gfx/skia/trunk/include/core/SkFloatingPoint.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     2 /*
     3  * Copyright 2006 The Android Open Source Project
     4  *
     5  * Use of this source code is governed by a BSD-style license that can be
     6  * found in the LICENSE file.
     7  */
    10 #ifndef SkFloatingPoint_DEFINED
    11 #define SkFloatingPoint_DEFINED
    13 #include "SkTypes.h"
    15 #include <math.h>
    16 #include <float.h>
    17 #include "SkFloatBits.h"
    19 // C++98 cmath std::pow seems to be the earliest portable way to get float pow.
    20 // However, on Linux including cmath undefines isfinite.
    21 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
    22 static inline float sk_float_pow(float base, float exp) {
    23     return powf(base, exp);
    24 }
    26 static inline float sk_float_copysign(float x, float y) {
    27     int32_t xbits = SkFloat2Bits(x);
    28     int32_t ybits = SkFloat2Bits(y);
    29     return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000));
    30 }
    32 #ifdef SK_BUILD_FOR_WINCE
    33     #define sk_float_sqrt(x)        (float)::sqrt(x)
    34     #define sk_float_sin(x)         (float)::sin(x)
    35     #define sk_float_cos(x)         (float)::cos(x)
    36     #define sk_float_tan(x)         (float)::tan(x)
    37     #define sk_float_acos(x)        (float)::acos(x)
    38     #define sk_float_asin(x)        (float)::asin(x)
    39     #define sk_float_atan2(y,x)     (float)::atan2(y,x)
    40     #define sk_float_abs(x)         (float)::fabs(x)
    41     #define sk_float_mod(x,y)       (float)::fmod(x,y)
    42     #define sk_float_exp(x)         (float)::exp(x)
    43     #define sk_float_log(x)         (float)::log(x)
    44     #define sk_float_floor(x)       (float)::floor(x)
    45     #define sk_float_ceil(x)        (float)::ceil(x)
    46 #else
    47     #define sk_float_sqrt(x)        sqrtf(x)
    48     #define sk_float_sin(x)         sinf(x)
    49     #define sk_float_cos(x)         cosf(x)
    50     #define sk_float_tan(x)         tanf(x)
    51     #define sk_float_floor(x)       floorf(x)
    52     #define sk_float_ceil(x)        ceilf(x)
    53 #ifdef SK_BUILD_FOR_MAC
    54     #define sk_float_acos(x)        static_cast<float>(acos(x))
    55     #define sk_float_asin(x)        static_cast<float>(asin(x))
    56 #else
    57     #define sk_float_acos(x)        acosf(x)
    58     #define sk_float_asin(x)        asinf(x)
    59 #endif
    60     #define sk_float_atan2(y,x)     atan2f(y,x)
    61     #define sk_float_abs(x)         fabsf(x)
    62     #define sk_float_mod(x,y)       fmodf(x,y)
    63     #define sk_float_exp(x)         expf(x)
    64     #define sk_float_log(x)         logf(x)
    65 #endif
    67 #ifdef SK_BUILD_FOR_WIN
    68     #define sk_float_isfinite(x)    _finite(x)
    69     #define sk_float_isnan(x)       _isnan(x)
    70     static inline int sk_float_isinf(float x) {
    71         int32_t bits = SkFloat2Bits(x);
    72         return (bits << 1) == (0xFF << 24);
    73     }
    74 #else
    75     #define sk_float_isfinite(x)    isfinite(x)
    76     #define sk_float_isnan(x)       isnan(x)
    77     #define sk_float_isinf(x)       isinf(x)
    78 #endif
    80 #define sk_double_isnan(a)          sk_float_isnan(a)
    82 #ifdef SK_USE_FLOATBITS
    83     #define sk_float_floor2int(x)   SkFloatToIntFloor(x)
    84     #define sk_float_round2int(x)   SkFloatToIntRound(x)
    85     #define sk_float_ceil2int(x)    SkFloatToIntCeil(x)
    86 #else
    87     #define sk_float_floor2int(x)   (int)sk_float_floor(x)
    88     #define sk_float_round2int(x)   (int)sk_float_floor((x) + 0.5f)
    89     #define sk_float_ceil2int(x)    (int)sk_float_ceil(x)
    90 #endif
    92 extern const uint32_t gIEEENotANumber;
    93 extern const uint32_t gIEEEInfinity;
    94 extern const uint32_t gIEEENegativeInfinity;
    96 #define SK_FloatNaN                 (*SkTCast<const float*>(&gIEEENotANumber))
    97 #define SK_FloatInfinity            (*SkTCast<const float*>(&gIEEEInfinity))
    98 #define SK_FloatNegativeInfinity    (*SkTCast<const float*>(&gIEEENegativeInfinity))
   100 #if defined(__SSE__)
   101 #include <xmmintrin.h>
   102 #elif defined(__ARM_NEON__)
   103 #include <arm_neon.h>
   104 #endif
   106 // Fast, approximate inverse square root.
   107 // Compare to name-brand "1.0f / sk_float_sqrt(x)".  Should be around 10x faster on SSE, 2x on NEON.
   108 static inline float sk_float_rsqrt(const float x) {
   109 // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
   110 // it at compile time.  This is going to be too fast to productively hide behind a function pointer.
   111 //
   112 // We do one step of Newton's method to refine the estimates in the NEON and null paths.  No
   113 // refinement is faster, but very innacurate.  Two steps is more accurate, but slower than 1/sqrt.
   114 #if defined(__SSE__)
   115     float result;
   116     _mm_store_ss(&result, _mm_rsqrt_ss(_mm_set_ss(x)));
   117     return result;
   118 #elif defined(__ARM_NEON__)
   119     // Get initial estimate.
   120     const float32x2_t xx = vdup_n_f32(x);  // Clever readers will note we're doing everything 2x.
   121     float32x2_t estimate = vrsqrte_f32(xx);
   123     // One step of Newton's method to refine.
   124     const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
   125     estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
   126     return vget_lane_f32(estimate, 0);  // 1 will work fine too; the answer's in both places.
   127 #else
   128     // Get initial estimate.
   129     int i = *SkTCast<int*>(&x);
   130     i = 0x5f3759df - (i>>1);
   131     float estimate = *SkTCast<float*>(&i);
   133     // One step of Newton's method to refine.
   134     const float estimate_sq = estimate*estimate;
   135     estimate *= (1.5f-0.5f*x*estimate_sq);
   136     return estimate;
   137 #endif
   138 }
   140 #endif

mercurial