gfx/skia/trunk/include/core/SkWriter32.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1
michael@0 2 /*
michael@0 3 * Copyright 2008 The Android Open Source Project
michael@0 4 *
michael@0 5 * Use of this source code is governed by a BSD-style license that can be
michael@0 6 * found in the LICENSE file.
michael@0 7 */
michael@0 8
michael@0 9
michael@0 10 #ifndef SkWriter32_DEFINED
michael@0 11 #define SkWriter32_DEFINED
michael@0 12
michael@0 13 #include "SkData.h"
michael@0 14 #include "SkMatrix.h"
michael@0 15 #include "SkPath.h"
michael@0 16 #include "SkPoint.h"
michael@0 17 #include "SkRRect.h"
michael@0 18 #include "SkRect.h"
michael@0 19 #include "SkRegion.h"
michael@0 20 #include "SkScalar.h"
michael@0 21 #include "SkStream.h"
michael@0 22 #include "SkTemplates.h"
michael@0 23 #include "SkTypes.h"
michael@0 24
michael@0 25 class SkWriter32 : SkNoncopyable {
michael@0 26 public:
michael@0 27 /**
michael@0 28 * The caller can specify an initial block of storage, which the caller manages.
michael@0 29 *
michael@0 30 * SkWriter32 will try to back reserve and write calls with this external storage until the
michael@0 31 * first time an allocation doesn't fit. From then it will use dynamically allocated storage.
michael@0 32 * This used to be optional behavior, but pipe now relies on it.
michael@0 33 */
michael@0 34 SkWriter32(void* external = NULL, size_t externalBytes = 0) {
michael@0 35 this->reset(external, externalBytes);
michael@0 36 }
michael@0 37
michael@0 38 // return the current offset (will always be a multiple of 4)
michael@0 39 size_t bytesWritten() const { return fUsed; }
michael@0 40
michael@0 41 SK_ATTR_DEPRECATED("use bytesWritten")
michael@0 42 size_t size() const { return this->bytesWritten(); }
michael@0 43
michael@0 44 void reset(void* external = NULL, size_t externalBytes = 0) {
michael@0 45 SkASSERT(SkIsAlign4((uintptr_t)external));
michael@0 46 SkASSERT(SkIsAlign4(externalBytes));
michael@0 47
michael@0 48 fSnapshot.reset(NULL);
michael@0 49 fData = (uint8_t*)external;
michael@0 50 fCapacity = externalBytes;
michael@0 51 fUsed = 0;
michael@0 52 fExternal = external;
michael@0 53 }
michael@0 54
michael@0 55 // Returns the current buffer.
michael@0 56 // The pointer may be invalidated by any future write calls.
michael@0 57 const uint32_t* contiguousArray() const {
michael@0 58 return (uint32_t*)fData;
michael@0 59 }
michael@0 60
michael@0 61 // size MUST be multiple of 4
michael@0 62 uint32_t* reserve(size_t size) {
michael@0 63 SkASSERT(SkAlign4(size) == size);
michael@0 64 size_t offset = fUsed;
michael@0 65 size_t totalRequired = fUsed + size;
michael@0 66 if (totalRequired > fCapacity) {
michael@0 67 this->growToAtLeast(totalRequired);
michael@0 68 }
michael@0 69 fUsed = totalRequired;
michael@0 70 return (uint32_t*)(fData + offset);
michael@0 71 }
michael@0 72
michael@0 73 /**
michael@0 74 * Read a T record at offset, which must be a multiple of 4. Only legal if the record
michael@0 75 * was written atomically using the write methods below.
michael@0 76 */
michael@0 77 template<typename T>
michael@0 78 const T& readTAt(size_t offset) const {
michael@0 79 SkASSERT(SkAlign4(offset) == offset);
michael@0 80 SkASSERT(offset < fUsed);
michael@0 81 return *(T*)(fData + offset);
michael@0 82 }
michael@0 83
michael@0 84 /**
michael@0 85 * Overwrite a T record at offset, which must be a multiple of 4. Only legal if the record
michael@0 86 * was written atomically using the write methods below.
michael@0 87 */
michael@0 88 template<typename T>
michael@0 89 void overwriteTAt(size_t offset, const T& value) {
michael@0 90 SkASSERT(SkAlign4(offset) == offset);
michael@0 91 SkASSERT(offset < fUsed);
michael@0 92 SkASSERT(fSnapshot.get() == NULL);
michael@0 93 *(T*)(fData + offset) = value;
michael@0 94 }
michael@0 95
michael@0 96 bool writeBool(bool value) {
michael@0 97 this->write32(value);
michael@0 98 return value;
michael@0 99 }
michael@0 100
michael@0 101 void writeInt(int32_t value) {
michael@0 102 this->write32(value);
michael@0 103 }
michael@0 104
michael@0 105 void write8(int32_t value) {
michael@0 106 *(int32_t*)this->reserve(sizeof(value)) = value & 0xFF;
michael@0 107 }
michael@0 108
michael@0 109 void write16(int32_t value) {
michael@0 110 *(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF;
michael@0 111 }
michael@0 112
michael@0 113 void write32(int32_t value) {
michael@0 114 *(int32_t*)this->reserve(sizeof(value)) = value;
michael@0 115 }
michael@0 116
michael@0 117 void writePtr(void* value) {
michael@0 118 *(void**)this->reserve(sizeof(value)) = value;
michael@0 119 }
michael@0 120
michael@0 121 void writeScalar(SkScalar value) {
michael@0 122 *(SkScalar*)this->reserve(sizeof(value)) = value;
michael@0 123 }
michael@0 124
michael@0 125 void writePoint(const SkPoint& pt) {
michael@0 126 *(SkPoint*)this->reserve(sizeof(pt)) = pt;
michael@0 127 }
michael@0 128
michael@0 129 void writeRect(const SkRect& rect) {
michael@0 130 *(SkRect*)this->reserve(sizeof(rect)) = rect;
michael@0 131 }
michael@0 132
michael@0 133 void writeIRect(const SkIRect& rect) {
michael@0 134 *(SkIRect*)this->reserve(sizeof(rect)) = rect;
michael@0 135 }
michael@0 136
michael@0 137 void writeRRect(const SkRRect& rrect) {
michael@0 138 rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory));
michael@0 139 }
michael@0 140
michael@0 141 void writePath(const SkPath& path) {
michael@0 142 size_t size = path.writeToMemory(NULL);
michael@0 143 SkASSERT(SkAlign4(size) == size);
michael@0 144 path.writeToMemory(this->reserve(size));
michael@0 145 }
michael@0 146
michael@0 147 void writeMatrix(const SkMatrix& matrix) {
michael@0 148 size_t size = matrix.writeToMemory(NULL);
michael@0 149 SkASSERT(SkAlign4(size) == size);
michael@0 150 matrix.writeToMemory(this->reserve(size));
michael@0 151 }
michael@0 152
michael@0 153 void writeRegion(const SkRegion& rgn) {
michael@0 154 size_t size = rgn.writeToMemory(NULL);
michael@0 155 SkASSERT(SkAlign4(size) == size);
michael@0 156 rgn.writeToMemory(this->reserve(size));
michael@0 157 }
michael@0 158
michael@0 159 // write count bytes (must be a multiple of 4)
michael@0 160 void writeMul4(const void* values, size_t size) {
michael@0 161 this->write(values, size);
michael@0 162 }
michael@0 163
michael@0 164 /**
michael@0 165 * Write size bytes from values. size must be a multiple of 4, though
michael@0 166 * values need not be 4-byte aligned.
michael@0 167 */
michael@0 168 void write(const void* values, size_t size) {
michael@0 169 SkASSERT(SkAlign4(size) == size);
michael@0 170 memcpy(this->reserve(size), values, size);
michael@0 171 }
michael@0 172
michael@0 173 /**
michael@0 174 * Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be
michael@0 175 * filled in with zeroes.
michael@0 176 */
michael@0 177 uint32_t* reservePad(size_t size) {
michael@0 178 size_t alignedSize = SkAlign4(size);
michael@0 179 uint32_t* p = this->reserve(alignedSize);
michael@0 180 if (alignedSize != size) {
michael@0 181 SkASSERT(alignedSize >= 4);
michael@0 182 p[alignedSize / 4 - 1] = 0;
michael@0 183 }
michael@0 184 return p;
michael@0 185 }
michael@0 186
michael@0 187 /**
michael@0 188 * Write size bytes from src, and pad to 4 byte alignment with zeroes.
michael@0 189 */
michael@0 190 void writePad(const void* src, size_t size) {
michael@0 191 memcpy(this->reservePad(size), src, size);
michael@0 192 }
michael@0 193
michael@0 194 /**
michael@0 195 * Writes a string to the writer, which can be retrieved with
michael@0 196 * SkReader32::readString().
michael@0 197 * The length can be specified, or if -1 is passed, it will be computed by
michael@0 198 * calling strlen(). The length must be < max size_t.
michael@0 199 *
michael@0 200 * If you write NULL, it will be read as "".
michael@0 201 */
michael@0 202 void writeString(const char* str, size_t len = (size_t)-1);
michael@0 203
michael@0 204 /**
michael@0 205 * Computes the size (aligned to multiple of 4) need to write the string
michael@0 206 * in a call to writeString(). If the length is not specified, it will be
michael@0 207 * computed by calling strlen().
michael@0 208 */
michael@0 209 static size_t WriteStringSize(const char* str, size_t len = (size_t)-1);
michael@0 210
michael@0 211 /**
michael@0 212 * Move the cursor back to offset bytes from the beginning.
michael@0 213 * offset must be a multiple of 4 no greater than size().
michael@0 214 */
michael@0 215 void rewindToOffset(size_t offset) {
michael@0 216 SkASSERT(SkAlign4(offset) == offset);
michael@0 217 SkASSERT(offset <= bytesWritten());
michael@0 218 fUsed = offset;
michael@0 219 }
michael@0 220
michael@0 221 // copy into a single buffer (allocated by caller). Must be at least size()
michael@0 222 void flatten(void* dst) const {
michael@0 223 memcpy(dst, fData, fUsed);
michael@0 224 }
michael@0 225
michael@0 226 bool writeToStream(SkWStream* stream) const {
michael@0 227 return stream->write(fData, fUsed);
michael@0 228 }
michael@0 229
michael@0 230 // read from the stream, and write up to length bytes. Return the actual
michael@0 231 // number of bytes written.
michael@0 232 size_t readFromStream(SkStream* stream, size_t length) {
michael@0 233 return stream->read(this->reservePad(length), length);
michael@0 234 }
michael@0 235
michael@0 236 /**
michael@0 237 * Captures a snapshot of the data as it is right now, and return it.
michael@0 238 * Multiple calls without intervening writes may return the same SkData,
michael@0 239 * but this is not guaranteed.
michael@0 240 * Future appends will not affect the returned buffer.
michael@0 241 * It is illegal to call overwriteTAt after this without an intervening
michael@0 242 * append. It may cause the snapshot buffer to be corrupted.
michael@0 243 * Callers must unref the returned SkData.
michael@0 244 * This is not thread safe, it should only be called on the writing thread,
michael@0 245 * the result however can be shared across threads.
michael@0 246 */
michael@0 247 SkData* snapshotAsData() const;
michael@0 248 private:
michael@0 249 void growToAtLeast(size_t size);
michael@0 250
michael@0 251 uint8_t* fData; // Points to either fInternal or fExternal.
michael@0 252 size_t fCapacity; // Number of bytes we can write to fData.
michael@0 253 size_t fUsed; // Number of bytes written.
michael@0 254 void* fExternal; // Unmanaged memory block.
michael@0 255 SkAutoTMalloc<uint8_t> fInternal; // Managed memory block.
michael@0 256 SkAutoTUnref<SkData> fSnapshot; // Holds the result of last asData.
michael@0 257 };
michael@0 258
michael@0 259 /**
michael@0 260 * Helper class to allocated SIZE bytes as part of the writer, and to provide
michael@0 261 * that storage to the constructor as its initial storage buffer.
michael@0 262 *
michael@0 263 * This wrapper ensures proper alignment rules are met for the storage.
michael@0 264 */
michael@0 265 template <size_t SIZE> class SkSWriter32 : public SkWriter32 {
michael@0 266 public:
michael@0 267 SkSWriter32() { this->reset(); }
michael@0 268
michael@0 269 void reset() {this->INHERITED::reset(fData.fStorage, SIZE); }
michael@0 270
michael@0 271 private:
michael@0 272 union {
michael@0 273 void* fPtrAlignment;
michael@0 274 double fDoubleAlignment;
michael@0 275 char fStorage[SIZE];
michael@0 276 } fData;
michael@0 277
michael@0 278 typedef SkWriter32 INHERITED;
michael@0 279 };
michael@0 280
michael@0 281 #endif

mercurial