diff -r 000000000000 -r 6474c204b198 layout/generic/nsFlexContainerFrame.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/layout/generic/nsFlexContainerFrame.cpp Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,3358 @@ +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=2 et sw=2 tw=80: */ + +/* This Source Code is subject to the terms of the Mozilla Public License + * version 2.0 (the "License"). You can obtain a copy of the License at + * http://mozilla.org/MPL/2.0/. */ + +/* rendering object for CSS "display: flex" */ + +#include "nsFlexContainerFrame.h" +#include "nsContentUtils.h" +#include "nsCSSAnonBoxes.h" +#include "nsDisplayList.h" +#include "nsIFrameInlines.h" +#include "nsLayoutUtils.h" +#include "nsPlaceholderFrame.h" +#include "nsPresContext.h" +#include "nsStyleContext.h" +#include "prlog.h" +#include +#include "mozilla/LinkedList.h" + +using namespace mozilla; +using namespace mozilla::css; +using namespace mozilla::layout; + +// Convenience typedefs for helper classes that we forward-declare in .h file +// (so that nsFlexContainerFrame methods can use them as parameters): +typedef nsFlexContainerFrame::FlexItem FlexItem; +typedef nsFlexContainerFrame::FlexLine FlexLine; +typedef nsFlexContainerFrame::FlexboxAxisTracker FlexboxAxisTracker; +typedef nsFlexContainerFrame::StrutInfo StrutInfo; + +#ifdef PR_LOGGING +static PRLogModuleInfo* +GetFlexContainerLog() +{ + static PRLogModuleInfo *sLog; + if (!sLog) + sLog = PR_NewLogModule("nsFlexContainerFrame"); + return sLog; +} +#endif /* PR_LOGGING */ + +// XXXdholbert Some of this helper-stuff should be separated out into a general +// "LogicalAxisUtils.h" helper. Should that be a class, or a namespace (under +// what super-namespace?), or what? + +// Helper enums +// ============ + +// Represents a physical orientation for an axis. +// The directional suffix indicates the direction in which the axis *grows*. +// So e.g. eAxis_LR means a horizontal left-to-right axis, whereas eAxis_BT +// means a vertical bottom-to-top axis. +// NOTE: The order here is important -- these values are used as indices into +// the static array 'kAxisOrientationToSidesMap', defined below. +enum AxisOrientationType { + eAxis_LR, + eAxis_RL, + eAxis_TB, + eAxis_BT, + eNumAxisOrientationTypes // For sizing arrays that use these values as indices +}; + +// Represents one or the other extreme of an axis (e.g. for the main axis, the +// main-start vs. main-end edge. +// NOTE: The order here is important -- these values are used as indices into +// the sub-arrays in 'kAxisOrientationToSidesMap', defined below. +enum AxisEdgeType { + eAxisEdge_Start, + eAxisEdge_End, + eNumAxisEdges // For sizing arrays that use these values as indices +}; + +// This array maps each axis orientation to a pair of corresponding +// [start, end] physical mozilla::css::Side values. +static const Side +kAxisOrientationToSidesMap[eNumAxisOrientationTypes][eNumAxisEdges] = { + { eSideLeft, eSideRight }, // eAxis_LR + { eSideRight, eSideLeft }, // eAxis_RL + { eSideTop, eSideBottom }, // eAxis_TB + { eSideBottom, eSideTop } // eAxis_BT +}; + +// Helper structs / classes / methods +// ================================== + +// Indicates whether advancing along the given axis is equivalent to +// increasing our X or Y position (as opposed to decreasing it). +static inline bool +AxisGrowsInPositiveDirection(AxisOrientationType aAxis) +{ + return eAxis_LR == aAxis || eAxis_TB == aAxis; +} + +// Indicates whether the given axis is horizontal. +static inline bool +IsAxisHorizontal(AxisOrientationType aAxis) +{ + return eAxis_LR == aAxis || eAxis_RL == aAxis; +} + +// Given an AxisOrientationType, returns the "reverse" AxisOrientationType +// (in the same dimension, but the opposite direction) +static inline AxisOrientationType +GetReverseAxis(AxisOrientationType aAxis) +{ + AxisOrientationType reversedAxis; + + if (aAxis % 2 == 0) { + // even enum value. Add 1 to reverse. + reversedAxis = AxisOrientationType(aAxis + 1); + } else { + // odd enum value. Subtract 1 to reverse. + reversedAxis = AxisOrientationType(aAxis - 1); + } + + // Check that we're still in the enum's valid range + MOZ_ASSERT(reversedAxis >= eAxis_LR && + reversedAxis <= eAxis_BT); + + return reversedAxis; +} + +// Returns aFrame's computed value for 'height' or 'width' -- whichever is in +// the same dimension as aAxis. +static inline const nsStyleCoord& +GetSizePropertyForAxis(const nsIFrame* aFrame, AxisOrientationType aAxis) +{ + const nsStylePosition* stylePos = aFrame->StylePosition(); + + return IsAxisHorizontal(aAxis) ? + stylePos->mWidth : + stylePos->mHeight; +} + +/** + * Converts a logical position in a given axis into a position in the + * corresponding physical (x or y) axis. If the logical axis already maps + * directly onto one of our physical axes (i.e. LTR or TTB), then the logical + * and physical positions are equal; otherwise, we subtract the logical + * position from the container-size in that axis, to flip the polarity. + * (so e.g. a logical position of 2px in a RTL 20px-wide container + * would correspond to a physical position of 18px.) + */ +static nscoord +PhysicalPosFromLogicalPos(nscoord aLogicalPosn, + nscoord aLogicalContainerSize, + AxisOrientationType aAxis) { + if (AxisGrowsInPositiveDirection(aAxis)) { + return aLogicalPosn; + } + return aLogicalContainerSize - aLogicalPosn; +} + +static nscoord +MarginComponentForSide(const nsMargin& aMargin, Side aSide) +{ + switch (aSide) { + case eSideLeft: + return aMargin.left; + case eSideRight: + return aMargin.right; + case eSideTop: + return aMargin.top; + case eSideBottom: + return aMargin.bottom; + } + + NS_NOTREACHED("unexpected Side enum"); + return aMargin.left; // have to return something + // (but something's busted if we got here) +} + +static nscoord& +MarginComponentForSide(nsMargin& aMargin, Side aSide) +{ + switch (aSide) { + case eSideLeft: + return aMargin.left; + case eSideRight: + return aMargin.right; + case eSideTop: + return aMargin.top; + case eSideBottom: + return aMargin.bottom; + } + + NS_NOTREACHED("unexpected Side enum"); + return aMargin.left; // have to return something + // (but something's busted if we got here) +} + +// Helper-macro to let us pick one of two expressions to evaluate +// (a width expression vs. a height expression), to get a main-axis or +// cross-axis component. +// For code that has e.g. a nsSize object, FlexboxAxisTracker::GetMainComponent +// and GetCrossComponent are cleaner; but in cases where we simply have +// two separate expressions for width and height (which may be expensive to +// evaluate), these macros will ensure that only the expression for the correct +// axis gets evaluated. +#define GET_MAIN_COMPONENT(axisTracker_, width_, height_) \ + IsAxisHorizontal((axisTracker_).GetMainAxis()) ? (width_) : (height_) + +#define GET_CROSS_COMPONENT(axisTracker_, width_, height_) \ + IsAxisHorizontal((axisTracker_).GetCrossAxis()) ? (width_) : (height_) + +// Encapsulates our flex container's main & cross axes. +class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker { +public: + FlexboxAxisTracker(nsFlexContainerFrame* aFlexContainerFrame); + + // Accessors: + AxisOrientationType GetMainAxis() const { return mMainAxis; } + AxisOrientationType GetCrossAxis() const { return mCrossAxis; } + + nscoord GetMainComponent(const nsSize& aSize) const { + return GET_MAIN_COMPONENT(*this, aSize.width, aSize.height); + } + int32_t GetMainComponent(const nsIntSize& aIntSize) const { + return GET_MAIN_COMPONENT(*this, aIntSize.width, aIntSize.height); + } + + nscoord GetCrossComponent(const nsSize& aSize) const { + return GET_CROSS_COMPONENT(*this, aSize.width, aSize.height); + } + int32_t GetCrossComponent(const nsIntSize& aIntSize) const { + return GET_CROSS_COMPONENT(*this, aIntSize.width, aIntSize.height); + } + + nscoord GetMarginSizeInMainAxis(const nsMargin& aMargin) const { + return IsAxisHorizontal(mMainAxis) ? + aMargin.LeftRight() : + aMargin.TopBottom(); + } + nscoord GetMarginSizeInCrossAxis(const nsMargin& aMargin) const { + return IsAxisHorizontal(mCrossAxis) ? + aMargin.LeftRight() : + aMargin.TopBottom(); + } + + /** + * Converts a logical point into a "physical" x,y point. + * + * In the simplest case where the main-axis is left-to-right and the + * cross-axis is top-to-bottom, this just returns + * nsPoint(aMainPosn, aCrossPosn). + * + * @arg aMainPosn The main-axis position -- i.e an offset from the + * main-start edge of the container's content box. + * @arg aCrossPosn The cross-axis position -- i.e an offset from the + * cross-start edge of the container's content box. + * @return A nsPoint representing the same position (in coordinates + * relative to the container's content box). + */ + nsPoint PhysicalPointFromLogicalPoint(nscoord aMainPosn, + nscoord aCrossPosn, + nscoord aContainerMainSize, + nscoord aContainerCrossSize) const { + nscoord physicalPosnInMainAxis = + PhysicalPosFromLogicalPos(aMainPosn, aContainerMainSize, mMainAxis); + nscoord physicalPosnInCrossAxis = + PhysicalPosFromLogicalPos(aCrossPosn, aContainerCrossSize, mCrossAxis); + + return IsAxisHorizontal(mMainAxis) ? + nsPoint(physicalPosnInMainAxis, physicalPosnInCrossAxis) : + nsPoint(physicalPosnInCrossAxis, physicalPosnInMainAxis); + } + nsSize PhysicalSizeFromLogicalSizes(nscoord aMainSize, + nscoord aCrossSize) const { + return IsAxisHorizontal(mMainAxis) ? + nsSize(aMainSize, aCrossSize) : + nsSize(aCrossSize, aMainSize); + } + + // Are my axes reversed with respect to what the author asked for? + // (We may reverse the axes in the FlexboxAxisTracker constructor and set + // this flag, to avoid reflowing our children in bottom-to-top order.) + bool AreAxesInternallyReversed() const + { + return mAreAxesInternallyReversed; + } + +private: + AxisOrientationType mMainAxis; + AxisOrientationType mCrossAxis; + bool mAreAxesInternallyReversed; +}; + +/** + * Represents a flex item. + * Includes the various pieces of input that the Flexbox Layout Algorithm uses + * to resolve a flexible width. + */ +class nsFlexContainerFrame::FlexItem : public LinkedListElement +{ +public: + // Normal constructor: + FlexItem(nsIFrame* aChildFrame, + float aFlexGrow, float aFlexShrink, nscoord aMainBaseSize, + nscoord aMainMinSize, nscoord aMainMaxSize, + nscoord aCrossMinSize, nscoord aCrossMaxSize, + nsMargin aMargin, nsMargin aBorderPadding, + const FlexboxAxisTracker& aAxisTracker); + + // Simplified constructor, to be used only for generating "struts": + FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize); + + // Accessors + nsIFrame* Frame() const { return mFrame; } + nscoord GetFlexBaseSize() const { return mFlexBaseSize; } + + nscoord GetMainMinSize() const { return mMainMinSize; } + nscoord GetMainMaxSize() const { return mMainMaxSize; } + + // Note: These return the main-axis position and size of our *content box*. + nscoord GetMainSize() const { return mMainSize; } + nscoord GetMainPosition() const { return mMainPosn; } + + nscoord GetCrossMinSize() const { return mCrossMinSize; } + nscoord GetCrossMaxSize() const { return mCrossMaxSize; } + + // Note: These return the cross-axis position and size of our *content box*. + nscoord GetCrossSize() const { return mCrossSize; } + nscoord GetCrossPosition() const { return mCrossPosn; } + + // Convenience methods to compute the main & cross size of our *margin-box*. + // The caller is responsible for telling us the right axis, so that we can + // pull out the appropriate components of our margin/border/padding structs. + nscoord GetOuterMainSize(AxisOrientationType aMainAxis) const + { + return mMainSize + GetMarginBorderPaddingSizeInAxis(aMainAxis); + } + + nscoord GetOuterCrossSize(AxisOrientationType aCrossAxis) const + { + return mCrossSize + GetMarginBorderPaddingSizeInAxis(aCrossAxis); + } + + // Returns the distance between this FlexItem's baseline and the cross-start + // edge of its margin-box. Used in baseline alignment. + // (This function needs to be told what cross axis is & which edge we're + // measuring the baseline from, so that it can look up the appropriate + // components from mMargin.) + nscoord GetBaselineOffsetFromOuterCrossEdge(AxisOrientationType aCrossAxis, + AxisEdgeType aEdge) const; + + float GetShareOfFlexWeightSoFar() const { return mShareOfFlexWeightSoFar; } + + bool IsFrozen() const { return mIsFrozen; } + + bool HadMinViolation() const { return mHadMinViolation; } + bool HadMaxViolation() const { return mHadMaxViolation; } + + // Indicates whether this item received a preliminary "measuring" reflow + // before its actual reflow. + bool HadMeasuringReflow() const { return mHadMeasuringReflow; } + + // Indicates whether this item's cross-size has been stretched (from having + // "align-self: stretch" with an auto cross-size and no auto margins in the + // cross axis). + bool IsStretched() const { return mIsStretched; } + + // Indicates whether this item is a "strut" left behind by an element with + // visibility:collapse. + bool IsStrut() const { return mIsStrut; } + + uint8_t GetAlignSelf() const { return mAlignSelf; } + + // Returns the flex weight that we should use in the "resolving flexible + // lengths" algorithm. If we're using flex grow, we just return that; + // otherwise, we use the "scaled flex shrink weight" (scaled by our flex + // base size, so that when both large and small items are shrinking, + // the large items shrink more). + float GetFlexWeightToUse(bool aIsUsingFlexGrow) + { + if (IsFrozen()) { + return 0.0f; + } + + if (aIsUsingFlexGrow) { + return mFlexGrow; + } + + // We're using flex-shrink --> return mFlexShrink * mFlexBaseSize + if (mFlexBaseSize == 0) { + // Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so + // regardless of mFlexShrink, we should just return 0. + // (This is really a special-case for when mFlexShrink is infinity, to + // avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.) + return 0.0f; + } + return mFlexShrink * mFlexBaseSize; + } + + // Getters for margin: + // =================== + const nsMargin& GetMargin() const { return mMargin; } + + // Returns the margin component for a given mozilla::css::Side + nscoord GetMarginComponentForSide(Side aSide) const + { return MarginComponentForSide(mMargin, aSide); } + + // Returns the total space occupied by this item's margins in the given axis + nscoord GetMarginSizeInAxis(AxisOrientationType aAxis) const + { + Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start]; + Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End]; + return GetMarginComponentForSide(startSide) + + GetMarginComponentForSide(endSide); + } + + // Getters for border/padding + // ========================== + const nsMargin& GetBorderPadding() const { return mBorderPadding; } + + // Returns the border+padding component for a given mozilla::css::Side + nscoord GetBorderPaddingComponentForSide(Side aSide) const + { return MarginComponentForSide(mBorderPadding, aSide); } + + // Returns the total space occupied by this item's borders and padding in + // the given axis + nscoord GetBorderPaddingSizeInAxis(AxisOrientationType aAxis) const + { + Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start]; + Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End]; + return GetBorderPaddingComponentForSide(startSide) + + GetBorderPaddingComponentForSide(endSide); + } + + // Getter for combined margin/border/padding + // ========================================= + // Returns the total space occupied by this item's margins, borders and + // padding in the given axis + nscoord GetMarginBorderPaddingSizeInAxis(AxisOrientationType aAxis) const + { + return GetMarginSizeInAxis(aAxis) + GetBorderPaddingSizeInAxis(aAxis); + } + + // Setters + // ======= + + // This sets our flex base size, and then updates the main size to the + // base size clamped to our main-axis [min,max] constraints. + void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) + { + MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_INTRINSICSIZE, + "flex base size shouldn't change after we're frozen " + "(unless we're just resolving an intrinsic size)"); + mFlexBaseSize = aNewFlexBaseSize; + + // Before we've resolved flexible lengths, we keep mMainSize set to + // the 'hypothetical main size', which is the flex base size, clamped + // to the [min,max] range: + mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize); + } + + // Setters used while we're resolving flexible lengths + // --------------------------------------------------- + + // Sets the main-size of our flex item's content-box. + void SetMainSize(nscoord aNewMainSize) + { + MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen"); + mMainSize = aNewMainSize; + } + + void SetShareOfFlexWeightSoFar(float aNewShare) + { + MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0f, + "shouldn't be giving this item any share of the weight " + "after it's frozen"); + mShareOfFlexWeightSoFar = aNewShare; + } + + void Freeze() { mIsFrozen = true; } + + void SetHadMinViolation() + { + MOZ_ASSERT(!mIsFrozen, + "shouldn't be changing main size & having violations " + "after we're frozen"); + mHadMinViolation = true; + } + void SetHadMaxViolation() + { + MOZ_ASSERT(!mIsFrozen, + "shouldn't be changing main size & having violations " + "after we're frozen"); + mHadMaxViolation = true; + } + void ClearViolationFlags() + { mHadMinViolation = mHadMaxViolation = false; } + + // Setters for values that are determined after we've resolved our main size + // ------------------------------------------------------------------------- + + // Sets the main-axis position of our flex item's content-box. + // (This is the distance between the main-start edge of the flex container + // and the main-start edge of the flex item's content-box.) + void SetMainPosition(nscoord aPosn) { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mMainPosn = aPosn; + } + + // Sets the cross-size of our flex item's content-box. + void SetCrossSize(nscoord aCrossSize) { + MOZ_ASSERT(!mIsStretched, + "Cross size shouldn't be modified after it's been stretched"); + mCrossSize = aCrossSize; + } + + // Sets the cross-axis position of our flex item's content-box. + // (This is the distance between the cross-start edge of the flex container + // and the cross-start edge of the flex item.) + void SetCrossPosition(nscoord aPosn) { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mCrossPosn = aPosn; + } + + void SetAscent(nscoord aAscent) { + mAscent = aAscent; + } + + void SetHadMeasuringReflow() { + mHadMeasuringReflow = true; + } + + void SetIsStretched() { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mIsStretched = true; + } + + // Setter for margin components (for resolving "auto" margins) + void SetMarginComponentForSide(Side aSide, nscoord aLength) + { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + MarginComponentForSide(mMargin, aSide) = aLength; + } + + void ResolveStretchedCrossSize(nscoord aLineCrossSize, + const FlexboxAxisTracker& aAxisTracker); + + uint32_t GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const; + +protected: + // Our frame: + nsIFrame* const mFrame; + + // Values that we already know in constructor: (and are hence mostly 'const') + const float mFlexGrow; + const float mFlexShrink; + + const nsMargin mBorderPadding; + nsMargin mMargin; // non-const because we need to resolve auto margins + + nscoord mFlexBaseSize; + + const nscoord mMainMinSize; + const nscoord mMainMaxSize; + const nscoord mCrossMinSize; + const nscoord mCrossMaxSize; + + // Values that we compute after constructor: + nscoord mMainSize; + nscoord mMainPosn; + nscoord mCrossSize; + nscoord mCrossPosn; + nscoord mAscent; + + // Temporary state, while we're resolving flexible widths (for our main size) + // XXXdholbert To save space, we could use a union to make these variables + // overlay the same memory as some other member vars that aren't touched + // until after main-size has been resolved. In particular, these could share + // memory with mMainPosn through mAscent, and mIsStretched. + float mShareOfFlexWeightSoFar; + bool mIsFrozen; + bool mHadMinViolation; + bool mHadMaxViolation; + + // Misc: + bool mHadMeasuringReflow; // Did this item get a preliminary reflow, + // to measure its desired height? + bool mIsStretched; // See IsStretched() documentation + bool mIsStrut; // Is this item a "strut" left behind by an element + // with visibility:collapse? + uint8_t mAlignSelf; // My "align-self" computed value (with "auto" + // swapped out for parent"s "align-items" value, + // in our constructor). +}; + +/** + * Represents a single flex line in a flex container. + * Manages a linked list of the FlexItems that are in the line. + */ +class nsFlexContainerFrame::FlexLine : public LinkedListElement +{ +public: + FlexLine() + : mNumItems(0), + mTotalInnerHypotheticalMainSize(0), + mTotalOuterHypotheticalMainSize(0), + mLineCrossSize(0), + mBaselineOffset(nscoord_MIN) + {} + + // Returns the sum of our FlexItems' outer hypothetical main sizes. + // ("outer" = margin-box, and "hypothetical" = before flexing) + nscoord GetTotalOuterHypotheticalMainSize() const { + return mTotalOuterHypotheticalMainSize; + } + + // Accessors for our FlexItems & information about them: + FlexItem* GetFirstItem() + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mItems.getFirst(); + } + + const FlexItem* GetFirstItem() const + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mItems.getFirst(); + } + + bool IsEmpty() const + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mItems.isEmpty(); + } + + uint32_t NumItems() const + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mNumItems; + } + + // Adds the given FlexItem to our list of items (at the front or back + // depending on aShouldInsertAtFront), and adds its hypothetical + // outer & inner main sizes to our totals. Use this method instead of + // directly modifying the item list, so that our bookkeeping remains correct. + void AddItem(FlexItem* aItem, + bool aShouldInsertAtFront, + nscoord aItemInnerHypotheticalMainSize, + nscoord aItemOuterHypotheticalMainSize) + { + if (aShouldInsertAtFront) { + mItems.insertFront(aItem); + } else { + mItems.insertBack(aItem); + } + mNumItems++; + mTotalInnerHypotheticalMainSize += aItemInnerHypotheticalMainSize; + mTotalOuterHypotheticalMainSize += aItemOuterHypotheticalMainSize; + } + + // Computes the cross-size and baseline position of this FlexLine, based on + // its FlexItems. + void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker); + + // Returns the cross-size of this line. + nscoord GetLineCrossSize() const { return mLineCrossSize; } + + // Setter for line cross-size -- needed for cases where the flex container + // imposes a cross-size on the line. (e.g. for single-line flexbox, or for + // multi-line flexbox with 'align-content: stretch') + void SetLineCrossSize(nscoord aLineCrossSize) { + mLineCrossSize = aLineCrossSize; + } + + /** + * Returns the offset within this line where any baseline-aligned FlexItems + * should place their baseline. Usually, this represents a distance from the + * line's cross-start edge, but if we're internally reversing the axes (see + * AreAxesInternallyReversed()), this instead represents the distance from + * its cross-end edge. + * + * If there are no baseline-aligned FlexItems, returns nscoord_MIN. + */ + nscoord GetBaselineOffset() const { + return mBaselineOffset; + } + + // Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the + // CSS flexbox spec to distribute aFlexContainerMainSize among our flex items. + void ResolveFlexibleLengths(nscoord aFlexContainerMainSize); + + void PositionItemsInMainAxis(uint8_t aJustifyContent, + nscoord aContentBoxMainSize, + const FlexboxAxisTracker& aAxisTracker); + + void PositionItemsInCrossAxis(nscoord aLineStartPosition, + const FlexboxAxisTracker& aAxisTracker); + + friend class AutoFlexLineListClearer; // (needs access to mItems) + +private: + // Helper for ResolveFlexibleLengths(): + void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, + bool aIsFinalIteration); + + LinkedList mItems; // Linked list of this line's flex items. + + uint32_t mNumItems; // Number of FlexItems in this line (in |mItems|). + // (Shouldn't change after GenerateFlexLines finishes + // with this line -- at least, not until we add support + // for splitting lines across continuations. Then we can + // update this count carefully.) + + nscoord mTotalInnerHypotheticalMainSize; + nscoord mTotalOuterHypotheticalMainSize; + nscoord mLineCrossSize; + nscoord mBaselineOffset; +}; + +// Information about a strut left behind by a FlexItem that's been collapsed +// using "visibility:collapse". +struct nsFlexContainerFrame::StrutInfo { + StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize) + : mItemIdx(aItemIdx), + mStrutCrossSize(aStrutCrossSize) + { + } + + uint32_t mItemIdx; // Index in the child list. + nscoord mStrutCrossSize; // The cross-size of this strut. +}; + +static void +BuildStrutInfoFromCollapsedItems(const FlexLine* aFirstLine, + nsTArray& aStruts) +{ + MOZ_ASSERT(aFirstLine, "null first line pointer"); + MOZ_ASSERT(aStruts.IsEmpty(), + "We should only build up StrutInfo once per reflow, so " + "aStruts should be empty when this is called"); + + uint32_t itemIdxInContainer = 0; + for (const FlexLine* line = aFirstLine; line; line = line->getNext()) { + for (const FlexItem* item = line->GetFirstItem(); item; + item = item->getNext()) { + if (NS_STYLE_VISIBILITY_COLLAPSE == + item->Frame()->StyleVisibility()->mVisible) { + // Note the cross size of the line as the item's strut size. + aStruts.AppendElement(StrutInfo(itemIdxInContainer, + line->GetLineCrossSize())); + } + itemIdxInContainer++; + } + } +} + +// Helper-function to find the first non-anonymous-box descendent of aFrame. +static nsIFrame* +GetFirstNonAnonBoxDescendant(nsIFrame* aFrame) +{ + while (aFrame) { + nsIAtom* pseudoTag = aFrame->StyleContext()->GetPseudo(); + + // If aFrame isn't an anonymous container, then it'll do. + if (!pseudoTag || // No pseudotag. + !nsCSSAnonBoxes::IsAnonBox(pseudoTag) || // Pseudotag isn't anon. + pseudoTag == nsCSSAnonBoxes::mozNonElement) { // Text, not a container. + break; + } + + // Otherwise, descend to its first child and repeat. + + // SPECIAL CASE: if we're dealing with an anonymous table, then it might + // be wrapping something non-anonymous in its caption or col-group lists + // (instead of its principal child list), so we have to look there. + // (Note: For anonymous tables that have a non-anon cell *and* a non-anon + // column, we'll always return the column. This is fine; we're really just + // looking for a handle to *anything* with a meaningful content node inside + // the table, for use in DOM comparisons to things outside of the table.) + if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableOuterFrame)) { + nsIFrame* captionDescendant = + GetFirstNonAnonBoxDescendant(aFrame->GetFirstChild(kCaptionList)); + if (captionDescendant) { + return captionDescendant; + } + } else if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableFrame)) { + nsIFrame* colgroupDescendant = + GetFirstNonAnonBoxDescendant(aFrame->GetFirstChild(kColGroupList)); + if (colgroupDescendant) { + return colgroupDescendant; + } + } + + // USUAL CASE: Descend to the first child in principal list. + aFrame = aFrame->GetFirstPrincipalChild(); + } + return aFrame; +} + +/** + * Sorting helper-function that compares two frames' "order" property-values, + * and if they're equal, compares the DOM positions of their corresponding + * content nodes. Returns true if aFrame1 is "less than or equal to" aFrame2 + * according to this comparison. + * + * Note: This can't be a static function, because we need to pass it as a + * template argument. (Only functions with external linkage can be passed as + * template arguments.) + * + * @return true if the computed "order" property of aFrame1 is less than that + * of aFrame2, or if the computed "order" values are equal and aFrame1's + * corresponding DOM node is earlier than aFrame2's in the DOM tree. + * Otherwise, returns false. + */ +bool +IsOrderLEQWithDOMFallback(nsIFrame* aFrame1, + nsIFrame* aFrame2) +{ + MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(), + "this method only intended for comparing flex items"); + + if (aFrame1 == aFrame2) { + // Anything is trivially LEQ itself, so we return "true" here... but it's + // probably bad if we end up actually needing this, so let's assert. + NS_ERROR("Why are we checking if a frame is LEQ itself?"); + return true; + } + + // If we've got a placeholder frame, use its out-of-flow frame's 'order' val. + { + nsIFrame* aRealFrame1 = nsPlaceholderFrame::GetRealFrameFor(aFrame1); + nsIFrame* aRealFrame2 = nsPlaceholderFrame::GetRealFrameFor(aFrame2); + + int32_t order1 = aRealFrame1->StylePosition()->mOrder; + int32_t order2 = aRealFrame2->StylePosition()->mOrder; + + if (order1 != order2) { + return order1 < order2; + } + } + + // The "order" values are equal, so we need to fall back on DOM comparison. + // For that, we need to dig through any anonymous box wrapper frames to find + // the actual frame that corresponds to our child content. + aFrame1 = GetFirstNonAnonBoxDescendant(aFrame1); + aFrame2 = GetFirstNonAnonBoxDescendant(aFrame2); + MOZ_ASSERT(aFrame1 && aFrame2, + "why do we have an anonymous box without any " + "non-anonymous descendants?"); + + + // Special case: + // If either frame is for generated content from ::before or ::after, then + // we can't use nsContentUtils::PositionIsBefore(), since that method won't + // recognize generated content as being an actual sibling of other nodes. + // We know where ::before and ::after nodes *effectively* insert in the DOM + // tree, though (at the beginning & end), so we can just special-case them. + nsIAtom* pseudo1 = aFrame1->StyleContext()->GetPseudo(); + nsIAtom* pseudo2 = aFrame2->StyleContext()->GetPseudo(); + if (pseudo1 == nsCSSPseudoElements::before || + pseudo2 == nsCSSPseudoElements::after) { + // frame1 is ::before and/or frame2 is ::after => frame1 is LEQ frame2. + return true; + } + if (pseudo1 == nsCSSPseudoElements::after || + pseudo2 == nsCSSPseudoElements::before) { + // frame1 is ::after and/or frame2 is ::before => frame1 is not LEQ frame2. + return false; + } + + // Usual case: Compare DOM position. + nsIContent* content1 = aFrame1->GetContent(); + nsIContent* content2 = aFrame2->GetContent(); + MOZ_ASSERT(content1 != content2, + "Two different flex items are using the same nsIContent node for " + "comparison, so we may be sorting them in an arbitrary order"); + + return nsContentUtils::PositionIsBefore(content1, content2); +} + +/** + * Sorting helper-function that compares two frames' "order" property-values. + * Returns true if aFrame1 is "less than or equal to" aFrame2 according to this + * comparison. + * + * Note: This can't be a static function, because we need to pass it as a + * template argument. (Only functions with external linkage can be passed as + * template arguments.) + * + * @return true if the computed "order" property of aFrame1 is less than or + * equal to that of aFrame2. Otherwise, returns false. + */ +bool +IsOrderLEQ(nsIFrame* aFrame1, + nsIFrame* aFrame2) +{ + MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(), + "this method only intended for comparing flex items"); + + // If we've got a placeholder frame, use its out-of-flow frame's 'order' val. + nsIFrame* aRealFrame1 = nsPlaceholderFrame::GetRealFrameFor(aFrame1); + nsIFrame* aRealFrame2 = nsPlaceholderFrame::GetRealFrameFor(aFrame2); + + int32_t order1 = aRealFrame1->StylePosition()->mOrder; + int32_t order2 = aRealFrame2->StylePosition()->mOrder; + + return order1 <= order2; +} + +bool +nsFlexContainerFrame::IsHorizontal() +{ + const FlexboxAxisTracker axisTracker(this); + return IsAxisHorizontal(axisTracker.GetMainAxis()); +} + +FlexItem* +nsFlexContainerFrame::GenerateFlexItemForChild( + nsPresContext* aPresContext, + nsIFrame* aChildFrame, + const nsHTMLReflowState& aParentReflowState, + const FlexboxAxisTracker& aAxisTracker) +{ + // Create temporary reflow state just for sizing -- to get hypothetical + // main-size and the computed values of min / max main-size property. + // (This reflow state will _not_ be used for reflow.) + nsHTMLReflowState childRS(aPresContext, aParentReflowState, aChildFrame, + nsSize(aParentReflowState.ComputedWidth(), + aParentReflowState.ComputedHeight())); + + // FLEX GROW & SHRINK WEIGHTS + // -------------------------- + const nsStylePosition* stylePos = aChildFrame->StylePosition(); + float flexGrow = stylePos->mFlexGrow; + float flexShrink = stylePos->mFlexShrink; + + // MAIN SIZES (flex base size, min/max size) + // ----------------------------------------- + nscoord flexBaseSize = GET_MAIN_COMPONENT(aAxisTracker, + childRS.ComputedWidth(), + childRS.ComputedHeight()); + nscoord mainMinSize = GET_MAIN_COMPONENT(aAxisTracker, + childRS.ComputedMinWidth(), + childRS.ComputedMinHeight()); + nscoord mainMaxSize = GET_MAIN_COMPONENT(aAxisTracker, + childRS.ComputedMaxWidth(), + childRS.ComputedMaxHeight()); + // This is enforced by the nsHTMLReflowState where these values come from: + MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size"); + + // CROSS MIN/MAX SIZE + // ------------------ + + nscoord crossMinSize = GET_CROSS_COMPONENT(aAxisTracker, + childRS.ComputedMinWidth(), + childRS.ComputedMinHeight()); + nscoord crossMaxSize = GET_CROSS_COMPONENT(aAxisTracker, + childRS.ComputedMaxWidth(), + childRS.ComputedMaxHeight()); + + // SPECIAL-CASE FOR WIDGET-IMPOSED SIZES + // Check if we're a themed widget, in which case we might have a minimum + // main & cross size imposed by our widget (which we can't go below), or + // (more severe) our widget might have only a single valid size. + bool isFixedSizeWidget = false; + const nsStyleDisplay* disp = aChildFrame->StyleDisplay(); + if (aChildFrame->IsThemed(disp)) { + nsIntSize widgetMinSize(0, 0); + bool canOverride = true; + aPresContext->GetTheme()-> + GetMinimumWidgetSize(childRS.rendContext, aChildFrame, + disp->mAppearance, + &widgetMinSize, &canOverride); + + nscoord widgetMainMinSize = + aPresContext->DevPixelsToAppUnits( + aAxisTracker.GetMainComponent(widgetMinSize)); + nscoord widgetCrossMinSize = + aPresContext->DevPixelsToAppUnits( + aAxisTracker.GetCrossComponent(widgetMinSize)); + + // GMWS() returns border-box. We need content-box, so subtract + // borderPadding (but don't let that push our min sizes below 0). + nsMargin& bp = childRS.ComputedPhysicalBorderPadding(); + widgetMainMinSize = std::max(widgetMainMinSize - + aAxisTracker.GetMarginSizeInMainAxis(bp), 0); + widgetCrossMinSize = std::max(widgetCrossMinSize - + aAxisTracker.GetMarginSizeInCrossAxis(bp), 0); + + if (!canOverride) { + // Fixed-size widget: freeze our main-size at the widget's mandated size. + // (Set min and max main-sizes to that size, too, to keep us from + // clamping to any other size later on.) + flexBaseSize = mainMinSize = mainMaxSize = widgetMainMinSize; + crossMinSize = crossMaxSize = widgetCrossMinSize; + isFixedSizeWidget = true; + } else { + // Variable-size widget: ensure our min/max sizes are at least as large + // as the widget's mandated minimum size, so we don't flex below that. + mainMinSize = std::max(mainMinSize, widgetMainMinSize); + mainMaxSize = std::max(mainMaxSize, widgetMainMinSize); + + crossMinSize = std::max(crossMinSize, widgetCrossMinSize); + crossMaxSize = std::max(crossMaxSize, widgetCrossMinSize); + } + } + + // Construct the flex item! + FlexItem* item = new FlexItem(aChildFrame, + flexGrow, flexShrink, flexBaseSize, + mainMinSize, mainMaxSize, + crossMinSize, crossMaxSize, + childRS.ComputedPhysicalMargin(), + childRS.ComputedPhysicalBorderPadding(), + aAxisTracker); + + // If we're inflexible, we can just freeze to our hypothetical main-size + // up-front. Similarly, if we're a fixed-size widget, we only have one + // valid size, so we freeze to keep ourselves from flexing. + if (isFixedSizeWidget || (flexGrow == 0.0f && flexShrink == 0.0f)) { + item->Freeze(); + } + + return item; +} + +nsresult +nsFlexContainerFrame:: + ResolveFlexItemMaxContentSizing(nsPresContext* aPresContext, + FlexItem& aFlexItem, + const nsHTMLReflowState& aParentReflowState, + const FlexboxAxisTracker& aAxisTracker) +{ + if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { + // Nothing to do -- this function is only for measuring flex items + // in a vertical flex container. + return NS_OK; + } + + if (NS_AUTOHEIGHT != aFlexItem.GetFlexBaseSize()) { + // Nothing to do; this function's only relevant for flex items + // with a base size of "auto" (or equivalent). + // XXXdholbert If & when we handle "min-height: min-content" for flex items, + // we'll want to resolve that in this function, too. + return NS_OK; + } + + // If we get here, we're vertical and our main size ended up being + // unconstrained. We need to use our "max-content" height, which is what we + // get from reflowing into our available width. + // Note: This has to come *after* we construct the FlexItem, since we + // invoke at least one convenience method (ResolveStretchedCrossSize) which + // requires a FlexItem. + + // Give the item a special reflow with "mIsFlexContainerMeasuringHeight" + // set. This tells it to behave as if it had "height: auto", regardless + // of what the "height" property is actually set to. + nsHTMLReflowState + childRSForMeasuringHeight(aPresContext, aParentReflowState, + aFlexItem.Frame(), + nsSize(aParentReflowState.ComputedWidth(), + NS_UNCONSTRAINEDSIZE), + -1, -1, nsHTMLReflowState::CALLER_WILL_INIT); + childRSForMeasuringHeight.mFlags.mIsFlexContainerMeasuringHeight = true; + childRSForMeasuringHeight.Init(aPresContext); + + aFlexItem.ResolveStretchedCrossSize(aParentReflowState.ComputedWidth(), + aAxisTracker); + if (aFlexItem.IsStretched()) { + childRSForMeasuringHeight.SetComputedWidth(aFlexItem.GetCrossSize()); + childRSForMeasuringHeight.mFlags.mHResize = true; + } + + // If this item is flexible (vertically), then we assume that the + // computed-height we're reflowing with now could be different + // from the one we'll use for this flex item's "actual" reflow later on. + // In that case, we need to be sure the flex item treats this as a + // vertical resize, even though none of its ancestors are necessarily + // being vertically resized. + // (Note: We don't have to do this for width, because InitResizeFlags + // will always turn on mHResize on when it sees that the computed width + // is different from current width, and that's all we need.) + if (!aFlexItem.IsFrozen()) { // Are we flexible? + childRSForMeasuringHeight.mFlags.mVResize = true; + } + + nsHTMLReflowMetrics childDesiredSize(childRSForMeasuringHeight); + nsReflowStatus childReflowStatus; + const uint32_t flags = NS_FRAME_NO_MOVE_FRAME; + nsresult rv = ReflowChild(aFlexItem.Frame(), aPresContext, + childDesiredSize, childRSForMeasuringHeight, + 0, 0, flags, childReflowStatus); + NS_ENSURE_SUCCESS(rv, rv); + + MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), + "We gave flex item unconstrained available height, so it " + "should be complete"); + + rv = FinishReflowChild(aFlexItem.Frame(), aPresContext, + childDesiredSize, &childRSForMeasuringHeight, + 0, 0, flags); + NS_ENSURE_SUCCESS(rv, rv); + + // Subtract border/padding in vertical axis, to get _just_ + // the effective computed value of the "height" property. + nscoord childDesiredHeight = childDesiredSize.Height() - + childRSForMeasuringHeight.ComputedPhysicalBorderPadding().TopBottom(); + childDesiredHeight = std::max(0, childDesiredHeight); + + aFlexItem.SetFlexBaseSizeAndMainSize(childDesiredHeight); + aFlexItem.SetHadMeasuringReflow(); + + return NS_OK; +} + +FlexItem::FlexItem(nsIFrame* aChildFrame, + float aFlexGrow, float aFlexShrink, nscoord aFlexBaseSize, + nscoord aMainMinSize, nscoord aMainMaxSize, + nscoord aCrossMinSize, nscoord aCrossMaxSize, + nsMargin aMargin, nsMargin aBorderPadding, + const FlexboxAxisTracker& aAxisTracker) + : mFrame(aChildFrame), + mFlexGrow(aFlexGrow), + mFlexShrink(aFlexShrink), + mBorderPadding(aBorderPadding), + mMargin(aMargin), + mMainMinSize(aMainMinSize), + mMainMaxSize(aMainMaxSize), + mCrossMinSize(aCrossMinSize), + mCrossMaxSize(aCrossMaxSize), + mMainPosn(0), + mCrossSize(0), + mCrossPosn(0), + mAscent(0), + mShareOfFlexWeightSoFar(0.0f), + mIsFrozen(false), + mHadMinViolation(false), + mHadMaxViolation(false), + mHadMeasuringReflow(false), + mIsStretched(false), + mIsStrut(false), + mAlignSelf(aChildFrame->StylePosition()->mAlignSelf) +{ + MOZ_ASSERT(mFrame, "expecting a non-null child frame"); + MOZ_ASSERT(mFrame->GetType() != nsGkAtoms::placeholderFrame, + "placeholder frames should not be treated as flex items"); + MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW), + "out-of-flow frames should not be treated as flex items"); + + SetFlexBaseSizeAndMainSize(aFlexBaseSize); + + // Assert that any "auto" margin components are set to 0. + // (We'll resolve them later; until then, we want to treat them as 0-sized.) +#ifdef DEBUG + { + const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin; + NS_FOR_CSS_SIDES(side) { + if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { + MOZ_ASSERT(GetMarginComponentForSide(side) == 0, + "Someone else tried to resolve our auto margin"); + } + } + } +#endif // DEBUG + + // Resolve "align-self: auto" to parent's "align-items" value. + if (mAlignSelf == NS_STYLE_ALIGN_SELF_AUTO) { + mAlignSelf = + mFrame->StyleContext()->GetParent()->StylePosition()->mAlignItems; + } + + // If the flex item's inline axis is the same as the cross axis, then + // 'align-self:baseline' is identical to 'flex-start'. If that's the case, we + // just directly convert our align-self value here, so that we don't have to + // handle this with special cases elsewhere. + // Moreover: for the time being (until we support writing-modes), + // all inline axes are horizontal -- so we can just check if the cross axis + // is horizontal. + // FIXME: Once we support writing-mode (vertical text), this IsAxisHorizontal + // check won't be sufficient anymore -- we'll actually need to compare our + // inline axis vs. the cross axis. + if (mAlignSelf == NS_STYLE_ALIGN_ITEMS_BASELINE && + IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { + mAlignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_START; + } +} + +// Simplified constructor for creating a special "strut" FlexItem, for a child +// with visibility:collapse. The strut has 0 main-size, and it only exists to +// impose a minimum cross size on whichever FlexLine it ends up in. +FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize) + : mFrame(aChildFrame), + mFlexGrow(0.0f), + mFlexShrink(0.0f), + // mBorderPadding uses default constructor, + // mMargin uses default constructor, + mFlexBaseSize(0), + mMainMinSize(0), + mMainMaxSize(0), + mCrossMinSize(0), + mCrossMaxSize(0), + mMainSize(0), + mMainPosn(0), + mCrossSize(aCrossSize), + mCrossPosn(0), + mAscent(0), + mShareOfFlexWeightSoFar(0.0f), + mIsFrozen(true), + mHadMinViolation(false), + mHadMaxViolation(false), + mHadMeasuringReflow(false), + mIsStretched(false), + mIsStrut(true), // (this is the constructor for making struts, after all) + mAlignSelf(NS_STYLE_ALIGN_ITEMS_FLEX_START) +{ + MOZ_ASSERT(mFrame, "expecting a non-null child frame"); + MOZ_ASSERT(NS_STYLE_VISIBILITY_COLLAPSE == + mFrame->StyleVisibility()->mVisible, + "Should only make struts for children with 'visibility:collapse'"); + MOZ_ASSERT(mFrame->GetType() != nsGkAtoms::placeholderFrame, + "placeholder frames should not be treated as flex items"); + MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW), + "out-of-flow frames should not be treated as flex items"); +} + +nscoord +FlexItem::GetBaselineOffsetFromOuterCrossEdge(AxisOrientationType aCrossAxis, + AxisEdgeType aEdge) const +{ + // NOTE: Currently, 'mAscent' (taken from reflow) is an inherently vertical + // measurement -- it's the distance from the border-top edge of this FlexItem + // to its baseline. So, we can really only do baseline alignment when the + // cross axis is vertical. (The FlexItem constructor enforces this when + // resolving the item's "mAlignSelf" value). + MOZ_ASSERT(!IsAxisHorizontal(aCrossAxis), + "Only expecting to be doing baseline computations when the " + "cross axis is vertical"); + + Side sideToMeasureFrom = kAxisOrientationToSidesMap[aCrossAxis][aEdge]; + + nscoord marginTopToBaseline = mAscent + mMargin.top; + + if (sideToMeasureFrom == eSideTop) { + // Measuring from top (normal case): the distance from the margin-box top + // edge to the baseline is just ascent + margin-top. + return marginTopToBaseline; + } + + MOZ_ASSERT(sideToMeasureFrom == eSideBottom, + "We already checked that we're dealing with a vertical axis, and " + "we're not using the top side, so that only leaves the bottom..."); + + // Measuring from bottom: The distance from the margin-box bottom edge to the + // baseline is just the margin-box cross size (i.e. outer cross size), minus + // the already-computed distance from margin-top to baseline. + return GetOuterCrossSize(aCrossAxis) - marginTopToBaseline; +} + +uint32_t +FlexItem::GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const +{ + uint32_t numAutoMargins = 0; + const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin; + for (uint32_t i = 0; i < eNumAxisEdges; i++) { + Side side = kAxisOrientationToSidesMap[aAxis][i]; + if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { + numAutoMargins++; + } + } + + // Mostly for clarity: + MOZ_ASSERT(numAutoMargins <= 2, + "We're just looking at one item along one dimension, so we " + "should only have examined 2 margins"); + + return numAutoMargins; +} + +// Keeps track of our position along a particular axis (where a '0' position +// corresponds to the 'start' edge of that axis). +// This class shouldn't be instantiated directly -- rather, it should only be +// instantiated via its subclasses defined below. +class MOZ_STACK_CLASS PositionTracker { +public: + // Accessor for the current value of the position that we're tracking. + inline nscoord GetPosition() const { return mPosition; } + inline AxisOrientationType GetAxis() const { return mAxis; } + + // Advances our position across the start edge of the given margin, in the + // axis we're tracking. + void EnterMargin(const nsMargin& aMargin) + { + Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start]; + mPosition += MarginComponentForSide(aMargin, side); + } + + // Advances our position across the end edge of the given margin, in the axis + // we're tracking. + void ExitMargin(const nsMargin& aMargin) + { + Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_End]; + mPosition += MarginComponentForSide(aMargin, side); + } + + // Advances our current position from the start side of a child frame's + // border-box to the frame's upper or left edge (depending on our axis). + // (Note that this is a no-op if our axis grows in positive direction.) + void EnterChildFrame(nscoord aChildFrameSize) + { + if (!AxisGrowsInPositiveDirection(mAxis)) + mPosition += aChildFrameSize; + } + + // Advances our current position from a frame's upper or left border-box edge + // (whichever is in the axis we're tracking) to the 'end' side of the frame + // in the axis that we're tracking. (Note that this is a no-op if our axis + // grows in the negative direction.) + void ExitChildFrame(nscoord aChildFrameSize) + { + if (AxisGrowsInPositiveDirection(mAxis)) + mPosition += aChildFrameSize; + } + +protected: + // Protected constructor, to be sure we're only instantiated via a subclass. + PositionTracker(AxisOrientationType aAxis) + : mPosition(0), + mAxis(aAxis) + {} + +private: + // Private copy-constructor, since we don't want any instances of our + // subclasses to be accidentally copied. + PositionTracker(const PositionTracker& aOther) + : mPosition(aOther.mPosition), + mAxis(aOther.mAxis) + {} + +protected: + // Member data: + nscoord mPosition; // The position we're tracking + const AxisOrientationType mAxis; // The axis along which we're moving +}; + +// Tracks our position in the main axis, when we're laying out flex items. +// The "0" position represents the main-start edge of the flex container's +// content-box. +class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker { +public: + MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, + const FlexLine* aLine, + uint8_t aJustifyContent, + nscoord aContentBoxMainSize); + + ~MainAxisPositionTracker() { + MOZ_ASSERT(mNumPackingSpacesRemaining == 0, + "miscounted the number of packing spaces"); + MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0, + "miscounted the number of auto margins"); + } + + // Advances past the packing space (if any) between two flex items + void TraversePackingSpace(); + + // If aItem has any 'auto' margins in the main axis, this method updates the + // corresponding values in its margin. + void ResolveAutoMarginsInMainAxis(FlexItem& aItem); + +private: + nscoord mPackingSpaceRemaining; + uint32_t mNumAutoMarginsInMainAxis; + uint32_t mNumPackingSpacesRemaining; + uint8_t mJustifyContent; +}; + +// Utility class for managing our position along the cross axis along +// the whole flex container (at a higher level than a single line). +// The "0" position represents the cross-start edge of the flex container's +// content-box. +class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker { +public: + CrossAxisPositionTracker(FlexLine* aFirstLine, + uint8_t aAlignContent, + nscoord aContentBoxCrossSize, + bool aIsCrossSizeDefinite, + const FlexboxAxisTracker& aAxisTracker); + + // Advances past the packing space (if any) between two flex lines + void TraversePackingSpace(); + + // Advances past the given FlexLine + void TraverseLine(FlexLine& aLine) { mPosition += aLine.GetLineCrossSize(); } + +private: + // Redeclare the frame-related methods from PositionTracker as private with + // MOZ_DELETE, to be sure (at compile time) that no client code can invoke + // them. (Unlike the other PositionTracker derived classes, this class here + // deals with FlexLines, not with individual FlexItems or frames.) + void EnterMargin(const nsMargin& aMargin) MOZ_DELETE; + void ExitMargin(const nsMargin& aMargin) MOZ_DELETE; + void EnterChildFrame(nscoord aChildFrameSize) MOZ_DELETE; + void ExitChildFrame(nscoord aChildFrameSize) MOZ_DELETE; + + nscoord mPackingSpaceRemaining; + uint32_t mNumPackingSpacesRemaining; + uint8_t mAlignContent; +}; + +// Utility class for managing our position along the cross axis, *within* a +// single flex line. +class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker : public PositionTracker { +public: + SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker); + + void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, + FlexItem& aItem); + + void EnterAlignPackingSpace(const FlexLine& aLine, + const FlexItem& aItem, + const FlexboxAxisTracker& aAxisTracker); + + // Resets our position to the cross-start edge of this line. + inline void ResetPosition() { mPosition = 0; } +}; + +//---------------------------------------------------------------------- + +// Frame class boilerplate +// ======================= + +NS_QUERYFRAME_HEAD(nsFlexContainerFrame) + NS_QUERYFRAME_ENTRY(nsFlexContainerFrame) +NS_QUERYFRAME_TAIL_INHERITING(nsFlexContainerFrameSuper) + +NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame) + +nsIFrame* +NS_NewFlexContainerFrame(nsIPresShell* aPresShell, + nsStyleContext* aContext) +{ + return new (aPresShell) nsFlexContainerFrame(aContext); +} + +//---------------------------------------------------------------------- + +// nsFlexContainerFrame Method Implementations +// =========================================== + +/* virtual */ +nsFlexContainerFrame::~nsFlexContainerFrame() +{ +} + +template +/* static */ bool +nsFlexContainerFrame::SortChildrenIfNeeded() +{ + if (nsIFrame::IsFrameListSorted(mFrames)) { + return false; + } + + nsIFrame::SortFrameList(mFrames); + return true; +} + +/* virtual */ +nsIAtom* +nsFlexContainerFrame::GetType() const +{ + return nsGkAtoms::flexContainerFrame; +} + +#ifdef DEBUG_FRAME_DUMP +nsresult +nsFlexContainerFrame::GetFrameName(nsAString& aResult) const +{ + return MakeFrameName(NS_LITERAL_STRING("FlexContainer"), aResult); +} +#endif + +// Helper for BuildDisplayList, to implement this special-case for flex items +// from the spec: +// Flex items paint exactly the same as block-level elements in the +// normal flow, except that 'z-index' values other than 'auto' create +// a stacking context even if 'position' is 'static'. +// http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#painting +uint32_t +GetDisplayFlagsForFlexItem(nsIFrame* aFrame) +{ + MOZ_ASSERT(aFrame->IsFlexItem(), "Should only be called on flex items"); + + const nsStylePosition* pos = aFrame->StylePosition(); + if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) { + return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT; + } + return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT; +} + +void +nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, + const nsRect& aDirtyRect, + const nsDisplayListSet& aLists) +{ + NS_ASSERTION( + nsIFrame::IsFrameListSorted(mFrames), + "Child frames aren't sorted correctly"); + + DisplayBorderBackgroundOutline(aBuilder, aLists); + + // Our children are all block-level, so their borders/backgrounds all go on + // the BlockBorderBackgrounds list. + nsDisplayListSet childLists(aLists, aLists.BlockBorderBackgrounds()); + for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { + BuildDisplayListForChild(aBuilder, e.get(), aDirtyRect, childLists, + GetDisplayFlagsForFlexItem(e.get())); + } +} + +#ifdef DEBUG +// helper for the debugging method below +bool +FrameWantsToBeInAnonymousFlexItem(nsIFrame* aFrame) +{ + // Note: This needs to match the logic in + // nsCSSFrameConstructor::FrameConstructionItem::NeedsAnonFlexItem() + return (aFrame->IsFrameOfType(nsIFrame::eLineParticipant) || + nsGkAtoms::placeholderFrame == aFrame->GetType()); +} + +// Debugging method, to let us assert that our anonymous flex items are +// set up correctly -- in particular, we assert: +// (1) we don't have any inline non-replaced children +// (2) we don't have any consecutive anonymous flex items +// (3) we don't have any empty anonymous flex items +// +// XXXdholbert This matches what nsCSSFrameConstructor currently does, and what +// the spec used to say. However, the spec has now changed regarding what +// types of content get wrapped in an anonymous flexbox item. The patch that +// implements those changes (in nsCSSFrameConstructor) will need to change +// this method as well. +void +nsFlexContainerFrame::SanityCheckAnonymousFlexItems() const +{ + bool prevChildWasAnonFlexItem = false; + for (nsIFrame* child = mFrames.FirstChild(); child; + child = child->GetNextSibling()) { + MOZ_ASSERT(!FrameWantsToBeInAnonymousFlexItem(child), + "frame wants to be inside an anonymous flex item, " + "but it isn't"); + if (child->StyleContext()->GetPseudo() == + nsCSSAnonBoxes::anonymousFlexItem) { + MOZ_ASSERT(!prevChildWasAnonFlexItem || + HasAnyStateBits(NS_STATE_FLEX_CHILDREN_REORDERED), + "two anon flex items in a row (shouldn't happen, unless our " + "children have been reordered with the 'order' property)"); + + nsIFrame* firstWrappedChild = child->GetFirstPrincipalChild(); + MOZ_ASSERT(firstWrappedChild, + "anonymous flex item is empty (shouldn't happen)"); + prevChildWasAnonFlexItem = true; + } else { + prevChildWasAnonFlexItem = false; + } + } +} +#endif // DEBUG + +// Based on the sign of aTotalViolation, this function freezes a subset of our +// flexible sizes, and restores the remaining ones to their initial pref sizes. +void +FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, + bool aIsFinalIteration) +{ + enum FreezeType { + eFreezeEverything, + eFreezeMinViolations, + eFreezeMaxViolations + }; + + FreezeType freezeType; + if (aTotalViolation == 0) { + freezeType = eFreezeEverything; + } else if (aTotalViolation > 0) { + freezeType = eFreezeMinViolations; + } else { // aTotalViolation < 0 + freezeType = eFreezeMaxViolations; + } + + for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + MOZ_ASSERT(!item->HadMinViolation() || !item->HadMaxViolation(), + "Can have either min or max violation, but not both"); + + if (!item->IsFrozen()) { + if (eFreezeEverything == freezeType || + (eFreezeMinViolations == freezeType && item->HadMinViolation()) || + (eFreezeMaxViolations == freezeType && item->HadMaxViolation())) { + + MOZ_ASSERT(item->GetMainSize() >= item->GetMainMinSize(), + "Freezing item at a size below its minimum"); + MOZ_ASSERT(item->GetMainSize() <= item->GetMainMaxSize(), + "Freezing item at a size above its maximum"); + + item->Freeze(); + } else if (MOZ_UNLIKELY(aIsFinalIteration)) { + // XXXdholbert If & when bug 765861 is fixed, we should upgrade this + // assertion to be fatal except in documents with enormous lengths. + NS_ERROR("Final iteration still has unfrozen items, this shouldn't" + " happen unless there was nscoord under/overflow."); + item->Freeze(); + } // else, we'll reset this item's main size to its flex base size on the + // next iteration of this algorithm. + + // Clear this item's violation(s), now that we've dealt with them + item->ClearViolationFlags(); + } + } +} + +void +FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize) +{ + PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, ("ResolveFlexibleLengths\n")); + if (IsEmpty()) { + return; + } + + // Subtract space occupied by our items' margins/borders/padding, so we can + // just be dealing with the space available for our flex items' content + // boxes. + nscoord spaceReservedForMarginBorderPadding = + mTotalOuterHypotheticalMainSize - mTotalInnerHypotheticalMainSize; + + nscoord spaceAvailableForFlexItemsContentBoxes = + aFlexContainerMainSize - spaceReservedForMarginBorderPadding; + + // Determine whether we're going to be growing or shrinking items. + const bool isUsingFlexGrow = + (mTotalOuterHypotheticalMainSize < aFlexContainerMainSize); + + // NOTE: I claim that this chunk of the algorithm (the looping part) needs to + // run the loop at MOST mNumItems times. This claim should hold up + // because we'll freeze at least one item on each loop iteration, and once + // we've run out of items to freeze, there's nothing left to do. However, + // in most cases, we'll break out of this loop long before we hit that many + // iterations. + for (uint32_t iterationCounter = 0; + iterationCounter < mNumItems; iterationCounter++) { + // Set every not-yet-frozen item's used main size to its + // flex base size, and subtract all the used main sizes from our + // total amount of space to determine the 'available free space' + // (positive or negative) to be distributed among our flexible items. + nscoord availableFreeSpace = spaceAvailableForFlexItemsContentBoxes; + for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + if (!item->IsFrozen()) { + item->SetMainSize(item->GetFlexBaseSize()); + } + availableFreeSpace -= item->GetMainSize(); + } + + PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, + (" available free space = %d\n", availableFreeSpace)); + + // If sign of free space matches the type of flexing that we're doing, give + // each flexible item a portion of availableFreeSpace. + if ((availableFreeSpace > 0 && isUsingFlexGrow) || + (availableFreeSpace < 0 && !isUsingFlexGrow)) { + + // STRATEGY: On each item, we compute & store its "share" of the total + // flex weight that we've seen so far: + // curFlexWeight / runningFlexWeightSum + // + // Then, when we go to actually distribute the space (in the next loop), + // we can simply walk backwards through the elements and give each item + // its "share" multiplied by the remaining available space. + // + // SPECIAL CASE: If the sum of the flex weights is larger than the + // maximum representable float (overflowing to infinity), then we can't + // sensibly divide out proportional shares anymore. In that case, we + // simply treat the flex item(s) with the largest flex weights as if + // their weights were infinite (dwarfing all the others), and we + // distribute all of the available space among them. + float runningFlexWeightSum = 0.0f; + float largestFlexWeight = 0.0f; + uint32_t numItemsWithLargestFlexWeight = 0; + for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + float curFlexWeight = item->GetFlexWeightToUse(isUsingFlexGrow); + MOZ_ASSERT(curFlexWeight >= 0.0f, "weights are non-negative"); + + runningFlexWeightSum += curFlexWeight; + if (NS_finite(runningFlexWeightSum)) { + if (curFlexWeight == 0.0f) { + item->SetShareOfFlexWeightSoFar(0.0f); + } else { + item->SetShareOfFlexWeightSoFar(curFlexWeight / + runningFlexWeightSum); + } + } // else, the sum of weights overflows to infinity, in which + // case we don't bother with "SetShareOfFlexWeightSoFar" since + // we know we won't use it. (instead, we'll just give every + // item with the largest flex weight an equal share of space.) + + // Update our largest-flex-weight tracking vars + if (curFlexWeight > largestFlexWeight) { + largestFlexWeight = curFlexWeight; + numItemsWithLargestFlexWeight = 1; + } else if (curFlexWeight == largestFlexWeight) { + numItemsWithLargestFlexWeight++; + } + } + + if (runningFlexWeightSum != 0.0f) { // no distribution if no flexibility + PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, + (" Distributing available space:")); + // NOTE: It's important that we traverse our items in *reverse* order + // here, for correct width distribution according to the items' + // "ShareOfFlexWeightSoFar" progressively-calculated values. + for (FlexItem* item = mItems.getLast(); item; + item = item->getPrevious()) { + + if (!item->IsFrozen()) { + // To avoid rounding issues, we compute the change in size for this + // item, and then subtract it from the remaining available space. + nscoord sizeDelta = 0; + if (NS_finite(runningFlexWeightSum)) { + float myShareOfRemainingSpace = + item->GetShareOfFlexWeightSoFar(); + + MOZ_ASSERT(myShareOfRemainingSpace >= 0.0f && + myShareOfRemainingSpace <= 1.0f, + "my share should be nonnegative fractional amount"); + + if (myShareOfRemainingSpace == 1.0f) { + // (We special-case 1.0f to avoid float error from converting + // availableFreeSpace from integer*1.0f --> float --> integer) + sizeDelta = availableFreeSpace; + } else if (myShareOfRemainingSpace > 0.0f) { + sizeDelta = NSToCoordRound(availableFreeSpace * + myShareOfRemainingSpace); + } + } else if (item->GetFlexWeightToUse(isUsingFlexGrow) == + largestFlexWeight) { + // Total flexibility is infinite, so we're just distributing + // the available space equally among the items that are tied for + // having the largest weight (and this is one of those items). + sizeDelta = + NSToCoordRound(availableFreeSpace / + float(numItemsWithLargestFlexWeight)); + numItemsWithLargestFlexWeight--; + } + + availableFreeSpace -= sizeDelta; + + item->SetMainSize(item->GetMainSize() + sizeDelta); + PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, + (" child %p receives %d, for a total of %d\n", + item, sizeDelta, item->GetMainSize())); + } + } + } + } + + // Fix min/max violations: + nscoord totalViolation = 0; // keeps track of adjustments for min/max + PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, + (" Checking for violations:")); + + for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + if (!item->IsFrozen()) { + if (item->GetMainSize() < item->GetMainMinSize()) { + // min violation + totalViolation += item->GetMainMinSize() - item->GetMainSize(); + item->SetMainSize(item->GetMainMinSize()); + item->SetHadMinViolation(); + } else if (item->GetMainSize() > item->GetMainMaxSize()) { + // max violation + totalViolation += item->GetMainMaxSize() - item->GetMainSize(); + item->SetMainSize(item->GetMainMaxSize()); + item->SetHadMaxViolation(); + } + } + } + + FreezeOrRestoreEachFlexibleSize(totalViolation, + iterationCounter + 1 == mNumItems); + + PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, + (" Total violation: %d\n", totalViolation)); + + if (totalViolation == 0) { + break; + } + } + + // Post-condition: all lengths should've been frozen. +#ifdef DEBUG + for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + MOZ_ASSERT(item->IsFrozen(), + "All flexible lengths should've been resolved"); + } +#endif // DEBUG +} + +MainAxisPositionTracker:: + MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, + const FlexLine* aLine, + uint8_t aJustifyContent, + nscoord aContentBoxMainSize) + : PositionTracker(aAxisTracker.GetMainAxis()), + mPackingSpaceRemaining(aContentBoxMainSize), // we chip away at this below + mNumAutoMarginsInMainAxis(0), + mNumPackingSpacesRemaining(0), + mJustifyContent(aJustifyContent) +{ + // mPackingSpaceRemaining is initialized to the container's main size. Now + // we'll subtract out the main sizes of our flex items, so that it ends up + // with the *actual* amount of packing space. + for (const FlexItem* item = aLine->GetFirstItem(); item; + item = item->getNext()) { + mPackingSpaceRemaining -= item->GetOuterMainSize(mAxis); + mNumAutoMarginsInMainAxis += item->GetNumAutoMarginsInAxis(mAxis); + } + + if (mPackingSpaceRemaining <= 0) { + // No available packing space to use for resolving auto margins. + mNumAutoMarginsInMainAxis = 0; + } + + // If packing space is negative, 'space-between' behaves like 'flex-start', + // and 'space-around' behaves like 'center'. In those cases, it's simplest to + // just pretend we have a different 'justify-content' value and share code. + if (mPackingSpaceRemaining < 0) { + if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN) { + mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_FLEX_START; + } else if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND) { + mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_CENTER; + } + } + + // If our main axis is (internally) reversed, swap the justify-content + // "flex-start" and "flex-end" behaviors: + if (aAxisTracker.AreAxesInternallyReversed()) { + if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_FLEX_START) { + mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_FLEX_END; + } else if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_FLEX_END) { + mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_FLEX_START; + } + } + + // Figure out how much space we'll set aside for auto margins or + // packing spaces, and advance past any leading packing-space. + if (mNumAutoMarginsInMainAxis == 0 && + mPackingSpaceRemaining != 0 && + !aLine->IsEmpty()) { + switch (mJustifyContent) { + case NS_STYLE_JUSTIFY_CONTENT_FLEX_START: + // All packing space should go at the end --> nothing to do here. + break; + case NS_STYLE_JUSTIFY_CONTENT_FLEX_END: + // All packing space goes at the beginning + mPosition += mPackingSpaceRemaining; + break; + case NS_STYLE_JUSTIFY_CONTENT_CENTER: + // Half the packing space goes at the beginning + mPosition += mPackingSpaceRemaining / 2; + break; + case NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN: + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "negative packing space should make us use 'flex-start' " + "instead of 'space-between'"); + // 1 packing space between each flex item, no packing space at ends. + mNumPackingSpacesRemaining = aLine->NumItems() - 1; + break; + case NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND: + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "negative packing space should make us use 'center' " + "instead of 'space-around'"); + // 1 packing space between each flex item, plus half a packing space + // at beginning & end. So our number of full packing-spaces is equal + // to the number of flex items. + mNumPackingSpacesRemaining = aLine->NumItems(); + if (mNumPackingSpacesRemaining > 0) { + // The edges (start/end) share one full packing space + nscoord totalEdgePackingSpace = + mPackingSpaceRemaining / mNumPackingSpacesRemaining; + + // ...and we'll use half of that right now, at the start + mPosition += totalEdgePackingSpace / 2; + // ...but we need to subtract all of it right away, so that we won't + // hand out any of it to intermediate packing spaces. + mPackingSpaceRemaining -= totalEdgePackingSpace; + mNumPackingSpacesRemaining--; + } + break; + default: + MOZ_CRASH("Unexpected justify-content value"); + } + } + + MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || + mNumAutoMarginsInMainAxis == 0, + "extra space should either go to packing space or to " + "auto margins, but not to both"); +} + +void +MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) +{ + if (mNumAutoMarginsInMainAxis) { + const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin; + for (uint32_t i = 0; i < eNumAxisEdges; i++) { + Side side = kAxisOrientationToSidesMap[mAxis][i]; + if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { + // NOTE: This integer math will skew the distribution of remainder + // app-units towards the end, which is fine. + nscoord curAutoMarginSize = + mPackingSpaceRemaining / mNumAutoMarginsInMainAxis; + + MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, + "Expecting auto margins to have value '0' before we " + "resolve them"); + aItem.SetMarginComponentForSide(side, curAutoMarginSize); + + mNumAutoMarginsInMainAxis--; + mPackingSpaceRemaining -= curAutoMarginSize; + } + } + } +} + +void +MainAxisPositionTracker::TraversePackingSpace() +{ + if (mNumPackingSpacesRemaining) { + MOZ_ASSERT(mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN || + mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND, + "mNumPackingSpacesRemaining only applies for " + "space-between/space-around"); + + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "ran out of packing space earlier than we expected"); + + // NOTE: This integer math will skew the distribution of remainder + // app-units towards the end, which is fine. + nscoord curPackingSpace = + mPackingSpaceRemaining / mNumPackingSpacesRemaining; + + mPosition += curPackingSpace; + mNumPackingSpacesRemaining--; + mPackingSpaceRemaining -= curPackingSpace; + } +} + +CrossAxisPositionTracker:: + CrossAxisPositionTracker(FlexLine* aFirstLine, + uint8_t aAlignContent, + nscoord aContentBoxCrossSize, + bool aIsCrossSizeDefinite, + const FlexboxAxisTracker& aAxisTracker) + : PositionTracker(aAxisTracker.GetCrossAxis()), + mPackingSpaceRemaining(0), + mNumPackingSpacesRemaining(0), + mAlignContent(aAlignContent) +{ + MOZ_ASSERT(aFirstLine, "null first line pointer"); + + if (aIsCrossSizeDefinite && !aFirstLine->getNext()) { + // "If the flex container has only a single line (even if it's a + // multi-line flex container) and has a definite cross size, the cross + // size of the flex line is the flex container's inner cross size." + // SOURCE: http://dev.w3.org/csswg/css-flexbox/#algo-line-break + // NOTE: This means (by definition) that there's no packing space, which + // means we don't need to be concerned with "align-conent" at all and we + // can return early. This is handy, because this is the usual case (for + // single-line flexbox). + aFirstLine->SetLineCrossSize(aContentBoxCrossSize); + return; + } + + // NOTE: The rest of this function should essentially match + // MainAxisPositionTracker's constructor, though with FlexLines instead of + // FlexItems, and with the additional value "stretch" (and of course with + // cross sizes instead of main sizes.) + + // Figure out how much packing space we have (container's cross size minus + // all the lines' cross sizes). Also, share this loop to count how many + // lines we have. (We need that count in some cases below.) + mPackingSpaceRemaining = aContentBoxCrossSize; + uint32_t numLines = 0; + for (FlexLine* line = aFirstLine; line; line = line->getNext()) { + mPackingSpaceRemaining -= line->GetLineCrossSize(); + numLines++; + } + + // If packing space is negative, 'space-between' and 'stretch' behave like + // 'flex-start', and 'space-around' behaves like 'center'. In those cases, + // it's simplest to just pretend we have a different 'align-content' value + // and share code. + if (mPackingSpaceRemaining < 0) { + if (mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_BETWEEN || + mAlignContent == NS_STYLE_ALIGN_CONTENT_STRETCH) { + mAlignContent = NS_STYLE_ALIGN_CONTENT_FLEX_START; + } else if (mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_AROUND) { + mAlignContent = NS_STYLE_ALIGN_CONTENT_CENTER; + } + } + + // If our cross axis is (internally) reversed, swap the align-content + // "flex-start" and "flex-end" behaviors: + if (aAxisTracker.AreAxesInternallyReversed()) { + if (mAlignContent == NS_STYLE_ALIGN_CONTENT_FLEX_START) { + mAlignContent = NS_STYLE_ALIGN_CONTENT_FLEX_END; + } else if (mAlignContent == NS_STYLE_ALIGN_CONTENT_FLEX_END) { + mAlignContent = NS_STYLE_ALIGN_CONTENT_FLEX_START; + } + } + + // Figure out how much space we'll set aside for packing spaces, and advance + // past any leading packing-space. + if (mPackingSpaceRemaining != 0) { + switch (mAlignContent) { + case NS_STYLE_ALIGN_CONTENT_FLEX_START: + // All packing space should go at the end --> nothing to do here. + break; + case NS_STYLE_ALIGN_CONTENT_FLEX_END: + // All packing space goes at the beginning + mPosition += mPackingSpaceRemaining; + break; + case NS_STYLE_ALIGN_CONTENT_CENTER: + // Half the packing space goes at the beginning + mPosition += mPackingSpaceRemaining / 2; + break; + case NS_STYLE_ALIGN_CONTENT_SPACE_BETWEEN: + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "negative packing space should make us use 'flex-start' " + "instead of 'space-between'"); + // 1 packing space between each flex line, no packing space at ends. + mNumPackingSpacesRemaining = numLines - 1; + break; + case NS_STYLE_ALIGN_CONTENT_SPACE_AROUND: { + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "negative packing space should make us use 'center' " + "instead of 'space-around'"); + // 1 packing space between each flex line, plus half a packing space + // at beginning & end. So our number of full packing-spaces is equal + // to the number of flex lines. + mNumPackingSpacesRemaining = numLines; + // The edges (start/end) share one full packing space + nscoord totalEdgePackingSpace = + mPackingSpaceRemaining / mNumPackingSpacesRemaining; + + // ...and we'll use half of that right now, at the start + mPosition += totalEdgePackingSpace / 2; + // ...but we need to subtract all of it right away, so that we won't + // hand out any of it to intermediate packing spaces. + mPackingSpaceRemaining -= totalEdgePackingSpace; + mNumPackingSpacesRemaining--; + break; + } + case NS_STYLE_ALIGN_CONTENT_STRETCH: { + // Split space equally between the lines: + MOZ_ASSERT(mPackingSpaceRemaining > 0, + "negative packing space should make us use 'flex-start' " + "instead of 'stretch' (and we shouldn't bother with this " + "code if we have 0 packing space)"); + + uint32_t numLinesLeft = numLines; + for (FlexLine* line = aFirstLine; line; line = line->getNext()) { + // Our share is the amount of space remaining, divided by the number + // of lines remainig. + MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines"); + nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft; + nscoord newSize = line->GetLineCrossSize() + shareOfExtraSpace; + line->SetLineCrossSize(newSize); + + mPackingSpaceRemaining -= shareOfExtraSpace; + numLinesLeft--; + } + MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines"); + break; + } + default: + MOZ_CRASH("Unexpected align-content value"); + } + } +} + +void +CrossAxisPositionTracker::TraversePackingSpace() +{ + if (mNumPackingSpacesRemaining) { + MOZ_ASSERT(mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_BETWEEN || + mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_AROUND, + "mNumPackingSpacesRemaining only applies for " + "space-between/space-around"); + + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "ran out of packing space earlier than we expected"); + + // NOTE: This integer math will skew the distribution of remainder + // app-units towards the end, which is fine. + nscoord curPackingSpace = + mPackingSpaceRemaining / mNumPackingSpacesRemaining; + + mPosition += curPackingSpace; + mNumPackingSpacesRemaining--; + mPackingSpaceRemaining -= curPackingSpace; + } +} + +SingleLineCrossAxisPositionTracker:: + SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker) + : PositionTracker(aAxisTracker.GetCrossAxis()) +{ +} + +void +FlexLine::ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker) +{ + nscoord crossStartToFurthestBaseline = nscoord_MIN; + nscoord crossEndToFurthestBaseline = nscoord_MIN; + nscoord largestOuterCrossSize = 0; + for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + nscoord curOuterCrossSize = + item->GetOuterCrossSize(aAxisTracker.GetCrossAxis()); + + if (item->GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE && + item->GetNumAutoMarginsInAxis(aAxisTracker.GetCrossAxis()) == 0) { + // FIXME: Once we support "writing-mode", we'll have to do baseline + // alignment in vertical flex containers here (w/ horizontal cross-axes). + + // Find distance from our item's cross-start and cross-end margin-box + // edges to its baseline. + // + // Here's a diagram of a flex-item that we might be doing this on. + // "mmm" is the margin-box, "bbb" is the border-box. The bottom of + // the text "BASE" is the baseline. + // + // ---(cross-start)--- + // ___ ___ ___ + // mmmmmmmmmmmm | |margin-start | + // m m | _|_ ___ | + // m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline + // m b b m | |ascent | + // m b BASE b m | _|_ _|_ + // m b b m | | + // m bbbbbbbb m | |crossEndToBaseline + // m m | | + // mmmmmmmmmmmm _|_ _|_ + // + // ---(cross-end)--- + // + // We already have the curOuterCrossSize, margin-start, and the ascent. + // * We can get crossStartToBaseline by adding margin-start + ascent. + // * If we subtract that from the curOuterCrossSize, we get + // crossEndToBaseline. + + nscoord crossStartToBaseline = + item->GetBaselineOffsetFromOuterCrossEdge(aAxisTracker.GetCrossAxis(), + eAxisEdge_Start); + nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline; + + // Now, update our "largest" values for these (across all the flex items + // in this flex line), so we can use them in computing the line's cross + // size below: + crossStartToFurthestBaseline = std::max(crossStartToFurthestBaseline, + crossStartToBaseline); + crossEndToFurthestBaseline = std::max(crossEndToFurthestBaseline, + crossEndToBaseline); + } else { + largestOuterCrossSize = std::max(largestOuterCrossSize, curOuterCrossSize); + } + } + + // The line's baseline offset is the distance from the line's edge (start or + // end, depending on whether we've flipped the axes) to the furthest + // item-baseline. The item(s) with that baseline will be exactly aligned with + // the line's edge. + mBaselineOffset = aAxisTracker.AreAxesInternallyReversed() ? + crossEndToFurthestBaseline : crossStartToFurthestBaseline; + + // The line's cross-size is the larger of: + // (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of + // all baseline-aligned items with no cross-axis auto margins... + // and + // (b) largest cross-size of all other children. + mLineCrossSize = std::max(crossStartToFurthestBaseline + + crossEndToFurthestBaseline, + largestOuterCrossSize); +} + +void +FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize, + const FlexboxAxisTracker& aAxisTracker) +{ + AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis(); + // We stretch IFF we are align-self:stretch, have no auto margins in + // cross axis, and have cross-axis size property == "auto". If any of those + // conditions don't hold up, we won't stretch. + if (mAlignSelf != NS_STYLE_ALIGN_ITEMS_STRETCH || + GetNumAutoMarginsInAxis(crossAxis) != 0 || + eStyleUnit_Auto != GetSizePropertyForAxis(mFrame, crossAxis).GetUnit()) { + return; + } + + // If we've already been stretched, we can bail out early, too. + // No need to redo the calculation. + if (mIsStretched) { + return; + } + + // Reserve space for margins & border & padding, and then use whatever + // remains as our item's cross-size (clamped to its min/max range). + nscoord stretchedSize = aLineCrossSize - + GetMarginBorderPaddingSizeInAxis(crossAxis); + + stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize); + + // Update the cross-size & make a note that it's stretched, so we know to + // override the reflow state's computed cross-size in our final reflow. + SetCrossSize(stretchedSize); + mIsStretched = true; +} + +void +SingleLineCrossAxisPositionTracker:: + ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, + FlexItem& aItem) +{ + // Subtract the space that our item is already occupying, to see how much + // space (if any) is available for its auto margins. + nscoord spaceForAutoMargins = aLine.GetLineCrossSize() - + aItem.GetOuterCrossSize(mAxis); + + if (spaceForAutoMargins <= 0) { + return; // No available space --> nothing to do + } + + uint32_t numAutoMargins = aItem.GetNumAutoMarginsInAxis(mAxis); + if (numAutoMargins == 0) { + return; // No auto margins --> nothing to do. + } + + // OK, we have at least one auto margin and we have some available space. + // Give each auto margin a share of the space. + const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin; + for (uint32_t i = 0; i < eNumAxisEdges; i++) { + Side side = kAxisOrientationToSidesMap[mAxis][i]; + if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { + MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, + "Expecting auto margins to have value '0' before we " + "update them"); + + // NOTE: integer divison is fine here; numAutoMargins is either 1 or 2. + // If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half. + nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins; + aItem.SetMarginComponentForSide(side, curAutoMarginSize); + numAutoMargins--; + spaceForAutoMargins -= curAutoMarginSize; + } + } +} + +void +SingleLineCrossAxisPositionTracker:: + EnterAlignPackingSpace(const FlexLine& aLine, + const FlexItem& aItem, + const FlexboxAxisTracker& aAxisTracker) +{ + // We don't do align-self alignment on items that have auto margins + // in the cross axis. + if (aItem.GetNumAutoMarginsInAxis(mAxis)) { + return; + } + + uint8_t alignSelf = aItem.GetAlignSelf(); + // NOTE: 'stretch' behaves like 'flex-start' once we've stretched any + // auto-sized items (which we've already done). + if (alignSelf == NS_STYLE_ALIGN_ITEMS_STRETCH) { + alignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_START; + } + + // If our cross axis is (internally) reversed, swap the align-self + // "flex-start" and "flex-end" behaviors: + if (aAxisTracker.AreAxesInternallyReversed()) { + if (alignSelf == NS_STYLE_ALIGN_ITEMS_FLEX_START) { + alignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_END; + } else if (alignSelf == NS_STYLE_ALIGN_ITEMS_FLEX_END) { + alignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_START; + } + } + + switch (alignSelf) { + case NS_STYLE_ALIGN_ITEMS_FLEX_START: + // No space to skip over -- we're done. + break; + case NS_STYLE_ALIGN_ITEMS_FLEX_END: + mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis); + break; + case NS_STYLE_ALIGN_ITEMS_CENTER: + // Note: If cross-size is odd, the "after" space will get the extra unit. + mPosition += + (aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis)) / 2; + break; + case NS_STYLE_ALIGN_ITEMS_BASELINE: { + // Normally, baseline-aligned items are collectively aligned with the + // line's cross-start edge; however, if our cross axis is (internally) + // reversed, we instead align them with the cross-end edge. + nscoord itemBaselineOffset = + aItem.GetBaselineOffsetFromOuterCrossEdge(mAxis, + aAxisTracker.AreAxesInternallyReversed() ? + eAxisEdge_End : eAxisEdge_Start); + + nscoord lineBaselineOffset = aLine.GetBaselineOffset(); + + NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset, + "failed at finding largest baseline offset"); + + // How much do we need to adjust our position (from the line edge), + // to get the item's baseline to hit the line's baseline offset: + nscoord baselineDiff = lineBaselineOffset - itemBaselineOffset; + + if (aAxisTracker.AreAxesInternallyReversed()) { + // Advance to align item w/ line's flex-end edge (as in FLEX_END case): + mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis); + // ...and step *back* by the baseline adjustment: + mPosition -= baselineDiff; + } else { + // mPosition is already at line's flex-start edge. + // From there, we step *forward* by the baseline adjustment: + mPosition += baselineDiff; + } + break; + } + default: + NS_NOTREACHED("Unexpected align-self value"); + break; + } +} + +FlexboxAxisTracker::FlexboxAxisTracker( + nsFlexContainerFrame* aFlexContainerFrame) + : mAreAxesInternallyReversed(false) +{ + const nsStylePosition* pos = aFlexContainerFrame->StylePosition(); + uint32_t flexDirection = pos->mFlexDirection; + uint32_t cssDirection = + aFlexContainerFrame->StyleVisibility()->mDirection; + + MOZ_ASSERT(cssDirection == NS_STYLE_DIRECTION_LTR || + cssDirection == NS_STYLE_DIRECTION_RTL, + "Unexpected computed value for 'direction' property"); + // (Not asserting for flexDirection here; it's checked by the switch below.) + + // These are defined according to writing-modes' definitions of + // start/end (for the inline dimension) and before/after (for the block + // dimension), here: + // http://www.w3.org/TR/css3-writing-modes/#logical-directions + // (NOTE: I'm intentionally not calling this "inlineAxis"/"blockAxis", since + // those terms have explicit definition in the writing-modes spec, which are + // the opposite of how I'd be using them here.) + // XXXdholbert Once we support the 'writing-mode' property, use its value + // here to further customize inlineDimension & blockDimension. + + // Inline dimension ("start-to-end"): + AxisOrientationType inlineDimension = + cssDirection == NS_STYLE_DIRECTION_RTL ? eAxis_RL : eAxis_LR; + + // Block dimension ("before-to-after"): + AxisOrientationType blockDimension = eAxis_TB; + + // Determine main axis: + switch (flexDirection) { + case NS_STYLE_FLEX_DIRECTION_ROW: + mMainAxis = inlineDimension; + break; + case NS_STYLE_FLEX_DIRECTION_ROW_REVERSE: + mMainAxis = GetReverseAxis(inlineDimension); + break; + case NS_STYLE_FLEX_DIRECTION_COLUMN: + mMainAxis = blockDimension; + break; + case NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE: + mMainAxis = GetReverseAxis(blockDimension); + break; + default: + MOZ_CRASH("Unexpected computed value for 'flex-flow' property"); + } + + // Determine cross axis: + // (This is set up so that a bogus |flexDirection| value will + // give us blockDimension. + if (flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN || + flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE) { + mCrossAxis = inlineDimension; + } else { + mCrossAxis = blockDimension; + } + + // "flex-wrap: wrap-reverse" reverses our cross axis. + if (pos->mFlexWrap == NS_STYLE_FLEX_WRAP_WRAP_REVERSE) { + mCrossAxis = GetReverseAxis(mCrossAxis); + } + + // Master switch to enable/disable bug 983427's code for reversing our axes + // and reversing some logic, to avoid reflowing children in bottom-to-top + // order. (This switch can be removed eventually, but for now, it allows + // this special-case code path to be compared against the normal code path.) + static bool sPreventBottomToTopChildOrdering = true; + + if (sPreventBottomToTopChildOrdering) { + // If either axis is bottom-to-top, we flip both axes (and set a flag + // so that we can flip some logic to make the reversal transparent). + if (eAxis_BT == mMainAxis || eAxis_BT == mCrossAxis) { + mMainAxis = GetReverseAxis(mMainAxis); + mCrossAxis = GetReverseAxis(mCrossAxis); + mAreAxesInternallyReversed = true; + } + } + + MOZ_ASSERT(IsAxisHorizontal(mMainAxis) != IsAxisHorizontal(mCrossAxis), + "main & cross axes should be in different dimensions"); +} + +// Allocates a new FlexLine, adds it to the given LinkedList (at the front or +// back depending on aShouldInsertAtFront), and returns a pointer to it. +static FlexLine* +AddNewFlexLineToList(LinkedList& aLines, + bool aShouldInsertAtFront) +{ + FlexLine* newLine = new FlexLine(); + if (aShouldInsertAtFront) { + aLines.insertFront(newLine); + } else { + aLines.insertBack(newLine); + } + return newLine; +} + +nsresult +nsFlexContainerFrame::GenerateFlexLines( + nsPresContext* aPresContext, + const nsHTMLReflowState& aReflowState, + nscoord aContentBoxMainSize, + nscoord aAvailableHeightForContent, + const nsTArray& aStruts, + const FlexboxAxisTracker& aAxisTracker, + LinkedList& aLines) +{ + MOZ_ASSERT(aLines.isEmpty(), "Expecting outparam to start out empty"); + + const bool isSingleLine = + NS_STYLE_FLEX_WRAP_NOWRAP == aReflowState.mStylePosition->mFlexWrap; + + // If we're transparently reversing axes, then we'll need to link up our + // FlexItems and FlexLines in the reverse order, so that the rest of flex + // layout (with flipped axes) will still produce the correct result. + // Here, we declare a convenience bool that we'll pass when adding a new + // FlexLine or FlexItem, to make us insert it at the beginning of its list + // (so the list ends up reversed). + const bool shouldInsertAtFront = aAxisTracker.AreAxesInternallyReversed(); + + // We have at least one FlexLine. Even an empty flex container has a single + // (empty) flex line. + FlexLine* curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); + + nscoord wrapThreshold; + if (isSingleLine) { + // Not wrapping. Set threshold to sentinel value that tells us not to wrap. + wrapThreshold = NS_UNCONSTRAINEDSIZE; + } else { + // Wrapping! Set wrap threshold to flex container's content-box main-size. + wrapThreshold = aContentBoxMainSize; + + // If the flex container doesn't have a definite content-box main-size + // (e.g. if we're 'height:auto'), make sure we at least wrap when we hit + // its max main-size. + if (wrapThreshold == NS_UNCONSTRAINEDSIZE) { + const nscoord flexContainerMaxMainSize = + GET_MAIN_COMPONENT(aAxisTracker, + aReflowState.ComputedMaxWidth(), + aReflowState.ComputedMaxHeight()); + + wrapThreshold = flexContainerMaxMainSize; + } + + // Also: if we're vertical and paginating, we may need to wrap sooner + // (before we run off the end of the page) + if (!IsAxisHorizontal(aAxisTracker.GetMainAxis()) && + aAvailableHeightForContent != NS_UNCONSTRAINEDSIZE) { + wrapThreshold = std::min(wrapThreshold, aAvailableHeightForContent); + } + } + + // Tracks the index of the next strut, in aStruts (and when this hits + // aStruts.Length(), that means there are no more struts): + uint32_t nextStrutIdx = 0; + + // Overall index of the current flex item in the flex container. (This gets + // checked against entries in aStruts.) + uint32_t itemIdxInContainer = 0; + + for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { + nsIFrame* childFrame = e.get(); + + // Honor "page-break-before", if we're multi-line and this line isn't empty: + if (!isSingleLine && !curLine->IsEmpty() && + childFrame->StyleDisplay()->mBreakBefore) { + curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); + } + + nsAutoPtr item; + if (nextStrutIdx < aStruts.Length() && + aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) { + + // Use the simplified "strut" FlexItem constructor: + item = new FlexItem(childFrame, aStruts[nextStrutIdx].mStrutCrossSize); + nextStrutIdx++; + } else { + item = GenerateFlexItemForChild(aPresContext, childFrame, + aReflowState, aAxisTracker); + + nsresult rv = ResolveFlexItemMaxContentSizing(aPresContext, *item, + aReflowState, aAxisTracker); + NS_ENSURE_SUCCESS(rv,rv); + } + + nscoord itemInnerHypotheticalMainSize = item->GetMainSize(); + nscoord itemOuterHypotheticalMainSize = + item->GetOuterMainSize(aAxisTracker.GetMainAxis()); + + // Check if we need to wrap |item| to a new line + // (i.e. check if its outer hypothetical main size pushes our line over + // the threshold) + if (wrapThreshold != NS_UNCONSTRAINEDSIZE && + !curLine->IsEmpty() && // No need to wrap at start of a line. + wrapThreshold < (curLine->GetTotalOuterHypotheticalMainSize() + + itemOuterHypotheticalMainSize)) { + curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); + } + + // Add item to current flex line (and update the line's bookkeeping about + // how large its items collectively are). + curLine->AddItem(item.forget(), shouldInsertAtFront, + itemInnerHypotheticalMainSize, + itemOuterHypotheticalMainSize); + + // Honor "page-break-after", if we're multi-line and have more children: + if (!isSingleLine && childFrame->GetNextSibling() && + childFrame->StyleDisplay()->mBreakAfter) { + curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); + } + itemIdxInContainer++; + } + + return NS_OK; +} + +// Retrieves the content-box main-size of our flex container from the +// reflow state (specifically, the main-size of *this continuation* of the +// flex container). +nscoord +nsFlexContainerFrame::GetMainSizeFromReflowState( + const nsHTMLReflowState& aReflowState, + const FlexboxAxisTracker& aAxisTracker) +{ + if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { + // Horizontal case is easy -- our main size is our computed width + // (which is already resolved). + return aReflowState.ComputedWidth(); + } + + return GetEffectiveComputedHeight(aReflowState); +} + +// Returns the largest outer hypothetical main-size of any line in |aLines|. +// (i.e. the hypothetical main-size of the largest line) +static nscoord +GetLargestLineMainSize(const FlexLine* aFirstLine) +{ + nscoord largestLineOuterSize = 0; + for (const FlexLine* line = aFirstLine; line; line = line->getNext()) { + largestLineOuterSize = std::max(largestLineOuterSize, + line->GetTotalOuterHypotheticalMainSize()); + } + return largestLineOuterSize; +} + +// Returns the content-box main-size of our flex container, based on the +// available height (if appropriate) and the main-sizes of the flex items. +static nscoord +ClampFlexContainerMainSize(const nsHTMLReflowState& aReflowState, + const FlexboxAxisTracker& aAxisTracker, + nscoord aUnclampedMainSize, + nscoord aAvailableHeightForContent, + const FlexLine* aFirstLine, + nsReflowStatus& aStatus) +{ + MOZ_ASSERT(aFirstLine, "null first line pointer"); + + if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { + // Horizontal case is easy -- our main size should already be resolved + // before we get a call to Reflow. We don't have to worry about doing + // page-breaking or shrinkwrapping in the horizontal axis. + return aUnclampedMainSize; + } + + if (aUnclampedMainSize != NS_INTRINSICSIZE) { + // Vertical case, with fixed height: + if (aAvailableHeightForContent == NS_UNCONSTRAINEDSIZE || + aUnclampedMainSize < aAvailableHeightForContent) { + // Not in a fragmenting context, OR no need to fragment because we have + // more available height than we need. Either way, just use our fixed + // height. (Note that the reflow state has already done the appropriate + // min/max-height clamping.) + return aUnclampedMainSize; + } + + // Fragmenting *and* our fixed height is too tall for available height: + // Mark incomplete so we get a next-in-flow, and take up all of the + // available height (or the amount of height required by our children, if + // that's larger; but of course not more than our own computed height). + // XXXdholbert For now, we don't support pushing children to our next + // continuation or splitting children, so "amount of height required by + // our children" is just the main-size (height) of our longest flex line. + NS_FRAME_SET_INCOMPLETE(aStatus); + nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine); + + if (largestLineOuterSize <= aAvailableHeightForContent) { + return aAvailableHeightForContent; + } + return std::min(aUnclampedMainSize, largestLineOuterSize); + } + + // Vertical case, with auto-height: + // Resolve auto-height to the largest FlexLine-length, clamped to our + // computed min/max main-size properties (min-height & max-height). + // XXXdholbert Handle constrained-aAvailableHeightForContent case here. + nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine); + return NS_CSS_MINMAX(largestLineOuterSize, + aReflowState.ComputedMinHeight(), + aReflowState.ComputedMaxHeight()); +} + +nscoord +nsFlexContainerFrame::ComputeCrossSize(const nsHTMLReflowState& aReflowState, + const FlexboxAxisTracker& aAxisTracker, + nscoord aSumLineCrossSizes, + nscoord aAvailableHeightForContent, + bool* aIsDefinite, + nsReflowStatus& aStatus) +{ + MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null"); + + if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { + // Cross axis is horizontal: our cross size is our computed width + // (which is already resolved). + *aIsDefinite = true; + return aReflowState.ComputedWidth(); + } + + nscoord effectiveComputedHeight = GetEffectiveComputedHeight(aReflowState); + if (effectiveComputedHeight != NS_INTRINSICSIZE) { + // Cross-axis is vertical, and we have a fixed height: + *aIsDefinite = true; + if (aAvailableHeightForContent == NS_UNCONSTRAINEDSIZE || + effectiveComputedHeight < aAvailableHeightForContent) { + // Not in a fragmenting context, OR no need to fragment because we have + // more available height than we need. Either way, just use our fixed + // height. (Note that the reflow state has already done the appropriate + // min/max-height clamping.) + return effectiveComputedHeight; + } + + // Fragmenting *and* our fixed height is too tall for available height: + // Mark incomplete so we get a next-in-flow, and take up all of the + // available height (or the amount of height required by our children, if + // that's larger; but of course not more than our own computed height). + // XXXdholbert For now, we don't support pushing children to our next + // continuation or splitting children, so "amount of height required by + // our children" is just our line-height. + NS_FRAME_SET_INCOMPLETE(aStatus); + if (aSumLineCrossSizes <= aAvailableHeightForContent) { + return aAvailableHeightForContent; + } + return std::min(effectiveComputedHeight, aSumLineCrossSizes); + } + + // Cross axis is vertical and we have auto-height: shrink-wrap our line(s), + // subject to our min-size / max-size constraints in that (vertical) axis. + // XXXdholbert Handle constrained-aAvailableHeightForContent case here. + *aIsDefinite = false; + return NS_CSS_MINMAX(aSumLineCrossSizes, + aReflowState.ComputedMinHeight(), + aReflowState.ComputedMaxHeight()); +} + +void +FlexLine::PositionItemsInMainAxis(uint8_t aJustifyContent, + nscoord aContentBoxMainSize, + const FlexboxAxisTracker& aAxisTracker) +{ + MainAxisPositionTracker mainAxisPosnTracker(aAxisTracker, this, + aJustifyContent, + aContentBoxMainSize); + for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + nscoord itemMainBorderBoxSize = + item->GetMainSize() + + item->GetBorderPaddingSizeInAxis(mainAxisPosnTracker.GetAxis()); + + // Resolve any main-axis 'auto' margins on aChild to an actual value. + mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(*item); + + // Advance our position tracker to child's upper-left content-box corner, + // and use that as its position in the main axis. + mainAxisPosnTracker.EnterMargin(item->GetMargin()); + mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize); + + item->SetMainPosition(mainAxisPosnTracker.GetPosition()); + + mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize); + mainAxisPosnTracker.ExitMargin(item->GetMargin()); + mainAxisPosnTracker.TraversePackingSpace(); + } +} + +// Helper method to take care of children who ASK_FOR_BASELINE, when +// we need their baseline. +static void +ResolveReflowedChildAscent(nsIFrame* aFrame, + nsHTMLReflowMetrics& aChildDesiredSize) +{ + if (aChildDesiredSize.TopAscent() == nsHTMLReflowMetrics::ASK_FOR_BASELINE) { + // Use GetFirstLineBaseline(), or just GetBaseline() if that fails. + nscoord ascent; + if (nsLayoutUtils::GetFirstLineBaseline(aFrame, &ascent)) { + aChildDesiredSize.SetTopAscent(ascent); + } else { + aChildDesiredSize.SetTopAscent(aFrame->GetBaseline()); + } + } +} + +/** + * Given the flex container's "logical ascent" (i.e. distance from the + * flex container's content-box cross-start edge to its baseline), returns + * its actual physical ascent value (the distance from the *border-box* top + * edge to its baseline). + */ +static nscoord +ComputePhysicalAscentFromLogicalAscent(nscoord aLogicalAscent, + nscoord aContentBoxCrossSize, + const nsHTMLReflowState& aReflowState, + const FlexboxAxisTracker& aAxisTracker) +{ + return aReflowState.ComputedPhysicalBorderPadding().top + + PhysicalPosFromLogicalPos(aLogicalAscent, aContentBoxCrossSize, + aAxisTracker.GetCrossAxis()); +} + +nsresult +nsFlexContainerFrame::SizeItemInCrossAxis( + nsPresContext* aPresContext, + const FlexboxAxisTracker& aAxisTracker, + nsHTMLReflowState& aChildReflowState, + FlexItem& aItem) +{ + // In vertical flexbox (with horizontal cross-axis), we can just trust the + // reflow state's computed-width as our cross-size. We also don't need to + // record the baseline because we'll have converted any "align-self:baseline" + // items to be "align-self:flex-start" in the FlexItem constructor. + // FIXME: Once we support writing-mode (vertical text), we will be able to + // have baseline-aligned items in a vertical flexbox, and we'll need to + // record baseline information here. + if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { + MOZ_ASSERT(aItem.GetAlignSelf() != NS_STYLE_ALIGN_ITEMS_BASELINE, + "In vert flex container, we depend on FlexItem constructor to " + "convert 'align-self: baseline' to 'align-self: flex-start'"); + aItem.SetCrossSize(aChildReflowState.ComputedWidth()); + return NS_OK; + } + + MOZ_ASSERT(!aItem.HadMeasuringReflow(), + "We shouldn't need more than one measuring reflow"); + + if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_STRETCH) { + // This item's got "align-self: stretch", so we probably imposed a + // stretched computed height on it during its previous reflow. We're + // not imposing that height for *this* measuring reflow, so we need to + // tell it to treat this reflow as a vertical resize (regardless of + // whether any of its ancestors are being resized). + aChildReflowState.mFlags.mVResize = true; + } + nsHTMLReflowMetrics childDesiredSize(aChildReflowState); + nsReflowStatus childReflowStatus; + const uint32_t flags = NS_FRAME_NO_MOVE_FRAME; + nsresult rv = ReflowChild(aItem.Frame(), aPresContext, + childDesiredSize, aChildReflowState, + 0, 0, flags, childReflowStatus); + aItem.SetHadMeasuringReflow(); + NS_ENSURE_SUCCESS(rv, rv); + + // XXXdholbert Once we do pagination / splitting, we'll need to actually + // handle incomplete childReflowStatuses. But for now, we give our kids + // unconstrained available height, which means they should always complete. + MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), + "We gave flex item unconstrained available height, so it " + "should be complete"); + + // Tell the child we're done with its initial reflow. + // (Necessary for e.g. GetBaseline() to work below w/out asserting) + rv = FinishReflowChild(aItem.Frame(), aPresContext, + childDesiredSize, &aChildReflowState, 0, 0, flags); + NS_ENSURE_SUCCESS(rv, rv); + + // Save the sizing info that we learned from this reflow + // ----------------------------------------------------- + + // Tentatively store the child's desired content-box cross-size. + // Note that childDesiredSize is the border-box size, so we have to + // subtract border & padding to get the content-box size. + // (Note that at this point in the code, we know our cross axis is vertical, + // so we don't bother with making aAxisTracker pick the cross-axis component + // for us.) + nscoord crossAxisBorderPadding = aItem.GetBorderPadding().TopBottom(); + if (childDesiredSize.Height() < crossAxisBorderPadding) { + // Child's requested size isn't large enough for its border/padding! + // This is OK for the trivial nsFrame::Reflow() impl, but other frame + // classes should know better. So, if we get here, the child had better be + // an instance of nsFrame (i.e. it should return null from GetType()). + // XXXdholbert Once we've fixed bug 765861, we should upgrade this to an + // assertion that trivially passes if bug 765861's flag has been flipped. + NS_WARN_IF_FALSE(!aItem.Frame()->GetType(), + "Child should at least request space for border/padding"); + aItem.SetCrossSize(0); + } else { + // (normal case) + aItem.SetCrossSize(childDesiredSize.Height() - crossAxisBorderPadding); + } + + // If we need to do baseline-alignment, store the child's ascent. + if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE) { + ResolveReflowedChildAscent(aItem.Frame(), childDesiredSize); + aItem.SetAscent(childDesiredSize.TopAscent()); + } + + return NS_OK; +} + +void +FlexLine::PositionItemsInCrossAxis(nscoord aLineStartPosition, + const FlexboxAxisTracker& aAxisTracker) +{ + SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker); + + for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + // First, stretch the item's cross size (if appropriate), and resolve any + // auto margins in this axis. + item->ResolveStretchedCrossSize(mLineCrossSize, aAxisTracker); + lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, *item); + + // Compute the cross-axis position of this item + nscoord itemCrossBorderBoxSize = + item->GetCrossSize() + + item->GetBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis()); + lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, *item, aAxisTracker); + lineCrossAxisPosnTracker.EnterMargin(item->GetMargin()); + lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize); + + item->SetCrossPosition(aLineStartPosition + + lineCrossAxisPosnTracker.GetPosition()); + + // Back out to cross-axis edge of the line. + lineCrossAxisPosnTracker.ResetPosition(); + } +} + +nsresult +nsFlexContainerFrame::Reflow(nsPresContext* aPresContext, + nsHTMLReflowMetrics& aDesiredSize, + const nsHTMLReflowState& aReflowState, + nsReflowStatus& aStatus) +{ + DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame"); + DISPLAY_REFLOW(aPresContext, this, aReflowState, aDesiredSize, aStatus); + PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, + ("Reflow() for nsFlexContainerFrame %p\n", this)); + + if (IsFrameTreeTooDeep(aReflowState, aDesiredSize, aStatus)) { + return NS_OK; + } + + // We (and our children) can only depend on our ancestor's height if we have + // a percent-height, or if we're positioned and we have "top" and "bottom" + // set and have height:auto. (There are actually other cases, too -- e.g. if + // our parent is itself a vertical flex container and we're flexible -- but + // we'll let our ancestors handle those sorts of cases.) + const nsStylePosition* stylePos = StylePosition(); + if (stylePos->mHeight.HasPercent() || + (StyleDisplay()->IsAbsolutelyPositionedStyle() && + eStyleUnit_Auto == stylePos->mHeight.GetUnit() && + eStyleUnit_Auto != stylePos->mOffset.GetTopUnit() && + eStyleUnit_Auto != stylePos->mOffset.GetBottomUnit())) { + AddStateBits(NS_FRAME_CONTAINS_RELATIVE_HEIGHT); + } + +#ifdef DEBUG + SanityCheckAnonymousFlexItems(); +#endif // DEBUG + + // If we've never reordered our children, then we can trust that they're + // already in DOM-order, and we only need to consider their "order" property + // when checking them for sortedness & sorting them. + // + // After we actually sort them, though, we can't trust that they're in DOM + // order anymore. So, from that point on, our sort & sorted-order-checking + // operations need to use a fancier LEQ function that also takes DOM order + // into account, so that we can honor the spec's requirement that frames w/ + // equal "order" values are laid out in DOM order. + + if (!HasAnyStateBits(NS_STATE_FLEX_CHILDREN_REORDERED)) { + if (SortChildrenIfNeeded()) { + AddStateBits(NS_STATE_FLEX_CHILDREN_REORDERED); + } + } else { + SortChildrenIfNeeded(); + } + + const FlexboxAxisTracker axisTracker(this); + + // If we're being fragmented into a constrained height, subtract off + // borderpadding-top from it, to get the available height for our + // content box. (Don't subtract if we're skipping top border/padding, + // though.) + nscoord availableHeightForContent = aReflowState.AvailableHeight(); + if (availableHeightForContent != NS_UNCONSTRAINEDSIZE && + !(GetSkipSides() & (1 << NS_SIDE_TOP))) { + availableHeightForContent -= aReflowState.ComputedPhysicalBorderPadding().top; + // (Don't let that push availableHeightForContent below zero, though): + availableHeightForContent = std::max(availableHeightForContent, 0); + } + + nscoord contentBoxMainSize = GetMainSizeFromReflowState(aReflowState, + axisTracker); + + nsAutoTArray struts; + nsresult rv = DoFlexLayout(aPresContext, aDesiredSize, aReflowState, aStatus, + contentBoxMainSize, availableHeightForContent, + struts, axisTracker); + + if (NS_SUCCEEDED(rv) && !struts.IsEmpty()) { + // We're restarting flex layout, with new knowledge of collapsed items. + rv = DoFlexLayout(aPresContext, aDesiredSize, aReflowState, aStatus, + contentBoxMainSize, availableHeightForContent, + struts, axisTracker); + } + + return rv; +} + +// RAII class to clean up a list of FlexLines. +// Specifically, this removes each line from the list, deletes all the +// FlexItems in its list, and deletes the FlexLine. +class MOZ_STACK_CLASS AutoFlexLineListClearer +{ +public: + AutoFlexLineListClearer(LinkedList& aLines + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : mLines(aLines) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + } + + ~AutoFlexLineListClearer() + { + while (FlexLine* line = mLines.popFirst()) { + while (FlexItem* item = line->mItems.popFirst()) { + delete item; + } + delete line; + } + } + +private: + LinkedList& mLines; + MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER +}; + +nsresult +nsFlexContainerFrame::DoFlexLayout(nsPresContext* aPresContext, + nsHTMLReflowMetrics& aDesiredSize, + const nsHTMLReflowState& aReflowState, + nsReflowStatus& aStatus, + nscoord aContentBoxMainSize, + nscoord aAvailableHeightForContent, + nsTArray& aStruts, + const FlexboxAxisTracker& aAxisTracker) +{ + aStatus = NS_FRAME_COMPLETE; + + LinkedList lines; + AutoFlexLineListClearer cleanupLines(lines); + + nsresult rv = GenerateFlexLines(aPresContext, aReflowState, + aContentBoxMainSize, + aAvailableHeightForContent, + aStruts, aAxisTracker, lines); + NS_ENSURE_SUCCESS(rv, rv); + + aContentBoxMainSize = + ClampFlexContainerMainSize(aReflowState, aAxisTracker, + aContentBoxMainSize, aAvailableHeightForContent, + lines.getFirst(), aStatus); + + for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) { + line->ResolveFlexibleLengths(aContentBoxMainSize); + } + + // Cross Size Determination - Flexbox spec section 9.4 + // =================================================== + // Calculate the hypothetical cross size of each item: + nscoord sumLineCrossSizes = 0; + for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) { + for (FlexItem* item = line->GetFirstItem(); item; item = item->getNext()) { + // (If the item's already been stretched, or it's a strut, then it + // already knows its cross size. Don't bother trying to recalculate it.) + if (!item->IsStretched() && !item->IsStrut()) { + nsHTMLReflowState childReflowState(aPresContext, aReflowState, + item->Frame(), + nsSize(aReflowState.ComputedWidth(), + NS_UNCONSTRAINEDSIZE)); + // Override computed main-size + if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { + childReflowState.SetComputedWidth(item->GetMainSize()); + } else { + childReflowState.SetComputedHeight(item->GetMainSize()); + } + + nsresult rv = SizeItemInCrossAxis(aPresContext, aAxisTracker, + childReflowState, *item); + NS_ENSURE_SUCCESS(rv, rv); + } + } + // Now that we've finished with this line's items, size the line itself: + line->ComputeCrossSizeAndBaseline(aAxisTracker); + sumLineCrossSizes += line->GetLineCrossSize(); + } + + bool isCrossSizeDefinite; + const nscoord contentBoxCrossSize = + ComputeCrossSize(aReflowState, aAxisTracker, sumLineCrossSizes, + aAvailableHeightForContent, &isCrossSizeDefinite, aStatus); + + // Set up state for cross-axis alignment, at a high level (outside the + // scope of a particular flex line) + CrossAxisPositionTracker + crossAxisPosnTracker(lines.getFirst(), + aReflowState.mStylePosition->mAlignContent, + contentBoxCrossSize, isCrossSizeDefinite, + aAxisTracker); + + // Now that we know the cross size of each line (including + // "align-content:stretch" adjustments, from the CrossAxisPositionTracker + // constructor), we can create struts for any flex items with + // "visibility: collapse" (and restart flex layout). + if (aStruts.IsEmpty()) { // (Don't make struts if we already did) + BuildStrutInfoFromCollapsedItems(lines.getFirst(), aStruts); + if (!aStruts.IsEmpty()) { + // Restart flex layout, using our struts. + return NS_OK; + } + } + + // If the container should derive its baseline from the first FlexLine, + // do that here (while crossAxisPosnTracker is conveniently pointing + // at the cross-start edge of that line, which the line's baseline offset is + // measured from): + nscoord flexContainerAscent; + if (!aAxisTracker.AreAxesInternallyReversed()) { + nscoord firstLineBaselineOffset = lines.getFirst()->GetBaselineOffset(); + if (firstLineBaselineOffset == nscoord_MIN) { + // No baseline-aligned items in line. Use sentinel value to prompt us to + // get baseline from the first FlexItem after we've reflowed it. + flexContainerAscent = nscoord_MIN; + } else { + flexContainerAscent = + ComputePhysicalAscentFromLogicalAscent( + crossAxisPosnTracker.GetPosition() + firstLineBaselineOffset, + contentBoxCrossSize, aReflowState, aAxisTracker); + } + } + + for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) { + + // Main-Axis Alignment - Flexbox spec section 9.5 + // ============================================== + line->PositionItemsInMainAxis(aReflowState.mStylePosition->mJustifyContent, + aContentBoxMainSize, + aAxisTracker); + + // Cross-Axis Alignment - Flexbox spec section 9.6 + // =============================================== + line->PositionItemsInCrossAxis(crossAxisPosnTracker.GetPosition(), + aAxisTracker); + crossAxisPosnTracker.TraverseLine(*line); + crossAxisPosnTracker.TraversePackingSpace(); + } + + // If the container should derive its baseline from the last FlexLine, + // do that here (while crossAxisPosnTracker is conveniently pointing + // at the cross-end edge of that line, which the line's baseline offset is + // measured from): + if (aAxisTracker.AreAxesInternallyReversed()) { + nscoord lastLineBaselineOffset = lines.getLast()->GetBaselineOffset(); + if (lastLineBaselineOffset == nscoord_MIN) { + // No baseline-aligned items in line. Use sentinel value to prompt us to + // get baseline from the last FlexItem after we've reflowed it. + flexContainerAscent = nscoord_MIN; + } else { + flexContainerAscent = + ComputePhysicalAscentFromLogicalAscent( + crossAxisPosnTracker.GetPosition() - lastLineBaselineOffset, + contentBoxCrossSize, aReflowState, aAxisTracker); + } + } + + // Before giving each child a final reflow, calculate the origin of the + // flex container's content box (with respect to its border-box), so that + // we can compute our flex item's final positions. + nsMargin containerBorderPadding(aReflowState.ComputedPhysicalBorderPadding()); + ApplySkipSides(containerBorderPadding, &aReflowState); + const nsPoint containerContentBoxOrigin(containerBorderPadding.left, + containerBorderPadding.top); + + // FINAL REFLOW: Give each child frame another chance to reflow, now that + // we know its final size and position. + for (const FlexLine* line = lines.getFirst(); line; line = line->getNext()) { + for (const FlexItem* item = line->GetFirstItem(); item; + item = item->getNext()) { + nsPoint physicalPosn = aAxisTracker.PhysicalPointFromLogicalPoint( + item->GetMainPosition(), + item->GetCrossPosition(), + aContentBoxMainSize, + contentBoxCrossSize); + // Adjust physicalPosn to be relative to the container's border-box + // (i.e. its frame rect), instead of the container's content-box: + physicalPosn += containerContentBoxOrigin; + + nsHTMLReflowState childReflowState(aPresContext, aReflowState, + item->Frame(), + nsSize(aReflowState.ComputedWidth(), + NS_UNCONSTRAINEDSIZE)); + + // Keep track of whether we've overriden the child's computed height + // and/or width, so we can set its resize flags accordingly. + bool didOverrideComputedWidth = false; + bool didOverrideComputedHeight = false; + + // Override computed main-size + if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { + childReflowState.SetComputedWidth(item->GetMainSize()); + didOverrideComputedWidth = true; + } else { + childReflowState.SetComputedHeight(item->GetMainSize()); + didOverrideComputedHeight = true; + } + + // Override reflow state's computed cross-size, for stretched items. + if (item->IsStretched()) { + MOZ_ASSERT(item->GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_STRETCH, + "stretched item w/o 'align-self: stretch'?"); + if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { + childReflowState.SetComputedWidth(item->GetCrossSize()); + didOverrideComputedWidth = true; + } else { + // If this item's height is stretched, it's a relative height. + item->Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_HEIGHT); + childReflowState.SetComputedHeight(item->GetCrossSize()); + didOverrideComputedHeight = true; + } + } + + // XXXdholbert Might need to actually set the correct margins in the + // reflow state at some point, so that they can be saved on the frame for + // UsedMarginProperty(). Maybe doesn't matter though...? + + // If we're overriding the computed width or height, *and* we had an + // earlier "measuring" reflow, then this upcoming reflow needs to be + // treated as a resize. + if (item->HadMeasuringReflow()) { + if (didOverrideComputedWidth) { + // (This is somewhat redundant, since the reflow state already + // sets mHResize whenever our computed width has changed since the + // previous reflow. Still, it's nice for symmetry, and it may become + // necessary once we support orthogonal flows.) + childReflowState.mFlags.mHResize = true; + } + if (didOverrideComputedHeight) { + childReflowState.mFlags.mVResize = true; + } + } + // NOTE: Be very careful about doing anything else with childReflowState + // after this point, because some of its methods (e.g. SetComputedWidth) + // internally call InitResizeFlags and stomp on mVResize & mHResize. + + nsHTMLReflowMetrics childDesiredSize(childReflowState); + nsReflowStatus childReflowStatus; + nsresult rv = ReflowChild(item->Frame(), aPresContext, + childDesiredSize, childReflowState, + physicalPosn.x, physicalPosn.y, + 0, childReflowStatus); + NS_ENSURE_SUCCESS(rv, rv); + + // XXXdholbert Once we do pagination / splitting, we'll need to actually + // handle incomplete childReflowStatuses. But for now, we give our kids + // unconstrained available height, which means they should always + // complete. + MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), + "We gave flex item unconstrained available height, so it " + "should be complete"); + + childReflowState.ApplyRelativePositioning(&physicalPosn); + + rv = FinishReflowChild(item->Frame(), aPresContext, + childDesiredSize, &childReflowState, + physicalPosn.x, physicalPosn.y, 0); + NS_ENSURE_SUCCESS(rv, rv); + + // If this is our first child and we haven't established a baseline for + // the container yet (i.e. if we don't have 'align-self: baseline' on any + // children), then use this child's baseline as the container's baseline. + if (item->Frame() == mFrames.FirstChild() && + flexContainerAscent == nscoord_MIN) { + ResolveReflowedChildAscent(item->Frame(), childDesiredSize); + + // (We use GetNormalPosition() instead of physicalPosn because we don't + // want relative positioning on the child to affect the baseline that we + // read from it). + flexContainerAscent = item->Frame()->GetNormalPosition().y + + childDesiredSize.TopAscent(); + } + } + } + + nsSize desiredContentBoxSize = + aAxisTracker.PhysicalSizeFromLogicalSizes(aContentBoxMainSize, + contentBoxCrossSize); + + aDesiredSize.Width() = desiredContentBoxSize.width + + containerBorderPadding.LeftRight(); + // Does *NOT* include bottom border/padding yet (we add that a bit lower down) + aDesiredSize.Height() = desiredContentBoxSize.height + + containerBorderPadding.top; + + if (flexContainerAscent == nscoord_MIN) { + // Still don't have our baseline set -- this happens if we have no + // children (or if our children are huge enough that they have nscoord_MIN + // as their baseline... in which case, we'll use the wrong baseline, but no + // big deal) + NS_WARN_IF_FALSE(lines.getFirst()->IsEmpty(), + "Have flex items but didn't get an ascent - that's odd " + "(or there are just gigantic sizes involved)"); + // Per spec, just use the bottom of content-box. + flexContainerAscent = aDesiredSize.Height(); + } + aDesiredSize.SetTopAscent(flexContainerAscent); + + // Now: If we're complete, add bottom border/padding to desired height + // (unless that pushes us over available height, in which case we become + // incomplete (unless we already weren't asking for any height, in which case + // we stay complete to avoid looping forever)). + // NOTE: If we're auto-height, we allow our bottom border/padding to push us + // over the available height without requesting a continuation, for + // consistency with the behavior of "display:block" elements. + if (NS_FRAME_IS_COMPLETE(aStatus)) { + // NOTE: We can't use containerBorderPadding.bottom for this, because if + // we're auto-height, ApplySkipSides will have zeroed it (because it + // assumed we might get a continuation). We have the correct value in + // aReflowState.ComputedPhyiscalBorderPadding().bottom, though, so we use that. + nscoord desiredHeightWithBottomBP = + aDesiredSize.Height() + aReflowState.ComputedPhysicalBorderPadding().bottom; + + if (aReflowState.AvailableHeight() == NS_UNCONSTRAINEDSIZE || + aDesiredSize.Height() == 0 || + desiredHeightWithBottomBP <= aReflowState.AvailableHeight() || + aReflowState.ComputedHeight() == NS_INTRINSICSIZE) { + // Update desired height to include bottom border/padding + aDesiredSize.Height() = desiredHeightWithBottomBP; + } else { + // We couldn't fit bottom border/padding, so we'll need a continuation. + NS_FRAME_SET_INCOMPLETE(aStatus); + } + } + + // Overflow area = union(my overflow area, kids' overflow areas) + aDesiredSize.SetOverflowAreasToDesiredBounds(); + for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { + ConsiderChildOverflow(aDesiredSize.mOverflowAreas, e.get()); + } + + FinishReflowWithAbsoluteFrames(aPresContext, aDesiredSize, + aReflowState, aStatus); + + NS_FRAME_SET_TRUNCATION(aStatus, aReflowState, aDesiredSize) + return NS_OK; +} + +/* virtual */ nscoord +nsFlexContainerFrame::GetMinWidth(nsRenderingContext* aRenderingContext) +{ + nscoord minWidth = 0; + DISPLAY_MIN_WIDTH(this, minWidth); + + FlexboxAxisTracker axisTracker(this); + + for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { + nscoord childMinWidth = + nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(), + nsLayoutUtils::MIN_WIDTH); + // For a horizontal single-line flex container, the intrinsic min width is + // the sum of its items' min widths. + // For a vertical flex container, or for a multi-line horizontal flex + // container, the intrinsic min width is the max of its items' min widths. + if (IsAxisHorizontal(axisTracker.GetMainAxis()) && + NS_STYLE_FLEX_WRAP_NOWRAP == StylePosition()->mFlexWrap) { + minWidth += childMinWidth; + } else { + minWidth = std::max(minWidth, childMinWidth); + } + } + return minWidth; +} + +/* virtual */ nscoord +nsFlexContainerFrame::GetPrefWidth(nsRenderingContext* aRenderingContext) +{ + nscoord prefWidth = 0; + DISPLAY_PREF_WIDTH(this, prefWidth); + + // XXXdholbert Optimization: We could cache our intrinsic widths like + // nsBlockFrame does (and return it early from this function if it's set). + // Whenever anything happens that might change it, set it to + // NS_INTRINSIC_WIDTH_UNKNOWN (like nsBlockFrame::MarkIntrinsicWidthsDirty + // does) + FlexboxAxisTracker axisTracker(this); + + for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { + nscoord childPrefWidth = + nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(), + nsLayoutUtils::PREF_WIDTH); + if (IsAxisHorizontal(axisTracker.GetMainAxis())) { + prefWidth += childPrefWidth; + } else { + prefWidth = std::max(prefWidth, childPrefWidth); + } + } + return prefWidth; +}