diff -r 000000000000 -r 6474c204b198 js/src/jsmath.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/js/src/jsmath.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,1509 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- + * vim: set ts=8 sts=4 et sw=4 tw=99: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* + * JS math package. + */ + +#include "jsmath.h" + +#include "mozilla/Constants.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/MemoryReporting.h" + +#include // for std::max +#include + +#ifdef XP_UNIX +# include +#endif + +#include "jsapi.h" +#include "jsatom.h" +#include "jscntxt.h" +#include "jscompartment.h" +#include "jslibmath.h" +#include "jstypes.h" +#include "prmjtime.h" + +#include "jsobjinlines.h" + +using namespace js; + +using mozilla::Abs; +using mozilla::NumberEqualsInt32; +using mozilla::NumberIsInt32; +using mozilla::ExponentComponent; +using mozilla::FloatingPoint; +using mozilla::IsFinite; +using mozilla::IsInfinite; +using mozilla::IsNaN; +using mozilla::IsNegative; +using mozilla::IsNegativeZero; +using mozilla::PositiveInfinity; +using mozilla::NegativeInfinity; +using JS::ToNumber; +using JS::GenericNaN; + +static const JSConstDoubleSpec math_constants[] = { + {M_E, "E", 0, {0,0,0}}, + {M_LOG2E, "LOG2E", 0, {0,0,0}}, + {M_LOG10E, "LOG10E", 0, {0,0,0}}, + {M_LN2, "LN2", 0, {0,0,0}}, + {M_LN10, "LN10", 0, {0,0,0}}, + {M_PI, "PI", 0, {0,0,0}}, + {M_SQRT2, "SQRT2", 0, {0,0,0}}, + {M_SQRT1_2, "SQRT1_2", 0, {0,0,0}}, + {0,0,0,{0,0,0}} +}; + +MathCache::MathCache() { + memset(table, 0, sizeof(table)); + + /* See comments in lookup(). */ + JS_ASSERT(IsNegativeZero(-0.0)); + JS_ASSERT(!IsNegativeZero(+0.0)); + JS_ASSERT(hash(-0.0) != hash(+0.0)); +} + +size_t +MathCache::sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) +{ + return mallocSizeOf(this); +} + +const Class js::MathClass = { + js_Math_str, + JSCLASS_HAS_CACHED_PROTO(JSProto_Math), + JS_PropertyStub, /* addProperty */ + JS_DeletePropertyStub, /* delProperty */ + JS_PropertyStub, /* getProperty */ + JS_StrictPropertyStub, /* setProperty */ + JS_EnumerateStub, + JS_ResolveStub, + JS_ConvertStub +}; + +bool +js_math_abs(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + double z = Abs(x); + args.rval().setNumber(z); + return true; +} + +#if defined(SOLARIS) && defined(__GNUC__) +#define ACOS_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN(); +#else +#define ACOS_IF_OUT_OF_RANGE(x) +#endif + +double +js::math_acos_impl(MathCache *cache, double x) +{ + ACOS_IF_OUT_OF_RANGE(x); + return cache->lookup(acos, x); +} + +double +js::math_acos_uncached(double x) +{ + ACOS_IF_OUT_OF_RANGE(x); + return acos(x); +} + +#undef ACOS_IF_OUT_OF_RANGE + +bool +js::math_acos(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + + double z = math_acos_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +#if defined(SOLARIS) && defined(__GNUC__) +#define ASIN_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN(); +#else +#define ASIN_IF_OUT_OF_RANGE(x) +#endif + +double +js::math_asin_impl(MathCache *cache, double x) +{ + ASIN_IF_OUT_OF_RANGE(x); + return cache->lookup(asin, x); +} + +double +js::math_asin_uncached(double x) +{ + ASIN_IF_OUT_OF_RANGE(x); + return asin(x); +} + +#undef ASIN_IF_OUT_OF_RANGE + +bool +js::math_asin(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + + double z = math_asin_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +double +js::math_atan_impl(MathCache *cache, double x) +{ + return cache->lookup(atan, x); +} + +double +js::math_atan_uncached(double x) +{ + return atan(x); +} + +bool +js::math_atan(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + + double z = math_atan_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +double +js::ecmaAtan2(double y, double x) +{ +#if defined(_MSC_VER) + /* + * MSVC's atan2 does not yield the result demanded by ECMA when both x + * and y are infinite. + * - The result is a multiple of pi/4. + * - The sign of y determines the sign of the result. + * - The sign of x determines the multiplicator, 1 or 3. + */ + if (IsInfinite(y) && IsInfinite(x)) { + double z = js_copysign(M_PI / 4, y); + if (x < 0) + z *= 3; + return z; + } +#endif + +#if defined(SOLARIS) && defined(__GNUC__) + if (y == 0) { + if (IsNegativeZero(x)) + return js_copysign(M_PI, y); + if (x == 0) + return y; + } +#endif + return atan2(y, x); +} + +bool +js::math_atan2(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + double y; + if (!ToNumber(cx, args.get(0), &y)) + return false; + + double x; + if (!ToNumber(cx, args.get(1), &x)) + return false; + + double z = ecmaAtan2(y, x); + args.rval().setDouble(z); + return true; +} + +double +js::math_ceil_impl(double x) +{ +#ifdef __APPLE__ + if (x < 0 && x > -1.0) + return js_copysign(0, -1); +#endif + return ceil(x); +} + +bool +js::math_ceil(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + double z = math_ceil_impl(x); + args.rval().setNumber(z); + return true; +} + +bool +js::math_clz32(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setInt32(32); + return true; + } + + uint32_t n; + if (!ToUint32(cx, args[0], &n)) + return false; + + if (n == 0) { + args.rval().setInt32(32); + return true; + } + + args.rval().setInt32(mozilla::CountLeadingZeroes32(n)); + return true; +} + +double +js::math_cos_impl(MathCache *cache, double x) +{ + return cache->lookup(cos, x); +} + +double +js::math_cos_uncached(double x) +{ + return cos(x); +} + +bool +js::math_cos(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + + double z = math_cos_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +#ifdef _WIN32 +#define EXP_IF_OUT_OF_RANGE(x) \ + if (!IsNaN(x)) { \ + if (x == PositiveInfinity()) \ + return PositiveInfinity(); \ + if (x == NegativeInfinity()) \ + return 0.0; \ + } +#else +#define EXP_IF_OUT_OF_RANGE(x) +#endif + +double +js::math_exp_impl(MathCache *cache, double x) +{ + EXP_IF_OUT_OF_RANGE(x); + return cache->lookup(exp, x); +} + +double +js::math_exp_uncached(double x) +{ + EXP_IF_OUT_OF_RANGE(x); + return exp(x); +} + +#undef EXP_IF_OUT_OF_RANGE + +bool +js::math_exp(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + + double z = math_exp_impl(mathCache, x); + args.rval().setNumber(z); + return true; +} + +double +js::math_floor_impl(double x) +{ + return floor(x); +} + +bool +js::math_floor(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + double z = math_floor_impl(x); + args.rval().setNumber(z); + return true; +} + +bool +js::math_imul(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + uint32_t a = 0, b = 0; + if (args.hasDefined(0) && !ToUint32(cx, args[0], &a)) + return false; + if (args.hasDefined(1) && !ToUint32(cx, args[1], &b)) + return false; + + uint32_t product = a * b; + args.rval().setInt32(product > INT32_MAX + ? int32_t(INT32_MIN + (product - INT32_MAX - 1)) + : int32_t(product)); + return true; +} + +// Implements Math.fround (20.2.2.16) up to step 3 +bool +js::RoundFloat32(JSContext *cx, Handle v, float *out) +{ + double d; + bool success = ToNumber(cx, v, &d); + *out = static_cast(d); + return success; +} + +bool +js::math_fround(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + float f; + if (!RoundFloat32(cx, args[0], &f)) + return false; + + args.rval().setDouble(static_cast(f)); + return true; +} + +#if defined(SOLARIS) && defined(__GNUC__) +#define LOG_IF_OUT_OF_RANGE(x) if (x < 0) return GenericNaN(); +#else +#define LOG_IF_OUT_OF_RANGE(x) +#endif + +double +js::math_log_impl(MathCache *cache, double x) +{ + LOG_IF_OUT_OF_RANGE(x); + return cache->lookup(log, x); +} + +double +js::math_log_uncached(double x) +{ + LOG_IF_OUT_OF_RANGE(x); + return log(x); +} + +#undef LOG_IF_OUT_OF_RANGE + +bool +js::math_log(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + + double z = math_log_impl(mathCache, x); + args.rval().setNumber(z); + return true; +} + +bool +js_math_max(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + double maxval = NegativeInfinity(); + for (unsigned i = 0; i < args.length(); i++) { + double x; + if (!ToNumber(cx, args[i], &x)) + return false; + // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0 + if (x > maxval || IsNaN(x) || (x == maxval && IsNegative(maxval))) + maxval = x; + } + args.rval().setNumber(maxval); + return true; +} + +bool +js_math_min(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + double minval = PositiveInfinity(); + for (unsigned i = 0; i < args.length(); i++) { + double x; + if (!ToNumber(cx, args[i], &x)) + return false; + // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0 + if (x < minval || IsNaN(x) || (x == minval && IsNegativeZero(x))) + minval = x; + } + args.rval().setNumber(minval); + return true; +} + +// Disable PGO for Math.pow() and related functions (see bug 791214). +#if defined(_MSC_VER) +# pragma optimize("g", off) +#endif +double +js::powi(double x, int y) +{ + unsigned n = (y < 0) ? -y : y; + double m = x; + double p = 1; + while (true) { + if ((n & 1) != 0) p *= m; + n >>= 1; + if (n == 0) { + if (y < 0) { + // Unfortunately, we have to be careful when p has reached + // infinity in the computation, because sometimes the higher + // internal precision in the pow() implementation would have + // given us a finite p. This happens very rarely. + + double result = 1.0 / p; + return (result == 0 && IsInfinite(p)) + ? pow(x, static_cast(y)) // Avoid pow(double, int). + : result; + } + + return p; + } + m *= m; + } +} +#if defined(_MSC_VER) +# pragma optimize("", on) +#endif + +// Disable PGO for Math.pow() and related functions (see bug 791214). +#if defined(_MSC_VER) +# pragma optimize("g", off) +#endif +double +js::ecmaPow(double x, double y) +{ + /* + * Use powi if the exponent is an integer-valued double. We don't have to + * check for NaN since a comparison with NaN is always false. + */ + int32_t yi; + if (NumberEqualsInt32(y, &yi)) + return powi(x, yi); + + /* + * Because C99 and ECMA specify different behavior for pow(), + * we need to wrap the libm call to make it ECMA compliant. + */ + if (!IsFinite(y) && (x == 1.0 || x == -1.0)) + return GenericNaN(); + + /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */ + if (y == 0) + return 1; + + /* + * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) + * when x = -0.0, so we have to guard for this. + */ + if (IsFinite(x) && x != 0.0) { + if (y == 0.5) + return sqrt(x); + if (y == -0.5) + return 1.0 / sqrt(x); + } + return pow(x, y); +} +#if defined(_MSC_VER) +# pragma optimize("", on) +#endif + +// Disable PGO for Math.pow() and related functions (see bug 791214). +#if defined(_MSC_VER) +# pragma optimize("g", off) +#endif +bool +js_math_pow(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + double x; + if (!ToNumber(cx, args.get(0), &x)) + return false; + + double y; + if (!ToNumber(cx, args.get(1), &y)) + return false; + + double z = ecmaPow(x, y); + args.rval().setNumber(z); + return true; +} +#if defined(_MSC_VER) +# pragma optimize("", on) +#endif + +static uint64_t +random_generateSeed() +{ + union { + uint8_t u8[8]; + uint32_t u32[2]; + uint64_t u64; + } seed; + seed.u64 = 0; + +#if defined(XP_WIN) + /* + * Our PRNG only uses 48 bits, so calling rand_s() twice to get 64 bits is + * probably overkill. + */ + rand_s(&seed.u32[0]); +#elif defined(XP_UNIX) + /* + * In the unlikely event we can't read /dev/urandom, there's not much we can + * do, so just mix in the fd error code and the current time. + */ + int fd = open("/dev/urandom", O_RDONLY); + MOZ_ASSERT(fd >= 0, "Can't open /dev/urandom"); + if (fd >= 0) { + read(fd, seed.u8, mozilla::ArrayLength(seed.u8)); + close(fd); + } + seed.u32[0] ^= fd; +#else +# error "Platform needs to implement random_generateSeed()" +#endif + + seed.u32[1] ^= PRMJ_Now(); + return seed.u64; +} + +static const uint64_t RNG_MULTIPLIER = 0x5DEECE66DLL; +static const uint64_t RNG_ADDEND = 0xBLL; +static const uint64_t RNG_MASK = (1LL << 48) - 1; +static const double RNG_DSCALE = double(1LL << 53); + +/* + * Math.random() support, lifted from java.util.Random.java. + */ +static void +random_initState(uint64_t *rngState) +{ + /* Our PRNG only uses 48 bits, so squeeze our entropy into those bits. */ + uint64_t seed = random_generateSeed(); + seed ^= (seed >> 16); + *rngState = (seed ^ RNG_MULTIPLIER) & RNG_MASK; +} + +uint64_t +random_next(uint64_t *rngState, int bits) +{ + MOZ_ASSERT((*rngState & 0xffff000000000000ULL) == 0, "Bad rngState"); + MOZ_ASSERT(bits > 0 && bits <= 48, "bits is out of range"); + + if (*rngState == 0) { + random_initState(rngState); + } + + uint64_t nextstate = *rngState * RNG_MULTIPLIER; + nextstate += RNG_ADDEND; + nextstate &= RNG_MASK; + *rngState = nextstate; + return nextstate >> (48 - bits); +} + +static inline double +random_nextDouble(JSContext *cx) +{ + uint64_t *rng = &cx->compartment()->rngState; + return double((random_next(rng, 26) << 27) + random_next(rng, 27)) / RNG_DSCALE; +} + +double +math_random_no_outparam(JSContext *cx) +{ + /* Calculate random without memory traffic, for use in the JITs. */ + return random_nextDouble(cx); +} + +bool +js_math_random(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + double z = random_nextDouble(cx); + args.rval().setDouble(z); + return true; +} + +double +js::math_round_impl(double x) +{ + int32_t ignored; + if (NumberIsInt32(x, &ignored)) + return x; + + /* Some numbers are so big that adding 0.5 would give the wrong number. */ + if (ExponentComponent(x) >= int_fast16_t(FloatingPoint::ExponentShift)) + return x; + + return js_copysign(floor(x + 0.5), x); +} + +float +js::math_roundf_impl(float x) +{ + int32_t ignored; + if (NumberIsInt32(x, &ignored)) + return x; + + /* Some numbers are so big that adding 0.5 would give the wrong number. */ + if (ExponentComponent(x) >= int_fast16_t(FloatingPoint::ExponentShift)) + return x; + + return js_copysign(floorf(x + 0.5f), x); +} + +bool /* ES5 15.8.2.15. */ +js::math_round(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + double z = math_round_impl(x); + args.rval().setNumber(z); + return true; +} + +double +js::math_sin_impl(MathCache *cache, double x) +{ + return cache->lookup(sin, x); +} + +double +js::math_sin_uncached(double x) +{ + return sin(x); +} + +bool +js::math_sin(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + + double z = math_sin_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +bool +js_math_sqrt(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + + double z = mathCache->lookup(sqrt, x); + args.rval().setDouble(z); + return true; +} + +double +js::math_tan_impl(MathCache *cache, double x) +{ + return cache->lookup(tan, x); +} + +double +js::math_tan_uncached(double x) +{ + return tan(x); +} + +bool +js::math_tan(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + + double z = math_tan_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + + +typedef double (*UnaryMathFunctionType)(MathCache *cache, double); + +template +static bool math_function(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + if (args.length() == 0) { + args.rval().setNumber(GenericNaN()); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache *mathCache = cx->runtime()->getMathCache(cx); + if (!mathCache) + return false; + double z = F(mathCache, x); + args.rval().setNumber(z); + + return true; +} + + + +double +js::math_log10_impl(MathCache *cache, double x) +{ + return cache->lookup(log10, x); +} + +double +js::math_log10_uncached(double x) +{ + return log10(x); +} + +bool +js::math_log10(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +#if !HAVE_LOG2 +double log2(double x) +{ + return log(x) / M_LN2; +} +#endif + +double +js::math_log2_impl(MathCache *cache, double x) +{ + return cache->lookup(log2, x); +} + +double +js::math_log2_uncached(double x) +{ + return log2(x); +} + +bool +js::math_log2(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +#if !HAVE_LOG1P +double log1p(double x) +{ + if (fabs(x) < 1e-4) { + /* + * Use Taylor approx. log(1 + x) = x - x^2 / 2 + x^3 / 3 - x^4 / 4 with error x^5 / 5 + * Since |x| < 10^-4, |x|^5 < 10^-20, relative error less than 10^-16 + */ + double z = -(x * x * x * x) / 4 + (x * x * x) / 3 - (x * x) / 2 + x; + return z; + } else { + /* For other large enough values of x use direct computation */ + return log(1.0 + x); + } +} +#endif + +#ifdef __APPLE__ +// Ensure that log1p(-0) is -0. +#define LOG1P_IF_OUT_OF_RANGE(x) if (x == 0) return x; +#else +#define LOG1P_IF_OUT_OF_RANGE(x) +#endif + +double +js::math_log1p_impl(MathCache *cache, double x) +{ + LOG1P_IF_OUT_OF_RANGE(x); + return cache->lookup(log1p, x); +} + +double +js::math_log1p_uncached(double x) +{ + LOG1P_IF_OUT_OF_RANGE(x); + return log1p(x); +} + +#undef LOG1P_IF_OUT_OF_RANGE + +bool +js::math_log1p(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +#if !HAVE_EXPM1 +double expm1(double x) +{ + /* Special handling for -0 */ + if (x == 0.0) + return x; + + if (fabs(x) < 1e-5) { + /* + * Use Taylor approx. exp(x) - 1 = x + x^2 / 2 + x^3 / 6 with error x^4 / 24 + * Since |x| < 10^-5, |x|^4 < 10^-20, relative error less than 10^-15 + */ + double z = (x * x * x) / 6 + (x * x) / 2 + x; + return z; + } else { + /* For other large enough values of x use direct computation */ + return exp(x) - 1.0; + } +} +#endif + +double +js::math_expm1_impl(MathCache *cache, double x) +{ + return cache->lookup(expm1, x); +} + +double +js::math_expm1_uncached(double x) +{ + return expm1(x); +} + +bool +js::math_expm1(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +#if !HAVE_SQRT1PM1 +/* This algorithm computes sqrt(1+x)-1 for small x */ +double sqrt1pm1(double x) +{ + if (fabs(x) > 0.75) + return sqrt(1 + x) - 1; + + return expm1(log1p(x) / 2); +} +#endif + + +double +js::math_cosh_impl(MathCache *cache, double x) +{ + return cache->lookup(cosh, x); +} + +double +js::math_cosh_uncached(double x) +{ + return cosh(x); +} + +bool +js::math_cosh(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +double +js::math_sinh_impl(MathCache *cache, double x) +{ + return cache->lookup(sinh, x); +} + +double +js::math_sinh_uncached(double x) +{ + return sinh(x); +} + +bool +js::math_sinh(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +double +js::math_tanh_impl(MathCache *cache, double x) +{ + return cache->lookup(tanh, x); +} + +double +js::math_tanh_uncached(double x) +{ + return tanh(x); +} + +bool +js::math_tanh(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +#if !HAVE_ACOSH +double acosh(double x) +{ + const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits::epsilon()); + + if ((x - 1) >= SQUARE_ROOT_EPSILON) { + if (x > 1 / SQUARE_ROOT_EPSILON) { + /* + * http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/06/01/0001/ + * approximation by laurent series in 1/x at 0+ order from -1 to 0 + */ + return log(x) + M_LN2; + } else if (x < 1.5) { + // This is just a rearrangement of the standard form below + // devised to minimize loss of precision when x ~ 1: + double y = x - 1; + return log1p(y + sqrt(y * y + 2 * y)); + } else { + // http://functions.wolfram.com/ElementaryFunctions/ArcCosh/02/ + return log(x + sqrt(x * x - 1)); + } + } else { + // see http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/04/01/0001/ + double y = x - 1; + // approximation by taylor series in y at 0 up to order 2. + // If x is less than 1, sqrt(2 * y) is NaN and the result is NaN. + return sqrt(2 * y) * (1 - y / 12 + 3 * y * y / 160); + } +} +#endif + +double +js::math_acosh_impl(MathCache *cache, double x) +{ + return cache->lookup(acosh, x); +} + +double +js::math_acosh_uncached(double x) +{ + return acosh(x); +} + +bool +js::math_acosh(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +#if !HAVE_ASINH +// Bug 899712 - gcc incorrectly rewrites -asinh(-x) to asinh(x) when overriding +// asinh. +static double my_asinh(double x) +{ + const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits::epsilon()); + const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON); + + if (x >= FOURTH_ROOT_EPSILON) { + if (x > 1 / SQUARE_ROOT_EPSILON) + // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/06/01/0001/ + // approximation by laurent series in 1/x at 0+ order from -1 to 1 + return M_LN2 + log(x) + 1 / (4 * x * x); + else if (x < 0.5) + return log1p(x + sqrt1pm1(x * x)); + else + return log(x + sqrt(x * x + 1)); + } else if (x <= -FOURTH_ROOT_EPSILON) { + return -my_asinh(-x); + } else { + // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/03/01/0001/ + // approximation by taylor series in x at 0 up to order 2 + double result = x; + + if (fabs(x) >= SQUARE_ROOT_EPSILON) { + double x3 = x * x * x; + // approximation by taylor series in x at 0 up to order 4 + result -= x3 / 6; + } + + return result; + } +} +#endif + +double +js::math_asinh_impl(MathCache *cache, double x) +{ +#ifdef HAVE_ASINH + return cache->lookup(asinh, x); +#else + return cache->lookup(my_asinh, x); +#endif +} + +double +js::math_asinh_uncached(double x) +{ +#ifdef HAVE_ASINH + return asinh(x); +#else + return my_asinh(x); +#endif +} + +bool +js::math_asinh(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +#if !HAVE_ATANH +double atanh(double x) +{ + const double EPSILON = std::numeric_limits::epsilon(); + const double SQUARE_ROOT_EPSILON = sqrt(EPSILON); + const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON); + + if (fabs(x) >= FOURTH_ROOT_EPSILON) { + // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/02/ + if (fabs(x) < 0.5) + return (log1p(x) - log1p(-x)) / 2; + + return log((1 + x) / (1 - x)) / 2; + } else { + // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/06/01/03/01/ + // approximation by taylor series in x at 0 up to order 2 + double result = x; + + if (fabs(x) >= SQUARE_ROOT_EPSILON) { + double x3 = x * x * x; + result += x3 / 3; + } + + return result; + } +} +#endif + +double +js::math_atanh_impl(MathCache *cache, double x) +{ + return cache->lookup(atanh, x); +} + +double +js::math_atanh_uncached(double x) +{ + return atanh(x); +} + +bool +js::math_atanh(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +/* Consistency wrapper for platform deviations in hypot() */ +double +js::ecmaHypot(double x, double y) +{ +#ifdef XP_WIN + /* + * Workaround MS hypot bug, where hypot(Infinity, NaN or Math.MIN_VALUE) + * is NaN, not Infinity. + */ + if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y)) { + return mozilla::PositiveInfinity(); + } +#endif + return hypot(x, y); +} + +bool +js::math_hypot(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + // IonMonkey calls the system hypot function directly if two arguments are + // given. Do that here as well to get the same results. + if (args.length() == 2) { + double x, y; + if (!ToNumber(cx, args[0], &x)) + return false; + if (!ToNumber(cx, args[1], &y)) + return false; + + double result = ecmaHypot(x, y); + args.rval().setNumber(result); + return true; + } + + bool isInfinite = false; + bool isNaN = false; + + double scale = 0; + double sumsq = 1; + + for (unsigned i = 0; i < args.length(); i++) { + double x; + if (!ToNumber(cx, args[i], &x)) + return false; + + isInfinite |= mozilla::IsInfinite(x); + isNaN |= mozilla::IsNaN(x); + + double xabs = mozilla::Abs(x); + + if (scale < xabs) { + sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs); + scale = xabs; + } else if (scale != 0) { + sumsq += (xabs / scale) * (xabs / scale); + } + } + + double result = isInfinite ? PositiveInfinity() : + isNaN ? GenericNaN() : + scale * sqrt(sumsq); + args.rval().setNumber(result); + return true; +} + +#if !HAVE_TRUNC +double trunc(double x) +{ + return x > 0 ? floor(x) : ceil(x); +} +#endif + +double +js::math_trunc_impl(MathCache *cache, double x) +{ + return cache->lookup(trunc, x); +} + +double +js::math_trunc_uncached(double x) +{ + return trunc(x); +} + +bool +js::math_trunc(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +static double sign(double x) +{ + if (mozilla::IsNaN(x)) + return GenericNaN(); + + return x == 0 ? x : x < 0 ? -1 : 1; +} + +double +js::math_sign_impl(MathCache *cache, double x) +{ + return cache->lookup(sign, x); +} + +double +js::math_sign_uncached(double x) +{ + return sign(x); +} + +bool +js::math_sign(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +#if !HAVE_CBRT +double cbrt(double x) +{ + if (x > 0) { + return pow(x, 1.0 / 3.0); + } else if (x == 0) { + return x; + } else { + return -pow(-x, 1.0 / 3.0); + } +} +#endif + +double +js::math_cbrt_impl(MathCache *cache, double x) +{ + return cache->lookup(cbrt, x); +} + +double +js::math_cbrt_uncached(double x) +{ + return cbrt(x); +} + +bool +js::math_cbrt(JSContext *cx, unsigned argc, Value *vp) +{ + return math_function(cx, argc, vp); +} + +#if JS_HAS_TOSOURCE +static bool +math_toSource(JSContext *cx, unsigned argc, Value *vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + args.rval().setString(cx->names().Math); + return true; +} +#endif + +static const JSFunctionSpec math_static_methods[] = { +#if JS_HAS_TOSOURCE + JS_FN(js_toSource_str, math_toSource, 0, 0), +#endif + JS_FN("abs", js_math_abs, 1, 0), + JS_FN("acos", math_acos, 1, 0), + JS_FN("asin", math_asin, 1, 0), + JS_FN("atan", math_atan, 1, 0), + JS_FN("atan2", math_atan2, 2, 0), + JS_FN("ceil", math_ceil, 1, 0), + JS_FN("clz32", math_clz32, 1, 0), + JS_FN("cos", math_cos, 1, 0), + JS_FN("exp", math_exp, 1, 0), + JS_FN("floor", math_floor, 1, 0), + JS_FN("imul", math_imul, 2, 0), + JS_FN("fround", math_fround, 1, 0), + JS_FN("log", math_log, 1, 0), + JS_FN("max", js_math_max, 2, 0), + JS_FN("min", js_math_min, 2, 0), + JS_FN("pow", js_math_pow, 2, 0), + JS_FN("random", js_math_random, 0, 0), + JS_FN("round", math_round, 1, 0), + JS_FN("sin", math_sin, 1, 0), + JS_FN("sqrt", js_math_sqrt, 1, 0), + JS_FN("tan", math_tan, 1, 0), + JS_FN("log10", math_log10, 1, 0), + JS_FN("log2", math_log2, 1, 0), + JS_FN("log1p", math_log1p, 1, 0), + JS_FN("expm1", math_expm1, 1, 0), + JS_FN("cosh", math_cosh, 1, 0), + JS_FN("sinh", math_sinh, 1, 0), + JS_FN("tanh", math_tanh, 1, 0), + JS_FN("acosh", math_acosh, 1, 0), + JS_FN("asinh", math_asinh, 1, 0), + JS_FN("atanh", math_atanh, 1, 0), + JS_FN("hypot", math_hypot, 2, 0), + JS_FN("trunc", math_trunc, 1, 0), + JS_FN("sign", math_sign, 1, 0), + JS_FN("cbrt", math_cbrt, 1, 0), + JS_FS_END +}; + +JSObject * +js_InitMathClass(JSContext *cx, HandleObject obj) +{ + RootedObject proto(cx, obj->as().getOrCreateObjectPrototype(cx)); + if (!proto) + return nullptr; + RootedObject Math(cx, NewObjectWithGivenProto(cx, &MathClass, proto, obj, SingletonObject)); + if (!Math) + return nullptr; + + if (!JS_DefineProperty(cx, obj, js_Math_str, Math, 0, + JS_PropertyStub, JS_StrictPropertyStub)) + { + return nullptr; + } + + if (!JS_DefineFunctions(cx, Math, math_static_methods)) + return nullptr; + if (!JS_DefineConstDoubles(cx, Math, math_constants)) + return nullptr; + + obj->as().setConstructor(JSProto_Math, ObjectValue(*Math)); + + return Math; +}