diff -r 000000000000 -r 6474c204b198 mfbt/FloatingPoint.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mfbt/FloatingPoint.h Wed Dec 31 06:09:35 2014 +0100 @@ -0,0 +1,409 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* Various predicates and operations on IEEE-754 floating point types. */ + +#ifndef mozilla_FloatingPoint_h +#define mozilla_FloatingPoint_h + +#include "mozilla/Assertions.h" +#include "mozilla/Attributes.h" +#include "mozilla/Casting.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/Types.h" + +#include + +namespace mozilla { + +/* + * It's reasonable to ask why we have this header at all. Don't isnan, + * copysign, the built-in comparison operators, and the like solve these + * problems? Unfortunately, they don't. We've found that various compilers + * (MSVC, MSVC when compiling with PGO, and GCC on OS X, at least) miscompile + * the standard methods in various situations, so we can't use them. Some of + * these compilers even have problems compiling seemingly reasonable bitwise + * algorithms! But with some care we've found algorithms that seem to not + * trigger those compiler bugs. + * + * For the aforementioned reasons, be very wary of making changes to any of + * these algorithms. If you must make changes, keep a careful eye out for + * compiler bustage, particularly PGO-specific bustage. + */ + +struct FloatTypeTraits +{ + typedef uint32_t Bits; + + static const unsigned ExponentBias = 127; + static const unsigned ExponentShift = 23; + + static const Bits SignBit = 0x80000000UL; + static const Bits ExponentBits = 0x7F800000UL; + static const Bits SignificandBits = 0x007FFFFFUL; +}; + +struct DoubleTypeTraits +{ + typedef uint64_t Bits; + + static const unsigned ExponentBias = 1023; + static const unsigned ExponentShift = 52; + + static const Bits SignBit = 0x8000000000000000ULL; + static const Bits ExponentBits = 0x7ff0000000000000ULL; + static const Bits SignificandBits = 0x000fffffffffffffULL; +}; + +template struct SelectTrait; +template<> struct SelectTrait : public FloatTypeTraits {}; +template<> struct SelectTrait : public DoubleTypeTraits {}; + +/* + * This struct contains details regarding the encoding of floating-point + * numbers that can be useful for direct bit manipulation. As of now, the + * template parameter has to be float or double. + * + * The nested typedef |Bits| is the unsigned integral type with the same size + * as T: uint32_t for float and uint64_t for double (static assertions + * double-check these assumptions). + * + * ExponentBias is the offset that is subtracted from the exponent when + * computing the value, i.e. one plus the opposite of the mininum possible + * exponent. + * ExponentShift is the shift that one needs to apply to retrieve the exponent + * component of the value. + * + * SignBit contains a bits mask. Bit-and-ing with this mask will result in + * obtaining the sign bit. + * ExponentBits contains the mask needed for obtaining the exponent bits and + * SignificandBits contains the mask needed for obtaining the significand bits. + * + * Full details of how floating point number formats are encoded are beyond the + * scope of this comment. For more information, see + * http://en.wikipedia.org/wiki/IEEE_floating_point + * http://en.wikipedia.org/wiki/Floating_point#IEEE_754:_floating_point_in_modern_computers + */ +template +struct FloatingPoint : public SelectTrait +{ + typedef SelectTrait Base; + typedef typename Base::Bits Bits; + + static_assert((Base::SignBit & Base::ExponentBits) == 0, + "sign bit shouldn't overlap exponent bits"); + static_assert((Base::SignBit & Base::SignificandBits) == 0, + "sign bit shouldn't overlap significand bits"); + static_assert((Base::ExponentBits & Base::SignificandBits) == 0, + "exponent bits shouldn't overlap significand bits"); + + static_assert((Base::SignBit | Base::ExponentBits | Base::SignificandBits) == + ~Bits(0), + "all bits accounted for"); + + /* + * These implementations assume float/double are 32/64-bit single/double format + * number types compatible with the IEEE-754 standard. C++ don't require this + * to be the case. But we required this in implementations of these algorithms + * that preceded this header, so we shouldn't break anything if we keep doing so. + */ + static_assert(sizeof(T) == sizeof(Bits), "Bits must be same size as T"); +}; + +/** Determines whether a double is NaN. */ +template +static MOZ_ALWAYS_INLINE bool +IsNaN(T t) +{ + /* + * A float/double is NaN if all exponent bits are 1 and the significand contains at + * least one non-zero bit. + */ + typedef FloatingPoint Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast(t); + return (bits & Traits::ExponentBits) == Traits::ExponentBits && + (bits & Traits::SignificandBits) != 0; +} + +/** Determines whether a float/double is +Infinity or -Infinity. */ +template +static MOZ_ALWAYS_INLINE bool +IsInfinite(T t) +{ + /* Infinities have all exponent bits set to 1 and an all-0 significand. */ + typedef FloatingPoint Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast(t); + return (bits & ~Traits::SignBit) == Traits::ExponentBits; +} + +/** Determines whether a float/double is not NaN or infinite. */ +template +static MOZ_ALWAYS_INLINE bool +IsFinite(T t) +{ + /* + * NaN and Infinities are the only non-finite floats/doubles, and both have all + * exponent bits set to 1. + */ + typedef FloatingPoint Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast(t); + return (bits & Traits::ExponentBits) != Traits::ExponentBits; +} + +/** + * Determines whether a float/double is negative. It is an error to call this method + * on a float/double which is NaN. + */ +template +static MOZ_ALWAYS_INLINE bool +IsNegative(T t) +{ + MOZ_ASSERT(!IsNaN(t), "NaN does not have a sign"); + + /* The sign bit is set if the double is negative. */ + typedef FloatingPoint Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast(t); + return (bits & Traits::SignBit) != 0; +} + +/** Determines whether a float/double represents -0. */ +template +static MOZ_ALWAYS_INLINE bool +IsNegativeZero(T t) +{ + /* Only the sign bit is set if the value is -0. */ + typedef FloatingPoint Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast(t); + return bits == Traits::SignBit; +} + +/** + * Returns the exponent portion of the float/double. + * + * Zero is not special-cased, so ExponentComponent(0.0) is + * -int_fast16_t(Traits::ExponentBias). + */ +template +static MOZ_ALWAYS_INLINE int_fast16_t +ExponentComponent(T t) +{ + /* + * The exponent component of a float/double is an unsigned number, biased from its + * actual value. Subtract the bias to retrieve the actual exponent. + */ + typedef FloatingPoint Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast(t); + return int_fast16_t((bits & Traits::ExponentBits) >> Traits::ExponentShift) - + int_fast16_t(Traits::ExponentBias); +} + +/** Returns +Infinity. */ +template +static MOZ_ALWAYS_INLINE T +PositiveInfinity() +{ + /* + * Positive infinity has all exponent bits set, sign bit set to 0, and no + * significand. + */ + typedef FloatingPoint Traits; + return BitwiseCast(Traits::ExponentBits); +} + +/** Returns -Infinity. */ +template +static MOZ_ALWAYS_INLINE T +NegativeInfinity() +{ + /* + * Negative infinity has all exponent bits set, sign bit set to 1, and no + * significand. + */ + typedef FloatingPoint Traits; + return BitwiseCast(Traits::SignBit | Traits::ExponentBits); +} + + +/** Constructs a NaN value with the specified sign bit and significand bits. */ +template +static MOZ_ALWAYS_INLINE T +SpecificNaN(int signbit, typename FloatingPoint::Bits significand) +{ + typedef FloatingPoint Traits; + MOZ_ASSERT(signbit == 0 || signbit == 1); + MOZ_ASSERT((significand & ~Traits::SignificandBits) == 0); + MOZ_ASSERT(significand & Traits::SignificandBits); + + T t = BitwiseCast((signbit ? Traits::SignBit : 0) | + Traits::ExponentBits | + significand); + MOZ_ASSERT(IsNaN(t)); + return t; +} + +/** Computes the smallest non-zero positive float/double value. */ +template +static MOZ_ALWAYS_INLINE T +MinNumberValue() +{ + typedef FloatingPoint Traits; + typedef typename Traits::Bits Bits; + return BitwiseCast(Bits(1)); +} + +/** + * If t is equal to some int32_t value, set *i to that value and return true; + * otherwise return false. + * + * Note that negative zero is "equal" to zero here. To test whether a value can + * be losslessly converted to int32_t and back, use NumberIsInt32 instead. + */ +template +static MOZ_ALWAYS_INLINE bool +NumberEqualsInt32(T t, int32_t* i) +{ + /* + * XXX Casting a floating-point value that doesn't truncate to int32_t, to + * int32_t, induces undefined behavior. We should definitely fix this + * (bug 744965), but as apparently it "works" in practice, it's not a + * pressing concern now. + */ + return t == (*i = int32_t(t)); +} + +/** + * If d can be converted to int32_t and back to an identical double value, + * set *i to that value and return true; otherwise return false. + * + * The difference between this and NumberEqualsInt32 is that this method returns + * false for negative zero. + */ +template +static MOZ_ALWAYS_INLINE bool +NumberIsInt32(T t, int32_t* i) +{ + return !IsNegativeZero(t) && NumberEqualsInt32(t, i); +} + +/** + * Computes a NaN value. Do not use this method if you depend upon a particular + * NaN value being returned. + */ +template +static MOZ_ALWAYS_INLINE T +UnspecifiedNaN() +{ + /* + * If we can use any quiet NaN, we might as well use the all-ones NaN, + * since it's cheap to materialize on common platforms (such as x64, where + * this value can be represented in a 32-bit signed immediate field, allowing + * it to be stored to memory in a single instruction). + */ + typedef FloatingPoint Traits; + return SpecificNaN(1, Traits::SignificandBits); +} + +/** + * Compare two doubles for equality, *without* equating -0 to +0, and equating + * any NaN value to any other NaN value. (The normal equality operators equate + * -0 with +0, and they equate NaN to no other value.) + */ +template +static inline bool +NumbersAreIdentical(T t1, T t2) +{ + typedef FloatingPoint Traits; + typedef typename Traits::Bits Bits; + if (IsNaN(t1)) + return IsNaN(t2); + return BitwiseCast(t1) == BitwiseCast(t2); +} + +namespace detail { + +template +struct FuzzyEqualsEpsilon; + +template<> +struct FuzzyEqualsEpsilon +{ + // A number near 1e-5 that is exactly representable in + // floating point + static const float value() { return 1.0f / (1 << 17); } +}; + +template<> +struct FuzzyEqualsEpsilon +{ + // A number near 1e-12 that is exactly representable in + // a double + static const double value() { return 1.0 / (1LL << 40); } +}; + +} // namespace detail + +/** + * Compare two floating point values for equality, modulo rounding error. That + * is, the two values are considered equal if they are both not NaN and if they + * are less than or equal to epsilon apart. The default value of epsilon is near + * 1e-5. + * + * For most scenarios you will want to use FuzzyEqualsMultiplicative instead, + * as it is more reasonable over the entire range of floating point numbers. + * This additive version should only be used if you know the range of the numbers + * you are dealing with is bounded and stays around the same order of magnitude. + */ +template +static MOZ_ALWAYS_INLINE bool +FuzzyEqualsAdditive(T val1, T val2, T epsilon = detail::FuzzyEqualsEpsilon::value()) +{ + static_assert(IsFloatingPoint::value, "floating point type required"); + return Abs(val1 - val2) <= epsilon; +} + +/** + * Compare two floating point values for equality, allowing for rounding error + * relative to the magnitude of the values. That is, the two values are + * considered equal if they are both not NaN and they are less than or equal to + * some epsilon apart, where the epsilon is scaled by the smaller of the two + * argument values. + * + * In most cases you will want to use this rather than FuzzyEqualsAdditive, as + * this function effectively masks out differences in the bottom few bits of + * the floating point numbers being compared, regardless of what order of magnitude + * those numbers are at. + */ +template +static MOZ_ALWAYS_INLINE bool +FuzzyEqualsMultiplicative(T val1, T val2, T epsilon = detail::FuzzyEqualsEpsilon::value()) +{ + static_assert(IsFloatingPoint::value, "floating point type required"); + // can't use std::min because of bug 965340 + T smaller = Abs(val1) < Abs(val2) ? Abs(val1) : Abs(val2); + return Abs(val1 - val2) <= epsilon * smaller; +} + +/** + * Returns true if the given value can be losslessly represented as an IEEE-754 + * single format number, false otherwise. All NaN values are considered + * representable (notwithstanding that the exact bit pattern of a double format + * NaN value can't be exactly represented in single format). + * + * This function isn't inlined to avoid buggy optimizations by MSVC. + */ +MOZ_WARN_UNUSED_RESULT +extern MFBT_API bool +IsFloat32Representable(double x); + +} /* namespace mozilla */ + +#endif /* mozilla_FloatingPoint_h */