gfx/skia/trunk/include/core/SkFloatingPoint.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1
michael@0 2 /*
michael@0 3 * Copyright 2006 The Android Open Source Project
michael@0 4 *
michael@0 5 * Use of this source code is governed by a BSD-style license that can be
michael@0 6 * found in the LICENSE file.
michael@0 7 */
michael@0 8
michael@0 9
michael@0 10 #ifndef SkFloatingPoint_DEFINED
michael@0 11 #define SkFloatingPoint_DEFINED
michael@0 12
michael@0 13 #include "SkTypes.h"
michael@0 14
michael@0 15 #include <math.h>
michael@0 16 #include <float.h>
michael@0 17 #include "SkFloatBits.h"
michael@0 18
michael@0 19 // C++98 cmath std::pow seems to be the earliest portable way to get float pow.
michael@0 20 // However, on Linux including cmath undefines isfinite.
michael@0 21 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
michael@0 22 static inline float sk_float_pow(float base, float exp) {
michael@0 23 return powf(base, exp);
michael@0 24 }
michael@0 25
michael@0 26 static inline float sk_float_copysign(float x, float y) {
michael@0 27 int32_t xbits = SkFloat2Bits(x);
michael@0 28 int32_t ybits = SkFloat2Bits(y);
michael@0 29 return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000));
michael@0 30 }
michael@0 31
michael@0 32 #ifdef SK_BUILD_FOR_WINCE
michael@0 33 #define sk_float_sqrt(x) (float)::sqrt(x)
michael@0 34 #define sk_float_sin(x) (float)::sin(x)
michael@0 35 #define sk_float_cos(x) (float)::cos(x)
michael@0 36 #define sk_float_tan(x) (float)::tan(x)
michael@0 37 #define sk_float_acos(x) (float)::acos(x)
michael@0 38 #define sk_float_asin(x) (float)::asin(x)
michael@0 39 #define sk_float_atan2(y,x) (float)::atan2(y,x)
michael@0 40 #define sk_float_abs(x) (float)::fabs(x)
michael@0 41 #define sk_float_mod(x,y) (float)::fmod(x,y)
michael@0 42 #define sk_float_exp(x) (float)::exp(x)
michael@0 43 #define sk_float_log(x) (float)::log(x)
michael@0 44 #define sk_float_floor(x) (float)::floor(x)
michael@0 45 #define sk_float_ceil(x) (float)::ceil(x)
michael@0 46 #else
michael@0 47 #define sk_float_sqrt(x) sqrtf(x)
michael@0 48 #define sk_float_sin(x) sinf(x)
michael@0 49 #define sk_float_cos(x) cosf(x)
michael@0 50 #define sk_float_tan(x) tanf(x)
michael@0 51 #define sk_float_floor(x) floorf(x)
michael@0 52 #define sk_float_ceil(x) ceilf(x)
michael@0 53 #ifdef SK_BUILD_FOR_MAC
michael@0 54 #define sk_float_acos(x) static_cast<float>(acos(x))
michael@0 55 #define sk_float_asin(x) static_cast<float>(asin(x))
michael@0 56 #else
michael@0 57 #define sk_float_acos(x) acosf(x)
michael@0 58 #define sk_float_asin(x) asinf(x)
michael@0 59 #endif
michael@0 60 #define sk_float_atan2(y,x) atan2f(y,x)
michael@0 61 #define sk_float_abs(x) fabsf(x)
michael@0 62 #define sk_float_mod(x,y) fmodf(x,y)
michael@0 63 #define sk_float_exp(x) expf(x)
michael@0 64 #define sk_float_log(x) logf(x)
michael@0 65 #endif
michael@0 66
michael@0 67 #ifdef SK_BUILD_FOR_WIN
michael@0 68 #define sk_float_isfinite(x) _finite(x)
michael@0 69 #define sk_float_isnan(x) _isnan(x)
michael@0 70 static inline int sk_float_isinf(float x) {
michael@0 71 int32_t bits = SkFloat2Bits(x);
michael@0 72 return (bits << 1) == (0xFF << 24);
michael@0 73 }
michael@0 74 #else
michael@0 75 #define sk_float_isfinite(x) isfinite(x)
michael@0 76 #define sk_float_isnan(x) isnan(x)
michael@0 77 #define sk_float_isinf(x) isinf(x)
michael@0 78 #endif
michael@0 79
michael@0 80 #define sk_double_isnan(a) sk_float_isnan(a)
michael@0 81
michael@0 82 #ifdef SK_USE_FLOATBITS
michael@0 83 #define sk_float_floor2int(x) SkFloatToIntFloor(x)
michael@0 84 #define sk_float_round2int(x) SkFloatToIntRound(x)
michael@0 85 #define sk_float_ceil2int(x) SkFloatToIntCeil(x)
michael@0 86 #else
michael@0 87 #define sk_float_floor2int(x) (int)sk_float_floor(x)
michael@0 88 #define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f)
michael@0 89 #define sk_float_ceil2int(x) (int)sk_float_ceil(x)
michael@0 90 #endif
michael@0 91
michael@0 92 extern const uint32_t gIEEENotANumber;
michael@0 93 extern const uint32_t gIEEEInfinity;
michael@0 94 extern const uint32_t gIEEENegativeInfinity;
michael@0 95
michael@0 96 #define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber))
michael@0 97 #define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity))
michael@0 98 #define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfinity))
michael@0 99
michael@0 100 #if defined(__SSE__)
michael@0 101 #include <xmmintrin.h>
michael@0 102 #elif defined(__ARM_NEON__)
michael@0 103 #include <arm_neon.h>
michael@0 104 #endif
michael@0 105
michael@0 106 // Fast, approximate inverse square root.
michael@0 107 // Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON.
michael@0 108 static inline float sk_float_rsqrt(const float x) {
michael@0 109 // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
michael@0 110 // it at compile time. This is going to be too fast to productively hide behind a function pointer.
michael@0 111 //
michael@0 112 // We do one step of Newton's method to refine the estimates in the NEON and null paths. No
michael@0 113 // refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt.
michael@0 114 #if defined(__SSE__)
michael@0 115 float result;
michael@0 116 _mm_store_ss(&result, _mm_rsqrt_ss(_mm_set_ss(x)));
michael@0 117 return result;
michael@0 118 #elif defined(__ARM_NEON__)
michael@0 119 // Get initial estimate.
michael@0 120 const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x.
michael@0 121 float32x2_t estimate = vrsqrte_f32(xx);
michael@0 122
michael@0 123 // One step of Newton's method to refine.
michael@0 124 const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
michael@0 125 estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
michael@0 126 return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places.
michael@0 127 #else
michael@0 128 // Get initial estimate.
michael@0 129 int i = *SkTCast<int*>(&x);
michael@0 130 i = 0x5f3759df - (i>>1);
michael@0 131 float estimate = *SkTCast<float*>(&i);
michael@0 132
michael@0 133 // One step of Newton's method to refine.
michael@0 134 const float estimate_sq = estimate*estimate;
michael@0 135 estimate *= (1.5f-0.5f*x*estimate_sq);
michael@0 136 return estimate;
michael@0 137 #endif
michael@0 138 }
michael@0 139
michael@0 140 #endif

mercurial