { + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + do { + int wordsMatched = 1; + if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { + if (wordsMatched < 2) { + // Followed by another dictionary word; mark first word as a good candidate + words[wordsFound%LAO_LOOKAHEAD].markCurrent(); + wordsMatched = 2; + } + + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + + // See if any of the possible second words is followed by a third word + do { + // If we find a third word, stop right away + if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { + words[wordsFound % LAO_LOOKAHEAD].markCurrent(); + goto foundBest; + } + } + while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); + } + } + while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); +foundBest: + wordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); + wordsFound += 1; + } + + // We come here after having either found a word or not. We look ahead to the + // next word. If it's not a dictionary word, we will combine it withe the word we + // just found (if there is one), but only if the preceding word does not exceed + // the threshold. + // The text iterator should now be positioned at the end of the word we found. + if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < LAO_ROOT_COMBINE_THRESHOLD) { + // if it is a dictionary word, do nothing. If it isn't, then if there is + // no preceding word, or the non-word shares less than the minimum threshold + // of characters with a dictionary word, then scan to resynchronize + if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 + && (wordLength == 0 + || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { + // Look for a plausible word boundary + //TODO: This section will need a rework for UText. + int32_t remaining = rangeEnd - (current+wordLength); + UChar32 pc = utext_current32(text); + int32_t chars = 0; + for (;;) { + utext_next32(text); + uc = utext_current32(text); + // TODO: Here we're counting on the fact that the SA languages are all + // in the BMP. This should get fixed with the UText rework. + chars += 1; + if (--remaining <= 0) { + break; + } + if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { + // Maybe. See if it's in the dictionary. + int candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + utext_setNativeIndex(text, current + wordLength + chars); + if (candidates > 0) { + break; + } + } + pc = uc; + } + + // Bump the word count if there wasn't already one + if (wordLength <= 0) { + wordsFound += 1; + } + + // Update the length with the passed-over characters + wordLength += chars; + } + else { + // Back up to where we were for next iteration + utext_setNativeIndex(text, current+wordLength); + } + } + + // Never stop before a combining mark. + int32_t currPos; + while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { + utext_next32(text); + wordLength += (int32_t)utext_getNativeIndex(text) - currPos; + } + + // Look ahead for possible suffixes if a dictionary word does not follow. + // We do this in code rather than using a rule so that the heuristic + // resynch continues to function. For example, one of the suffix characters + // could be a typo in the middle of a word. + // NOT CURRENTLY APPLICABLE TO LAO + + // Did we find a word on this iteration? If so, push it on the break stack + if (wordLength > 0) { + foundBreaks.push((current+wordLength), status); + } + } + + // Don't return a break for the end of the dictionary range if there is one there. + if (foundBreaks.peeki() >= rangeEnd) { + (void) foundBreaks.popi(); + wordsFound -= 1; + } + + return wordsFound; +} + +/* + ****************************************************************** + * KhmerBreakEngine + */ + +// How many words in a row are "good enough"? +#define KHMER_LOOKAHEAD 3 + +// Will not combine a non-word with a preceding dictionary word longer than this +#define KHMER_ROOT_COMBINE_THRESHOLD 3 + +// Will not combine a non-word that shares at least this much prefix with a +// dictionary word, with a preceding word +#define KHMER_PREFIX_COMBINE_THRESHOLD 3 + +// Minimum word size +#define KHMER_MIN_WORD 2 + +// Minimum number of characters for two words +#define KHMER_MIN_WORD_SPAN (KHMER_MIN_WORD * 2) + +KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) + : DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)), + fDictionary(adoptDictionary) +{ + fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status); + if (U_SUCCESS(status)) { + setCharacters(fKhmerWordSet); + } + fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status); + fMarkSet.add(0x0020); + fEndWordSet = fKhmerWordSet; + fBeginWordSet.add(0x1780, 0x17B3); + //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels + //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word + //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word + fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters + //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels +// fEndWordSet.remove(0x0E31); // MAI HAN-AKAT +// fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI +// fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK +// fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI +// fSuffixSet.add(THAI_PAIYANNOI); +// fSuffixSet.add(THAI_MAIYAMOK); + + // Compact for caching. + fMarkSet.compact(); + fEndWordSet.compact(); + fBeginWordSet.compact(); +// fSuffixSet.compact(); +} + +KhmerBreakEngine::~KhmerBreakEngine() { + delete fDictionary; +} + +int32_t +KhmerBreakEngine::divideUpDictionaryRange( UText *text, + int32_t rangeStart, + int32_t rangeEnd, + UStack &foundBreaks ) const { + if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { + return 0; // Not enough characters for two words + } + + uint32_t wordsFound = 0; + int32_t wordLength; + int32_t current; + UErrorCode status = U_ZERO_ERROR; + PossibleWord words[KHMER_LOOKAHEAD]; + UChar32 uc; + + utext_setNativeIndex(text, rangeStart); + + while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { + wordLength = 0; + + // Look for candidate words at the current position + int candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + + // If we found exactly one, use that + if (candidates == 1) { + wordLength = words[wordsFound%KHMER_LOOKAHEAD].acceptMarked(text); + wordsFound += 1; + } + + // If there was more than one, see which one can take us forward the most words + else if (candidates > 1) { + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + do { + int wordsMatched = 1; + if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { + if (wordsMatched < 2) { + // Followed by another dictionary word; mark first word as a good candidate + words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); + wordsMatched = 2; + } + + // If we're already at the end of the range, we're done + if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { + goto foundBest; + } + + // See if any of the possible second words is followed by a third word + do { + // If we find a third word, stop right away + if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { + words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); + goto foundBest; + } + } + while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); + } + } + while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); +foundBest: + wordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); + wordsFound += 1; + } + + // We come here after having either found a word or not. We look ahead to the + // next word. If it's not a dictionary word, we will combine it with the word we + // just found (if there is one), but only if the preceding word does not exceed + // the threshold. + // The text iterator should now be positioned at the end of the word we found. + if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < KHMER_ROOT_COMBINE_THRESHOLD) { + // if it is a dictionary word, do nothing. If it isn't, then if there is + // no preceding word, or the non-word shares less than the minimum threshold + // of characters with a dictionary word, then scan to resynchronize + if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 + && (wordLength == 0 + || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { + // Look for a plausible word boundary + //TODO: This section will need a rework for UText. + int32_t remaining = rangeEnd - (current+wordLength); + UChar32 pc = utext_current32(text); + int32_t chars = 0; + for (;;) { + utext_next32(text); + uc = utext_current32(text); + // TODO: Here we're counting on the fact that the SA languages are all + // in the BMP. This should get fixed with the UText rework. + chars += 1; + if (--remaining <= 0) { + break; + } + if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { + // Maybe. See if it's in the dictionary. + int candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); + utext_setNativeIndex(text, current+wordLength+chars); + if (candidates > 0) { + break; + } + } + pc = uc; + } + + // Bump the word count if there wasn't already one + if (wordLength <= 0) { + wordsFound += 1; + } + + // Update the length with the passed-over characters + wordLength += chars; + } + else { + // Back up to where we were for next iteration + utext_setNativeIndex(text, current+wordLength); + } + } + + // Never stop before a combining mark. + int32_t currPos; + while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { + utext_next32(text); + wordLength += (int32_t)utext_getNativeIndex(text) - currPos; + } + + // Look ahead for possible suffixes if a dictionary word does not follow. + // We do this in code rather than using a rule so that the heuristic + // resynch continues to function. For example, one of the suffix characters + // could be a typo in the middle of a word. +// if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { +// if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 +// && fSuffixSet.contains(uc = utext_current32(text))) { +// if (uc == KHMER_PAIYANNOI) { +// if (!fSuffixSet.contains(utext_previous32(text))) { +// // Skip over previous end and PAIYANNOI +// utext_next32(text); +// utext_next32(text); +// wordLength += 1; // Add PAIYANNOI to word +// uc = utext_current32(text); // Fetch next character +// } +// else { +// // Restore prior position +// utext_next32(text); +// } +// } +// if (uc == KHMER_MAIYAMOK) { +// if (utext_previous32(text) != KHMER_MAIYAMOK) { +// // Skip over previous end and MAIYAMOK +// utext_next32(text); +// utext_next32(text); +// wordLength += 1; // Add MAIYAMOK to word +// } +// else { +// // Restore prior position +// utext_next32(text); +// } +// } +// } +// else { +// utext_setNativeIndex(text, current+wordLength); +// } +// } + + // Did we find a word on this iteration? If so, push it on the break stack + if (wordLength > 0) { + foundBreaks.push((current+wordLength), status); + } + } + + // Don't return a break for the end of the dictionary range if there is one there. + if (foundBreaks.peeki() >= rangeEnd) { + (void) foundBreaks.popi(); + wordsFound -= 1; + } + + return wordsFound; +} + +#if !UCONFIG_NO_NORMALIZATION +/* + ****************************************************************** + * CjkBreakEngine + */ +static const uint32_t kuint32max = 0xFFFFFFFF; +CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) +: DictionaryBreakEngine(1 << UBRK_WORD), fDictionary(adoptDictionary) { + // Korean dictionary only includes Hangul syllables + fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status); + fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status); + fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status); + fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status); + + if (U_SUCCESS(status)) { + // handle Korean and Japanese/Chinese using different dictionaries + if (type == kKorean) { + setCharacters(fHangulWordSet); + } else { //Chinese and Japanese + UnicodeSet cjSet; + cjSet.addAll(fHanWordSet); + cjSet.addAll(fKatakanaWordSet); + cjSet.addAll(fHiraganaWordSet); + cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK + cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK + setCharacters(cjSet); + } + } +} + +CjkBreakEngine::~CjkBreakEngine(){ + delete fDictionary; +} + +// The katakanaCost values below are based on the length frequencies of all +// katakana phrases in the dictionary +static const int kMaxKatakanaLength = 8; +static const int kMaxKatakanaGroupLength = 20; +static const uint32_t maxSnlp = 255; + +static inline uint32_t getKatakanaCost(int wordLength){ + //TODO: fill array with actual values from dictionary! + static const uint32_t katakanaCost[kMaxKatakanaLength + 1] + = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; + return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; +} + +static inline bool isKatakana(uint16_t value) { + return (value >= 0x30A1u && value <= 0x30FEu && value != 0x30FBu) || + (value >= 0xFF66u && value <= 0xFF9fu); +} + +// A very simple helper class to streamline the buffer handling in +// divideUpDictionaryRange. +template +class AutoBuffer { +public: + AutoBuffer(size_t size) : buffer(stackBuffer), capacity(N) { + if (size > N) { + buffer = reinterpret_cast(uprv_malloc(sizeof(T)*size)); + capacity = size; + } + } + ~AutoBuffer() { + if (buffer != stackBuffer) + uprv_free(buffer); + } + + T* elems() { + return buffer; + } + + const T& operator[] (size_t i) const { + return buffer[i]; + } + + T& operator[] (size_t i) { + return buffer[i]; + } + + // resize without copy + void resize(size_t size) { + if (size <= capacity) + return; + if (buffer != stackBuffer) + uprv_free(buffer); + buffer = reinterpret_cast(uprv_malloc(sizeof(T)*size)); + capacity = size; + } + +private: + T stackBuffer[N]; + T* buffer; + AutoBuffer(); + size_t capacity; +}; + + +/* + * @param text A UText representing the text + * @param rangeStart The start of the range of dictionary characters + * @param rangeEnd The end of the range of dictionary characters + * @param foundBreaks Output of C array of int32_t break positions, or 0 + * @return The number of breaks found + */ +int32_t +CjkBreakEngine::divideUpDictionaryRange( UText *text, + int32_t rangeStart, + int32_t rangeEnd, + UStack &foundBreaks ) const { + if (rangeStart >= rangeEnd) { + return 0; + } + + const size_t defaultInputLength = 80; + size_t inputLength = rangeEnd - rangeStart; + // TODO: Replace by UnicodeString. + AutoBuffer charString(inputLength); + + // Normalize the input string and put it in normalizedText. + // The map from the indices of the normalized input to the raw + // input is kept in charPositions. + UErrorCode status = U_ZERO_ERROR; + utext_extract(text, rangeStart, rangeEnd, charString.elems(), inputLength, &status); + if (U_FAILURE(status)) { + return 0; + } + + UnicodeString inputString(charString.elems(), inputLength); + // TODO: Use Normalizer2. + UNormalizationMode norm_mode = UNORM_NFKC; + UBool isNormalized = + Normalizer::quickCheck(inputString, norm_mode, status) == UNORM_YES || + Normalizer::isNormalized(inputString, norm_mode, status); + + // TODO: Replace by UVector32. + AutoBuffer charPositions(inputLength + 1); + int numChars = 0; + UText normalizedText = UTEXT_INITIALIZER; + // Needs to be declared here because normalizedText holds onto its buffer. + UnicodeString normalizedString; + if (isNormalized) { + int32_t index = 0; + charPositions[0] = 0; + while(index < inputString.length()) { + index = inputString.moveIndex32(index, 1); + charPositions[++numChars] = index; + } + utext_openUnicodeString(&normalizedText, &inputString, &status); + } + else { + Normalizer::normalize(inputString, norm_mode, 0, normalizedString, status); + if (U_FAILURE(status)) { + return 0; + } + charPositions.resize(normalizedString.length() + 1); + Normalizer normalizer(charString.elems(), inputLength, norm_mode); + int32_t index = 0; + charPositions[0] = 0; + while(index < normalizer.endIndex()){ + /* UChar32 uc = */ normalizer.next(); + charPositions[++numChars] = index = normalizer.getIndex(); + } + utext_openUnicodeString(&normalizedText, &normalizedString, &status); + } + + if (U_FAILURE(status)) { + return 0; + } + + // From this point on, all the indices refer to the indices of + // the normalized input string. + + // bestSnlp[i] is the snlp of the best segmentation of the first i + // characters in the range to be matched. + // TODO: Replace by UVector32. + AutoBuffer bestSnlp(numChars + 1); + bestSnlp[0] = 0; + for(int i = 1; i <= numChars; i++) { + bestSnlp[i] = kuint32max; + } + + // prev[i] is the index of the last CJK character in the previous word in + // the best segmentation of the first i characters. + // TODO: Replace by UVector32. + AutoBuffer prev(numChars + 1); + for(int i = 0; i <= numChars; i++){ + prev[i] = -1; + } + + const size_t maxWordSize = 20; + // TODO: Replace both with UVector32. + AutoBuffer values(numChars); + AutoBuffer lengths(numChars); + + // Dynamic programming to find the best segmentation. + bool is_prev_katakana = false; + for (int32_t i = 0; i < numChars; ++i) { + //utext_setNativeIndex(text, rangeStart + i); + utext_setNativeIndex(&normalizedText, i); + if (bestSnlp[i] == kuint32max) + continue; + + int32_t count; + // limit maximum word length matched to size of current substring + int32_t maxSearchLength = (i + maxWordSize < (size_t) numChars)? maxWordSize : (numChars - i); + + fDictionary->matches(&normalizedText, maxSearchLength, lengths.elems(), count, maxSearchLength, values.elems()); + + // if there are no single character matches found in the dictionary + // starting with this charcter, treat character as a 1-character word + // with the highest value possible, i.e. the least likely to occur. + // Exclude Korean characters from this treatment, as they should be left + // together by default. + if((count == 0 || lengths[0] != 1) && + !fHangulWordSet.contains(utext_current32(&normalizedText))) { + values[count] = maxSnlp; + lengths[count++] = 1; + } + + for (int j = 0; j < count; j++) { + uint32_t newSnlp = bestSnlp[i] + values[j]; + if (newSnlp < bestSnlp[lengths[j] + i]) { + bestSnlp[lengths[j] + i] = newSnlp; + prev[lengths[j] + i] = i; + } + } + + // In Japanese, + // Katakana word in single character is pretty rare. So we apply + // the following heuristic to Katakana: any continuous run of Katakana + // characters is considered a candidate word with a default cost + // specified in the katakanaCost table according to its length. + //utext_setNativeIndex(text, rangeStart + i); + utext_setNativeIndex(&normalizedText, i); + bool is_katakana = isKatakana(utext_current32(&normalizedText)); + if (!is_prev_katakana && is_katakana) { + int j = i + 1; + utext_next32(&normalizedText); + // Find the end of the continuous run of Katakana characters + while (j < numChars && (j - i) < kMaxKatakanaGroupLength && + isKatakana(utext_current32(&normalizedText))) { + utext_next32(&normalizedText); + ++j; + } + if ((j - i) < kMaxKatakanaGroupLength) { + uint32_t newSnlp = bestSnlp[i] + getKatakanaCost(j - i); + if (newSnlp < bestSnlp[j]) { + bestSnlp[j] = newSnlp; + prev[j] = i; + } + } + } + is_prev_katakana = is_katakana; + } + + // Start pushing the optimal offset index into t_boundary (t for tentative). + // prev[numChars] is guaranteed to be meaningful. + // We'll first push in the reverse order, i.e., + // t_boundary[0] = numChars, and afterwards do a swap. + // TODO: Replace by UVector32. + AutoBuffer t_boundary(numChars + 1); + + int numBreaks = 0; + // No segmentation found, set boundary to end of range + if (bestSnlp[numChars] == kuint32max) { + t_boundary[numBreaks++] = numChars; + } else { + for (int i = numChars; i > 0; i = prev[i]) { + t_boundary[numBreaks++] = i; + } + U_ASSERT(prev[t_boundary[numBreaks - 1]] == 0); + } + + // Reverse offset index in t_boundary. + // Don't add a break for the start of the dictionary range if there is one + // there already. + if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { + t_boundary[numBreaks++] = 0; + } + + // Now that we're done, convert positions in t_bdry[] (indices in + // the normalized input string) back to indices in the raw input string + // while reversing t_bdry and pushing values to foundBreaks. + for (int i = numBreaks-1; i >= 0; i--) { + foundBreaks.push(charPositions[t_boundary[i]] + rangeStart, status); + } + + utext_close(&normalizedText); + return numBreaks; +} +#endif + +U_NAMESPACE_END + +#endif /* #if !UCONFIG_NO_BREAK_ITERATION */ +