|
1 |
|
2 /* |
|
3 * Copyright 2008 The Android Open Source Project |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 |
|
10 #ifndef SkWriter32_DEFINED |
|
11 #define SkWriter32_DEFINED |
|
12 |
|
13 #include "SkData.h" |
|
14 #include "SkMatrix.h" |
|
15 #include "SkPath.h" |
|
16 #include "SkPoint.h" |
|
17 #include "SkRRect.h" |
|
18 #include "SkRect.h" |
|
19 #include "SkRegion.h" |
|
20 #include "SkScalar.h" |
|
21 #include "SkStream.h" |
|
22 #include "SkTemplates.h" |
|
23 #include "SkTypes.h" |
|
24 |
|
25 class SkWriter32 : SkNoncopyable { |
|
26 public: |
|
27 /** |
|
28 * The caller can specify an initial block of storage, which the caller manages. |
|
29 * |
|
30 * SkWriter32 will try to back reserve and write calls with this external storage until the |
|
31 * first time an allocation doesn't fit. From then it will use dynamically allocated storage. |
|
32 * This used to be optional behavior, but pipe now relies on it. |
|
33 */ |
|
34 SkWriter32(void* external = NULL, size_t externalBytes = 0) { |
|
35 this->reset(external, externalBytes); |
|
36 } |
|
37 |
|
38 // return the current offset (will always be a multiple of 4) |
|
39 size_t bytesWritten() const { return fUsed; } |
|
40 |
|
41 SK_ATTR_DEPRECATED("use bytesWritten") |
|
42 size_t size() const { return this->bytesWritten(); } |
|
43 |
|
44 void reset(void* external = NULL, size_t externalBytes = 0) { |
|
45 SkASSERT(SkIsAlign4((uintptr_t)external)); |
|
46 SkASSERT(SkIsAlign4(externalBytes)); |
|
47 |
|
48 fSnapshot.reset(NULL); |
|
49 fData = (uint8_t*)external; |
|
50 fCapacity = externalBytes; |
|
51 fUsed = 0; |
|
52 fExternal = external; |
|
53 } |
|
54 |
|
55 // Returns the current buffer. |
|
56 // The pointer may be invalidated by any future write calls. |
|
57 const uint32_t* contiguousArray() const { |
|
58 return (uint32_t*)fData; |
|
59 } |
|
60 |
|
61 // size MUST be multiple of 4 |
|
62 uint32_t* reserve(size_t size) { |
|
63 SkASSERT(SkAlign4(size) == size); |
|
64 size_t offset = fUsed; |
|
65 size_t totalRequired = fUsed + size; |
|
66 if (totalRequired > fCapacity) { |
|
67 this->growToAtLeast(totalRequired); |
|
68 } |
|
69 fUsed = totalRequired; |
|
70 return (uint32_t*)(fData + offset); |
|
71 } |
|
72 |
|
73 /** |
|
74 * Read a T record at offset, which must be a multiple of 4. Only legal if the record |
|
75 * was written atomically using the write methods below. |
|
76 */ |
|
77 template<typename T> |
|
78 const T& readTAt(size_t offset) const { |
|
79 SkASSERT(SkAlign4(offset) == offset); |
|
80 SkASSERT(offset < fUsed); |
|
81 return *(T*)(fData + offset); |
|
82 } |
|
83 |
|
84 /** |
|
85 * Overwrite a T record at offset, which must be a multiple of 4. Only legal if the record |
|
86 * was written atomically using the write methods below. |
|
87 */ |
|
88 template<typename T> |
|
89 void overwriteTAt(size_t offset, const T& value) { |
|
90 SkASSERT(SkAlign4(offset) == offset); |
|
91 SkASSERT(offset < fUsed); |
|
92 SkASSERT(fSnapshot.get() == NULL); |
|
93 *(T*)(fData + offset) = value; |
|
94 } |
|
95 |
|
96 bool writeBool(bool value) { |
|
97 this->write32(value); |
|
98 return value; |
|
99 } |
|
100 |
|
101 void writeInt(int32_t value) { |
|
102 this->write32(value); |
|
103 } |
|
104 |
|
105 void write8(int32_t value) { |
|
106 *(int32_t*)this->reserve(sizeof(value)) = value & 0xFF; |
|
107 } |
|
108 |
|
109 void write16(int32_t value) { |
|
110 *(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF; |
|
111 } |
|
112 |
|
113 void write32(int32_t value) { |
|
114 *(int32_t*)this->reserve(sizeof(value)) = value; |
|
115 } |
|
116 |
|
117 void writePtr(void* value) { |
|
118 *(void**)this->reserve(sizeof(value)) = value; |
|
119 } |
|
120 |
|
121 void writeScalar(SkScalar value) { |
|
122 *(SkScalar*)this->reserve(sizeof(value)) = value; |
|
123 } |
|
124 |
|
125 void writePoint(const SkPoint& pt) { |
|
126 *(SkPoint*)this->reserve(sizeof(pt)) = pt; |
|
127 } |
|
128 |
|
129 void writeRect(const SkRect& rect) { |
|
130 *(SkRect*)this->reserve(sizeof(rect)) = rect; |
|
131 } |
|
132 |
|
133 void writeIRect(const SkIRect& rect) { |
|
134 *(SkIRect*)this->reserve(sizeof(rect)) = rect; |
|
135 } |
|
136 |
|
137 void writeRRect(const SkRRect& rrect) { |
|
138 rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory)); |
|
139 } |
|
140 |
|
141 void writePath(const SkPath& path) { |
|
142 size_t size = path.writeToMemory(NULL); |
|
143 SkASSERT(SkAlign4(size) == size); |
|
144 path.writeToMemory(this->reserve(size)); |
|
145 } |
|
146 |
|
147 void writeMatrix(const SkMatrix& matrix) { |
|
148 size_t size = matrix.writeToMemory(NULL); |
|
149 SkASSERT(SkAlign4(size) == size); |
|
150 matrix.writeToMemory(this->reserve(size)); |
|
151 } |
|
152 |
|
153 void writeRegion(const SkRegion& rgn) { |
|
154 size_t size = rgn.writeToMemory(NULL); |
|
155 SkASSERT(SkAlign4(size) == size); |
|
156 rgn.writeToMemory(this->reserve(size)); |
|
157 } |
|
158 |
|
159 // write count bytes (must be a multiple of 4) |
|
160 void writeMul4(const void* values, size_t size) { |
|
161 this->write(values, size); |
|
162 } |
|
163 |
|
164 /** |
|
165 * Write size bytes from values. size must be a multiple of 4, though |
|
166 * values need not be 4-byte aligned. |
|
167 */ |
|
168 void write(const void* values, size_t size) { |
|
169 SkASSERT(SkAlign4(size) == size); |
|
170 memcpy(this->reserve(size), values, size); |
|
171 } |
|
172 |
|
173 /** |
|
174 * Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be |
|
175 * filled in with zeroes. |
|
176 */ |
|
177 uint32_t* reservePad(size_t size) { |
|
178 size_t alignedSize = SkAlign4(size); |
|
179 uint32_t* p = this->reserve(alignedSize); |
|
180 if (alignedSize != size) { |
|
181 SkASSERT(alignedSize >= 4); |
|
182 p[alignedSize / 4 - 1] = 0; |
|
183 } |
|
184 return p; |
|
185 } |
|
186 |
|
187 /** |
|
188 * Write size bytes from src, and pad to 4 byte alignment with zeroes. |
|
189 */ |
|
190 void writePad(const void* src, size_t size) { |
|
191 memcpy(this->reservePad(size), src, size); |
|
192 } |
|
193 |
|
194 /** |
|
195 * Writes a string to the writer, which can be retrieved with |
|
196 * SkReader32::readString(). |
|
197 * The length can be specified, or if -1 is passed, it will be computed by |
|
198 * calling strlen(). The length must be < max size_t. |
|
199 * |
|
200 * If you write NULL, it will be read as "". |
|
201 */ |
|
202 void writeString(const char* str, size_t len = (size_t)-1); |
|
203 |
|
204 /** |
|
205 * Computes the size (aligned to multiple of 4) need to write the string |
|
206 * in a call to writeString(). If the length is not specified, it will be |
|
207 * computed by calling strlen(). |
|
208 */ |
|
209 static size_t WriteStringSize(const char* str, size_t len = (size_t)-1); |
|
210 |
|
211 /** |
|
212 * Move the cursor back to offset bytes from the beginning. |
|
213 * offset must be a multiple of 4 no greater than size(). |
|
214 */ |
|
215 void rewindToOffset(size_t offset) { |
|
216 SkASSERT(SkAlign4(offset) == offset); |
|
217 SkASSERT(offset <= bytesWritten()); |
|
218 fUsed = offset; |
|
219 } |
|
220 |
|
221 // copy into a single buffer (allocated by caller). Must be at least size() |
|
222 void flatten(void* dst) const { |
|
223 memcpy(dst, fData, fUsed); |
|
224 } |
|
225 |
|
226 bool writeToStream(SkWStream* stream) const { |
|
227 return stream->write(fData, fUsed); |
|
228 } |
|
229 |
|
230 // read from the stream, and write up to length bytes. Return the actual |
|
231 // number of bytes written. |
|
232 size_t readFromStream(SkStream* stream, size_t length) { |
|
233 return stream->read(this->reservePad(length), length); |
|
234 } |
|
235 |
|
236 /** |
|
237 * Captures a snapshot of the data as it is right now, and return it. |
|
238 * Multiple calls without intervening writes may return the same SkData, |
|
239 * but this is not guaranteed. |
|
240 * Future appends will not affect the returned buffer. |
|
241 * It is illegal to call overwriteTAt after this without an intervening |
|
242 * append. It may cause the snapshot buffer to be corrupted. |
|
243 * Callers must unref the returned SkData. |
|
244 * This is not thread safe, it should only be called on the writing thread, |
|
245 * the result however can be shared across threads. |
|
246 */ |
|
247 SkData* snapshotAsData() const; |
|
248 private: |
|
249 void growToAtLeast(size_t size); |
|
250 |
|
251 uint8_t* fData; // Points to either fInternal or fExternal. |
|
252 size_t fCapacity; // Number of bytes we can write to fData. |
|
253 size_t fUsed; // Number of bytes written. |
|
254 void* fExternal; // Unmanaged memory block. |
|
255 SkAutoTMalloc<uint8_t> fInternal; // Managed memory block. |
|
256 SkAutoTUnref<SkData> fSnapshot; // Holds the result of last asData. |
|
257 }; |
|
258 |
|
259 /** |
|
260 * Helper class to allocated SIZE bytes as part of the writer, and to provide |
|
261 * that storage to the constructor as its initial storage buffer. |
|
262 * |
|
263 * This wrapper ensures proper alignment rules are met for the storage. |
|
264 */ |
|
265 template <size_t SIZE> class SkSWriter32 : public SkWriter32 { |
|
266 public: |
|
267 SkSWriter32() { this->reset(); } |
|
268 |
|
269 void reset() {this->INHERITED::reset(fData.fStorage, SIZE); } |
|
270 |
|
271 private: |
|
272 union { |
|
273 void* fPtrAlignment; |
|
274 double fDoubleAlignment; |
|
275 char fStorage[SIZE]; |
|
276 } fData; |
|
277 |
|
278 typedef SkWriter32 INHERITED; |
|
279 }; |
|
280 |
|
281 #endif |