diff -r 000000000000 -r 6474c204b198 js/public/RootingAPI.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/js/public/RootingAPI.h Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,1251 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- + * vim: set ts=8 sts=4 et sw=4 tw=99: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef js_RootingAPI_h +#define js_RootingAPI_h + +#include "mozilla/Attributes.h" +#include "mozilla/GuardObjects.h" +#include "mozilla/LinkedList.h" +#include "mozilla/NullPtr.h" +#include "mozilla/TypeTraits.h" + +#include "jspubtd.h" + +#include "js/TypeDecls.h" +#include "js/Utility.h" + +/* + * Moving GC Stack Rooting + * + * A moving GC may change the physical location of GC allocated things, even + * when they are rooted, updating all pointers to the thing to refer to its new + * location. The GC must therefore know about all live pointers to a thing, + * not just one of them, in order to behave correctly. + * + * The |Rooted| and |Handle| classes below are used to root stack locations + * whose value may be held live across a call that can trigger GC. For a + * code fragment such as: + * + * JSObject *obj = NewObject(cx); + * DoSomething(cx); + * ... = obj->lastProperty(); + * + * If |DoSomething()| can trigger a GC, the stack location of |obj| must be + * rooted to ensure that the GC does not move the JSObject referred to by + * |obj| without updating |obj|'s location itself. This rooting must happen + * regardless of whether there are other roots which ensure that the object + * itself will not be collected. + * + * If |DoSomething()| cannot trigger a GC, and the same holds for all other + * calls made between |obj|'s definitions and its last uses, then no rooting + * is required. + * + * SpiderMonkey can trigger a GC at almost any time and in ways that are not + * always clear. For example, the following innocuous-looking actions can + * cause a GC: allocation of any new GC thing; JSObject::hasProperty; + * JS_ReportError and friends; and ToNumber, among many others. The following + * dangerous-looking actions cannot trigger a GC: js_malloc, cx->malloc_, + * rt->malloc_, and friends and JS_ReportOutOfMemory. + * + * The following family of three classes will exactly root a stack location. + * Incorrect usage of these classes will result in a compile error in almost + * all cases. Therefore, it is very hard to be incorrectly rooted if you use + * these classes exclusively. These classes are all templated on the type T of + * the value being rooted. + * + * - Rooted declares a variable of type T, whose value is always rooted. + * Rooted may be automatically coerced to a Handle, below. Rooted + * should be used whenever a local variable's value may be held live across a + * call which can trigger a GC. + * + * - Handle is a const reference to a Rooted. Functions which take GC + * things or values as arguments and need to root those arguments should + * generally use handles for those arguments and avoid any explicit rooting. + * This has two benefits. First, when several such functions call each other + * then redundant rooting of multiple copies of the GC thing can be avoided. + * Second, if the caller does not pass a rooted value a compile error will be + * generated, which is quicker and easier to fix than when relying on a + * separate rooting analysis. + * + * - MutableHandle is a non-const reference to Rooted. It is used in the + * same way as Handle and includes a |set(const T &v)| method to allow + * updating the value of the referenced Rooted. A MutableHandle can be + * created from a Rooted by using |Rooted::operator&()|. + * + * In some cases the small performance overhead of exact rooting (measured to + * be a few nanoseconds on desktop) is too much. In these cases, try the + * following: + * + * - Move all Rooted above inner loops: this allows you to re-use the root + * on each iteration of the loop. + * + * - Pass Handle through your hot call stack to avoid re-rooting costs at + * every invocation. + * + * The following diagram explains the list of supported, implicit type + * conversions between classes of this family: + * + * Rooted ----> Handle + * | ^ + * | | + * | | + * +---> MutableHandle + * (via &) + * + * All of these types have an implicit conversion to raw pointers. + */ + +namespace js { + +class ScriptSourceObject; + +template +struct GCMethods {}; + +template +class RootedBase {}; + +template +class HandleBase {}; + +template +class MutableHandleBase {}; + +template +class HeapBase {}; + +/* + * js::NullPtr acts like a nullptr pointer in contexts that require a Handle. + * + * Handle provides an implicit constructor for js::NullPtr so that, given: + * foo(Handle h); + * callers can simply write: + * foo(js::NullPtr()); + * which avoids creating a Rooted just to pass nullptr. + * + * This is the SpiderMonkey internal variant. js::NullPtr should be used in + * preference to JS::NullPtr to avoid the GOT access required for JS_PUBLIC_API + * symbols. + */ +struct NullPtr +{ + static void * const constNullValue; +}; + +namespace gc { +struct Cell; +template +struct PersistentRootedMarker; +} /* namespace gc */ + +} /* namespace js */ + +namespace JS { + +template class Rooted; +template class PersistentRooted; + +/* This is exposing internal state of the GC for inlining purposes. */ +JS_FRIEND_API(bool) isGCEnabled(); + +/* + * JS::NullPtr acts like a nullptr pointer in contexts that require a Handle. + * + * Handle provides an implicit constructor for JS::NullPtr so that, given: + * foo(Handle h); + * callers can simply write: + * foo(JS::NullPtr()); + * which avoids creating a Rooted just to pass nullptr. + */ +struct JS_PUBLIC_API(NullPtr) +{ + static void * const constNullValue; +}; + +/* + * The Heap class is a heap-stored reference to a JS GC thing. All members of + * heap classes that refer to GC things should use Heap (or possibly + * TenuredHeap, described below). + * + * Heap is an abstraction that hides some of the complexity required to + * maintain GC invariants for the contained reference. It uses operator + * overloading to provide a normal pointer interface, but notifies the GC every + * time the value it contains is updated. This is necessary for generational GC, + * which keeps track of all pointers into the nursery. + * + * Heap instances must be traced when their containing object is traced to + * keep the pointed-to GC thing alive. + * + * Heap objects should only be used on the heap. GC references stored on the + * C/C++ stack must use Rooted/Handle/MutableHandle instead. + * + * Type T must be one of: JS::Value, jsid, JSObject*, JSString*, JSScript* + */ +template +class Heap : public js::HeapBase +{ + public: + Heap() { + static_assert(sizeof(T) == sizeof(Heap), + "Heap must be binary compatible with T."); + init(js::GCMethods::initial()); + } + explicit Heap(T p) { init(p); } + + /* + * For Heap, move semantics are equivalent to copy semantics. In C++, a + * copy constructor taking const-ref is the way to get a single function + * that will be used for both lvalue and rvalue copies, so we can simply + * omit the rvalue variant. + */ + explicit Heap(const Heap &p) { init(p.ptr); } + + ~Heap() { + if (js::GCMethods::needsPostBarrier(ptr)) + relocate(); + } + + bool operator==(const Heap &other) { return ptr == other.ptr; } + bool operator!=(const Heap &other) { return ptr != other.ptr; } + + bool operator==(const T &other) const { return ptr == other; } + bool operator!=(const T &other) const { return ptr != other; } + + operator T() const { return ptr; } + T operator->() const { return ptr; } + const T *address() const { return &ptr; } + const T &get() const { return ptr; } + + T *unsafeGet() { return &ptr; } + + Heap &operator=(T p) { + set(p); + return *this; + } + + Heap &operator=(const Heap& other) { + set(other.get()); + return *this; + } + + void set(T newPtr) { + MOZ_ASSERT(!js::GCMethods::poisoned(newPtr)); + if (js::GCMethods::needsPostBarrier(newPtr)) { + ptr = newPtr; + post(); + } else if (js::GCMethods::needsPostBarrier(ptr)) { + relocate(); /* Called before overwriting ptr. */ + ptr = newPtr; + } else { + ptr = newPtr; + } + } + + /* + * Set the pointer to a value which will cause a crash if it is + * dereferenced. + */ + void setToCrashOnTouch() { + ptr = reinterpret_cast(crashOnTouchPointer); + } + + bool isSetToCrashOnTouch() { + return ptr == crashOnTouchPointer; + } + + private: + void init(T newPtr) { + MOZ_ASSERT(!js::GCMethods::poisoned(newPtr)); + ptr = newPtr; + if (js::GCMethods::needsPostBarrier(ptr)) + post(); + } + + void post() { +#ifdef JSGC_GENERATIONAL + MOZ_ASSERT(js::GCMethods::needsPostBarrier(ptr)); + js::GCMethods::postBarrier(&ptr); +#endif + } + + void relocate() { +#ifdef JSGC_GENERATIONAL + js::GCMethods::relocate(&ptr); +#endif + } + + enum { + crashOnTouchPointer = 1 + }; + + T ptr; +}; + +#ifdef JS_DEBUG +/* + * For generational GC, assert that an object is in the tenured generation as + * opposed to being in the nursery. + */ +extern JS_FRIEND_API(void) +AssertGCThingMustBeTenured(JSObject* obj); +#else +inline void +AssertGCThingMustBeTenured(JSObject *obj) {} +#endif + +/* + * The TenuredHeap class is similar to the Heap class above in that it + * encapsulates the GC concerns of an on-heap reference to a JS object. However, + * it has two important differences: + * + * 1) Pointers which are statically known to only reference "tenured" objects + * can avoid the extra overhead of SpiderMonkey's write barriers. + * + * 2) Objects in the "tenured" heap have stronger alignment restrictions than + * those in the "nursery", so it is possible to store flags in the lower + * bits of pointers known to be tenured. TenuredHeap wraps a normal tagged + * pointer with a nice API for accessing the flag bits and adds various + * assertions to ensure that it is not mis-used. + * + * GC things are said to be "tenured" when they are located in the long-lived + * heap: e.g. they have gained tenure as an object by surviving past at least + * one GC. For performance, SpiderMonkey allocates some things which are known + * to normally be long lived directly into the tenured generation; for example, + * global objects. Additionally, SpiderMonkey does not visit individual objects + * when deleting non-tenured objects, so object with finalizers are also always + * tenured; for instance, this includes most DOM objects. + * + * The considerations to keep in mind when using a TenuredHeap vs a normal + * Heap are: + * + * - It is invalid for a TenuredHeap to refer to a non-tenured thing. + * - It is however valid for a Heap to refer to a tenured thing. + * - It is not possible to store flag bits in a Heap. + */ +template +class TenuredHeap : public js::HeapBase +{ + public: + TenuredHeap() : bits(0) { + static_assert(sizeof(T) == sizeof(TenuredHeap), + "TenuredHeap must be binary compatible with T."); + } + explicit TenuredHeap(T p) : bits(0) { setPtr(p); } + explicit TenuredHeap(const TenuredHeap &p) : bits(0) { setPtr(p.getPtr()); } + + bool operator==(const TenuredHeap &other) { return bits == other.bits; } + bool operator!=(const TenuredHeap &other) { return bits != other.bits; } + + void setPtr(T newPtr) { + MOZ_ASSERT((reinterpret_cast(newPtr) & flagsMask) == 0); + MOZ_ASSERT(!js::GCMethods::poisoned(newPtr)); + if (newPtr) + AssertGCThingMustBeTenured(newPtr); + bits = (bits & flagsMask) | reinterpret_cast(newPtr); + } + + void setFlags(uintptr_t flagsToSet) { + MOZ_ASSERT((flagsToSet & ~flagsMask) == 0); + bits |= flagsToSet; + } + + void unsetFlags(uintptr_t flagsToUnset) { + MOZ_ASSERT((flagsToUnset & ~flagsMask) == 0); + bits &= ~flagsToUnset; + } + + bool hasFlag(uintptr_t flag) const { + MOZ_ASSERT((flag & ~flagsMask) == 0); + return (bits & flag) != 0; + } + + T getPtr() const { return reinterpret_cast(bits & ~flagsMask); } + uintptr_t getFlags() const { return bits & flagsMask; } + + operator T() const { return getPtr(); } + T operator->() const { return getPtr(); } + + TenuredHeap &operator=(T p) { + setPtr(p); + return *this; + } + + TenuredHeap &operator=(const TenuredHeap& other) { + bits = other.bits; + return *this; + } + + private: + enum { + maskBits = 3, + flagsMask = (1 << maskBits) - 1, + }; + + uintptr_t bits; +}; + +/* + * Reference to a T that has been rooted elsewhere. This is most useful + * as a parameter type, which guarantees that the T lvalue is properly + * rooted. See "Move GC Stack Rooting" above. + * + * If you want to add additional methods to Handle for a specific + * specialization, define a HandleBase specialization containing them. + */ +template +class MOZ_NONHEAP_CLASS Handle : public js::HandleBase +{ + friend class JS::MutableHandle; + + public: + /* Creates a handle from a handle of a type convertible to T. */ + template + Handle(Handle handle, + typename mozilla::EnableIf::value, int>::Type dummy = 0) + { + static_assert(sizeof(Handle) == sizeof(T *), + "Handle must be binary compatible with T*."); + ptr = reinterpret_cast(handle.address()); + } + + /* Create a handle for a nullptr pointer. */ + Handle(js::NullPtr) { + static_assert(mozilla::IsPointer::value, + "js::NullPtr overload not valid for non-pointer types"); + ptr = reinterpret_cast(&js::NullPtr::constNullValue); + } + + /* Create a handle for a nullptr pointer. */ + Handle(JS::NullPtr) { + static_assert(mozilla::IsPointer::value, + "JS::NullPtr overload not valid for non-pointer types"); + ptr = reinterpret_cast(&JS::NullPtr::constNullValue); + } + + Handle(MutableHandle handle) { + ptr = handle.address(); + } + + /* + * Take care when calling this method! + * + * This creates a Handle from the raw location of a T. + * + * It should be called only if the following conditions hold: + * + * 1) the location of the T is guaranteed to be marked (for some reason + * other than being a Rooted), e.g., if it is guaranteed to be reachable + * from an implicit root. + * + * 2) the contents of the location are immutable, or at least cannot change + * for the lifetime of the handle, as its users may not expect its value + * to change underneath them. + */ + static MOZ_CONSTEXPR Handle fromMarkedLocation(const T *p) { + return Handle(p, DeliberatelyChoosingThisOverload, + ImUsingThisOnlyInFromFromMarkedLocation); + } + + /* + * Construct a handle from an explicitly rooted location. This is the + * normal way to create a handle, and normally happens implicitly. + */ + template + inline + Handle(const Rooted &root, + typename mozilla::EnableIf::value, int>::Type dummy = 0); + + template + inline + Handle(const PersistentRooted &root, + typename mozilla::EnableIf::value, int>::Type dummy = 0); + + /* Construct a read only handle from a mutable handle. */ + template + inline + Handle(MutableHandle &root, + typename mozilla::EnableIf::value, int>::Type dummy = 0); + + const T *address() const { return ptr; } + const T& get() const { return *ptr; } + + /* + * Return a reference so passing a Handle to something that + * takes a |const T&| is not a GC hazard. + */ + operator const T&() const { return get(); } + T operator->() const { return get(); } + + bool operator!=(const T &other) const { return *ptr != other; } + bool operator==(const T &other) const { return *ptr == other; } + + /* Change this handle to point to the same rooted location RHS does. */ + void repoint(const Handle &rhs) { ptr = rhs.address(); } + + private: + Handle() {} + + enum Disambiguator { DeliberatelyChoosingThisOverload = 42 }; + enum CallerIdentity { ImUsingThisOnlyInFromFromMarkedLocation = 17 }; + MOZ_CONSTEXPR Handle(const T *p, Disambiguator, CallerIdentity) : ptr(p) {} + + const T *ptr; + + template void operator=(S) MOZ_DELETE; + void operator=(Handle) MOZ_DELETE; +}; + +/* + * Similar to a handle, but the underlying storage can be changed. This is + * useful for outparams. + * + * If you want to add additional methods to MutableHandle for a specific + * specialization, define a MutableHandleBase specialization containing + * them. + */ +template +class MOZ_STACK_CLASS MutableHandle : public js::MutableHandleBase +{ + public: + inline MutableHandle(Rooted *root); + inline MutableHandle(PersistentRooted *root); + + private: + // Disallow true nullptr and emulated nullptr (gcc 4.4/4.5, __null, appears + // as int/long [32/64-bit]) for overloading purposes. + template + MutableHandle(N, + typename mozilla::EnableIf::value || + mozilla::IsSame::value || + mozilla::IsSame::value, + int>::Type dummy = 0) + MOZ_DELETE; + + public: + void set(T v) { + MOZ_ASSERT(!js::GCMethods::poisoned(v)); + *ptr = v; + } + + /* + * This may be called only if the location of the T is guaranteed + * to be marked (for some reason other than being a Rooted), + * e.g., if it is guaranteed to be reachable from an implicit root. + * + * Create a MutableHandle from a raw location of a T. + */ + static MutableHandle fromMarkedLocation(T *p) { + MutableHandle h; + h.ptr = p; + return h; + } + + T *address() const { return ptr; } + const T& get() const { return *ptr; } + + /* + * Return a reference so passing a MutableHandle to something that takes + * a |const T&| is not a GC hazard. + */ + operator const T&() const { return get(); } + T operator->() const { return get(); } + + private: + MutableHandle() {} + + T *ptr; + + template void operator=(S v) MOZ_DELETE; + void operator=(MutableHandle other) MOZ_DELETE; +}; + +#ifdef JSGC_GENERATIONAL +JS_FRIEND_API(void) HeapCellPostBarrier(js::gc::Cell **cellp); +JS_FRIEND_API(void) HeapCellRelocate(js::gc::Cell **cellp); +#endif + +} /* namespace JS */ + +namespace js { + +/* + * InternalHandle is a handle to an internal pointer into a gcthing. Use + * InternalHandle when you have a pointer to a direct field of a gcthing, or + * when you need a parameter type for something that *may* be a pointer to a + * direct field of a gcthing. + */ +template +class InternalHandle {}; + +template +class InternalHandle +{ + void * const *holder; + size_t offset; + + public: + /* + * Create an InternalHandle using a Handle to the gcthing containing the + * field in question, and a pointer to the field. + */ + template + InternalHandle(const JS::Handle &handle, T *field) + : holder((void**)handle.address()), offset(uintptr_t(field) - uintptr_t(handle.get())) + {} + + /* + * Create an InternalHandle to a field within a Rooted<>. + */ + template + InternalHandle(const JS::Rooted &root, T *field) + : holder((void**)root.address()), offset(uintptr_t(field) - uintptr_t(root.get())) + {} + + InternalHandle(const InternalHandle& other) + : holder(other.holder), offset(other.offset) {} + + T *get() const { return reinterpret_cast(uintptr_t(*holder) + offset); } + + const T &operator*() const { return *get(); } + T *operator->() const { return get(); } + + static InternalHandle fromMarkedLocation(T *fieldPtr) { + return InternalHandle(fieldPtr); + } + + private: + /* + * Create an InternalHandle to something that is not a pointer to a + * gcthing, and so does not need to be rooted in the first place. Use these + * InternalHandles to pass pointers into functions that also need to accept + * regular InternalHandles to gcthing fields. + * + * Make this private to prevent accidental misuse; this is only for + * fromMarkedLocation(). + */ + InternalHandle(T *field) + : holder(reinterpret_cast(&js::NullPtr::constNullValue)), + offset(uintptr_t(field)) + {} + + void operator=(InternalHandle other) MOZ_DELETE; +}; + +/* + * By default, pointers should use the inheritance hierarchy to find their + * ThingRootKind. Some pointer types are explicitly set in jspubtd.h so that + * Rooted may be used without the class definition being available. + */ +template +struct RootKind +{ + static ThingRootKind rootKind() { return T::rootKind(); } +}; + +template +struct GCMethods +{ + static T *initial() { return nullptr; } + static ThingRootKind kind() { return RootKind::rootKind(); } + static bool poisoned(T *v) { return JS::IsPoisonedPtr(v); } + static bool needsPostBarrier(T *v) { return false; } +#ifdef JSGC_GENERATIONAL + static void postBarrier(T **vp) {} + static void relocate(T **vp) {} +#endif +}; + +template <> +struct GCMethods +{ + static JSObject *initial() { return nullptr; } + static ThingRootKind kind() { return RootKind::rootKind(); } + static bool poisoned(JSObject *v) { return JS::IsPoisonedPtr(v); } + static bool needsPostBarrier(JSObject *v) { return v; } +#ifdef JSGC_GENERATIONAL + static void postBarrier(JSObject **vp) { + JS::HeapCellPostBarrier(reinterpret_cast(vp)); + } + static void relocate(JSObject **vp) { + JS::HeapCellRelocate(reinterpret_cast(vp)); + } +#endif +}; + +template <> +struct GCMethods +{ + static JSFunction *initial() { return nullptr; } + static ThingRootKind kind() { return RootKind::rootKind(); } + static bool poisoned(JSFunction *v) { return JS::IsPoisonedPtr(v); } + static bool needsPostBarrier(JSFunction *v) { return v; } +#ifdef JSGC_GENERATIONAL + static void postBarrier(JSFunction **vp) { + JS::HeapCellPostBarrier(reinterpret_cast(vp)); + } + static void relocate(JSFunction **vp) { + JS::HeapCellRelocate(reinterpret_cast(vp)); + } +#endif +}; + +#ifdef JS_DEBUG +/* This helper allows us to assert that Rooted is scoped within a request. */ +extern JS_PUBLIC_API(bool) +IsInRequest(JSContext *cx); +#endif + +} /* namespace js */ + +namespace JS { + +/* + * Local variable of type T whose value is always rooted. This is typically + * used for local variables, or for non-rooted values being passed to a + * function that requires a handle, e.g. Foo(Root(cx, x)). + * + * If you want to add additional methods to Rooted for a specific + * specialization, define a RootedBase specialization containing them. + */ +template +class MOZ_STACK_CLASS Rooted : public js::RootedBase +{ + /* Note: CX is a subclass of either ContextFriendFields or PerThreadDataFriendFields. */ + template + void init(CX *cx) { +#ifdef JSGC_TRACK_EXACT_ROOTS + js::ThingRootKind kind = js::GCMethods::kind(); + this->stack = &cx->thingGCRooters[kind]; + this->prev = *stack; + *stack = reinterpret_cast*>(this); + + MOZ_ASSERT(!js::GCMethods::poisoned(ptr)); +#endif + } + + public: + Rooted(JSContext *cx + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(js::GCMethods::initial()) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; +#ifdef JS_DEBUG + MOZ_ASSERT(js::IsInRequest(cx)); +#endif + init(js::ContextFriendFields::get(cx)); + } + + Rooted(JSContext *cx, T initial + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(initial) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; +#ifdef JS_DEBUG + MOZ_ASSERT(js::IsInRequest(cx)); +#endif + init(js::ContextFriendFields::get(cx)); + } + + Rooted(js::ContextFriendFields *cx + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(js::GCMethods::initial()) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + init(cx); + } + + Rooted(js::ContextFriendFields *cx, T initial + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(initial) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + init(cx); + } + + Rooted(js::PerThreadDataFriendFields *pt + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(js::GCMethods::initial()) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + init(pt); + } + + Rooted(js::PerThreadDataFriendFields *pt, T initial + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(initial) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + init(pt); + } + + Rooted(JSRuntime *rt + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(js::GCMethods::initial()) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + init(js::PerThreadDataFriendFields::getMainThread(rt)); + } + + Rooted(JSRuntime *rt, T initial + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(initial) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + init(js::PerThreadDataFriendFields::getMainThread(rt)); + } + + // Note that we need to let the compiler generate the default destructor in + // non-exact-rooting builds because of a bug in the instrumented PGO builds + // using MSVC, see bug 915735 for more details. +#ifdef JSGC_TRACK_EXACT_ROOTS + ~Rooted() { + MOZ_ASSERT(*stack == reinterpret_cast*>(this)); + *stack = prev; + } +#endif + +#ifdef JSGC_TRACK_EXACT_ROOTS + Rooted *previous() { return prev; } +#endif + + /* + * Important: Return a reference here so passing a Rooted to + * something that takes a |const T&| is not a GC hazard. + */ + operator const T&() const { return ptr; } + T operator->() const { return ptr; } + T *address() { return &ptr; } + const T *address() const { return &ptr; } + T &get() { return ptr; } + const T &get() const { return ptr; } + + T &operator=(T value) { + MOZ_ASSERT(!js::GCMethods::poisoned(value)); + ptr = value; + return ptr; + } + + T &operator=(const Rooted &value) { + ptr = value; + return ptr; + } + + void set(T value) { + MOZ_ASSERT(!js::GCMethods::poisoned(value)); + ptr = value; + } + + bool operator!=(const T &other) const { return ptr != other; } + bool operator==(const T &other) const { return ptr == other; } + + private: +#ifdef JSGC_TRACK_EXACT_ROOTS + Rooted **stack, *prev; +#endif + + /* + * |ptr| must be the last field in Rooted because the analysis treats all + * Rooted as Rooted during the analysis. See bug 829372. + */ + T ptr; + + MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER + + Rooted(const Rooted &) MOZ_DELETE; +}; + +} /* namespace JS */ + +namespace js { + +/* + * Augment the generic Rooted interface when T = JSObject* with + * class-querying and downcasting operations. + * + * Given a Rooted obj, one can view + * Handle h = obj.as(); + * as an optimization of + * Rooted rooted(cx, &obj->as()); + * Handle h = rooted; + */ +template <> +class RootedBase +{ + public: + template + JS::Handle as() const; +}; + + +/* + * RootedGeneric allows a class to instantiate its own Rooted type by + * including the following two methods: + * + * static inline js::ThingRootKind rootKind() { return js::THING_ROOT_CUSTOM; } + * void trace(JSTracer *trc); + * + * The trace() method must trace all of the class's fields. + * + * Implementation: + * + * RootedGeneric works by placing a pointer to its 'rooter' field into the + * usual list of rooters when it is instantiated. When marking, it backs up + * from this pointer to find a vtable containing a type-appropriate trace() + * method. + */ +template +class JS_PUBLIC_API(RootedGeneric) +{ + public: + JS::Rooted rooter; + + RootedGeneric(js::ContextFriendFields *cx) + : rooter(cx) + { + } + + RootedGeneric(js::ContextFriendFields *cx, const GCType &initial) + : rooter(cx, initial) + { + } + + virtual inline void trace(JSTracer *trc); + + operator const GCType&() const { return rooter.get(); } + GCType operator->() const { return rooter.get(); } +}; + +template +inline void RootedGeneric::trace(JSTracer *trc) +{ + rooter->trace(trc); +} + +// We will instantiate RootedGeneric in RootMarking.cpp, and MSVC will +// notice that void*s have no trace() method defined on them and complain (even +// though it's never called.) MSVC's complaint is not unreasonable, so +// specialize for void*. +template <> +inline void RootedGeneric::trace(JSTracer *trc) +{ + MOZ_ASSUME_UNREACHABLE("RootedGeneric::trace()"); +} + +/* Interface substitute for Rooted which does not root the variable's memory. */ +template +class FakeRooted : public RootedBase +{ + public: + template + FakeRooted(CX *cx + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(GCMethods::initial()) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + } + + template + FakeRooted(CX *cx, T initial + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : ptr(initial) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + } + + operator T() const { return ptr; } + T operator->() const { return ptr; } + T *address() { return &ptr; } + const T *address() const { return &ptr; } + T &get() { return ptr; } + const T &get() const { return ptr; } + + FakeRooted &operator=(T value) { + MOZ_ASSERT(!GCMethods::poisoned(value)); + ptr = value; + return *this; + } + + FakeRooted &operator=(const FakeRooted &other) { + MOZ_ASSERT(!GCMethods::poisoned(other.ptr)); + ptr = other.ptr; + return *this; + } + + bool operator!=(const T &other) const { return ptr != other; } + bool operator==(const T &other) const { return ptr == other; } + + private: + T ptr; + + MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER + + FakeRooted(const FakeRooted &) MOZ_DELETE; +}; + +/* Interface substitute for MutableHandle which is not required to point to rooted memory. */ +template +class FakeMutableHandle : public js::MutableHandleBase +{ + public: + FakeMutableHandle(T *t) { + ptr = t; + } + + FakeMutableHandle(FakeRooted *root) { + ptr = root->address(); + } + + void set(T v) { + MOZ_ASSERT(!js::GCMethods::poisoned(v)); + *ptr = v; + } + + T *address() const { return ptr; } + T get() const { return *ptr; } + + operator T() const { return get(); } + T operator->() const { return get(); } + + private: + FakeMutableHandle() {} + + T *ptr; + + template + void operator=(S v) MOZ_DELETE; + + void operator=(const FakeMutableHandle& other) MOZ_DELETE; +}; + +/* + * Types for a variable that either should or shouldn't be rooted, depending on + * the template parameter allowGC. Used for implementing functions that can + * operate on either rooted or unrooted data. + * + * The toHandle() and toMutableHandle() functions are for calling functions + * which require handle types and are only called in the CanGC case. These + * allow the calling code to type check. + */ +enum AllowGC { + NoGC = 0, + CanGC = 1 +}; +template +class MaybeRooted +{ +}; + +template class MaybeRooted +{ + public: + typedef JS::Handle HandleType; + typedef JS::Rooted RootType; + typedef JS::MutableHandle MutableHandleType; + + static inline JS::Handle toHandle(HandleType v) { + return v; + } + + static inline JS::MutableHandle toMutableHandle(MutableHandleType v) { + return v; + } +}; + +template class MaybeRooted +{ + public: + typedef T HandleType; + typedef FakeRooted RootType; + typedef FakeMutableHandle MutableHandleType; + + static inline JS::Handle toHandle(HandleType v) { + MOZ_ASSUME_UNREACHABLE("Bad conversion"); + } + + static inline JS::MutableHandle toMutableHandle(MutableHandleType v) { + MOZ_ASSUME_UNREACHABLE("Bad conversion"); + } +}; + +} /* namespace js */ + +namespace JS { + +template template +inline +Handle::Handle(const Rooted &root, + typename mozilla::EnableIf::value, int>::Type dummy) +{ + ptr = reinterpret_cast(root.address()); +} + +template template +inline +Handle::Handle(const PersistentRooted &root, + typename mozilla::EnableIf::value, int>::Type dummy) +{ + ptr = reinterpret_cast(root.address()); +} + +template template +inline +Handle::Handle(MutableHandle &root, + typename mozilla::EnableIf::value, int>::Type dummy) +{ + ptr = reinterpret_cast(root.address()); +} + +template +inline +MutableHandle::MutableHandle(Rooted *root) +{ + static_assert(sizeof(MutableHandle) == sizeof(T *), + "MutableHandle must be binary compatible with T*."); + ptr = root->address(); +} + +template +inline +MutableHandle::MutableHandle(PersistentRooted *root) +{ + static_assert(sizeof(MutableHandle) == sizeof(T *), + "MutableHandle must be binary compatible with T*."); + ptr = root->address(); +} + +/* + * A copyable, assignable global GC root type with arbitrary lifetime, an + * infallible constructor, and automatic unrooting on destruction. + * + * These roots can be used in heap-allocated data structures, so they are not + * associated with any particular JSContext or stack. They are registered with + * the JSRuntime itself, without locking, so they require a full JSContext to be + * constructed, not one of its more restricted superclasses. + * + * Note that you must not use an PersistentRooted in an object owned by a JS + * object: + * + * Whenever one object whose lifetime is decided by the GC refers to another + * such object, that edge must be traced only if the owning JS object is traced. + * This applies not only to JS objects (which obviously are managed by the GC) + * but also to C++ objects owned by JS objects. + * + * If you put a PersistentRooted in such a C++ object, that is almost certainly + * a leak. When a GC begins, the referent of the PersistentRooted is treated as + * live, unconditionally (because a PersistentRooted is a *root*), even if the + * JS object that owns it is unreachable. If there is any path from that + * referent back to the JS object, then the C++ object containing the + * PersistentRooted will not be destructed, and the whole blob of objects will + * not be freed, even if there are no references to them from the outside. + * + * In the context of Firefox, this is a severe restriction: almost everything in + * Firefox is owned by some JS object or another, so using PersistentRooted in + * such objects would introduce leaks. For these kinds of edges, Heap or + * TenuredHeap would be better types. It's up to the implementor of the type + * containing Heap or TenuredHeap members to make sure their referents get + * marked when the object itself is marked. + */ +template +class PersistentRooted : private mozilla::LinkedListElement > { + friend class mozilla::LinkedList; + friend class mozilla::LinkedListElement; + + friend class js::gc::PersistentRootedMarker; + + void registerWithRuntime(JSRuntime *rt) { + JS::shadow::Runtime *srt = JS::shadow::Runtime::asShadowRuntime(rt); + srt->getPersistentRootedList().insertBack(this); + } + + public: + PersistentRooted(JSContext *cx) : ptr(js::GCMethods::initial()) + { + registerWithRuntime(js::GetRuntime(cx)); + } + + PersistentRooted(JSContext *cx, T initial) : ptr(initial) + { + registerWithRuntime(js::GetRuntime(cx)); + } + + PersistentRooted(JSRuntime *rt) : ptr(js::GCMethods::initial()) + { + registerWithRuntime(rt); + } + + PersistentRooted(JSRuntime *rt, T initial) : ptr(initial) + { + registerWithRuntime(rt); + } + + PersistentRooted(PersistentRooted &rhs) : ptr(rhs.ptr) + { + /* + * Copy construction takes advantage of the fact that the original + * is already inserted, and simply adds itself to whatever list the + * original was on - no JSRuntime pointer needed. + */ + rhs.setNext(this); + } + + /* + * Important: Return a reference here so passing a Rooted to + * something that takes a |const T&| is not a GC hazard. + */ + operator const T&() const { return ptr; } + T operator->() const { return ptr; } + T *address() { return &ptr; } + const T *address() const { return &ptr; } + T &get() { return ptr; } + const T &get() const { return ptr; } + + T &operator=(T value) { + MOZ_ASSERT(!js::GCMethods::poisoned(value)); + ptr = value; + return ptr; + } + + T &operator=(const PersistentRooted &value) { + ptr = value; + return ptr; + } + + void set(T value) { + MOZ_ASSERT(!js::GCMethods::poisoned(value)); + ptr = value; + } + + bool operator!=(const T &other) const { return ptr != other; } + bool operator==(const T &other) const { return ptr == other; } + + private: + T ptr; +}; + +} /* namespace JS */ + +namespace js { + +/* Base class for automatic read-only object rooting during compilation. */ +class CompilerRootNode +{ + protected: + CompilerRootNode(js::gc::Cell *ptr) : next(nullptr), ptr_(ptr) {} + + public: + void **address() { return (void **)&ptr_; } + + public: + CompilerRootNode *next; + + protected: + js::gc::Cell *ptr_; +}; + +} /* namespace js */ + +#endif /* js_RootingAPI_h */