gfx/skia/trunk/src/core/SkGeometry.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 /*
michael@0 2 * Copyright 2006 The Android Open Source Project
michael@0 3 *
michael@0 4 * Use of this source code is governed by a BSD-style license that can be
michael@0 5 * found in the LICENSE file.
michael@0 6 */
michael@0 7
michael@0 8 #include "SkGeometry.h"
michael@0 9 #include "SkMatrix.h"
michael@0 10
michael@0 11 bool SkXRayCrossesLine(const SkXRay& pt,
michael@0 12 const SkPoint pts[2],
michael@0 13 bool* ambiguous) {
michael@0 14 if (ambiguous) {
michael@0 15 *ambiguous = false;
michael@0 16 }
michael@0 17 // Determine quick discards.
michael@0 18 // Consider query line going exactly through point 0 to not
michael@0 19 // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
michael@0 20 if (pt.fY == pts[0].fY) {
michael@0 21 if (ambiguous) {
michael@0 22 *ambiguous = true;
michael@0 23 }
michael@0 24 return false;
michael@0 25 }
michael@0 26 if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
michael@0 27 return false;
michael@0 28 if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
michael@0 29 return false;
michael@0 30 if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
michael@0 31 return false;
michael@0 32 // Determine degenerate cases
michael@0 33 if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
michael@0 34 return false;
michael@0 35 if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
michael@0 36 // We've already determined the query point lies within the
michael@0 37 // vertical range of the line segment.
michael@0 38 if (pt.fX <= pts[0].fX) {
michael@0 39 if (ambiguous) {
michael@0 40 *ambiguous = (pt.fY == pts[1].fY);
michael@0 41 }
michael@0 42 return true;
michael@0 43 }
michael@0 44 return false;
michael@0 45 }
michael@0 46 // Ambiguity check
michael@0 47 if (pt.fY == pts[1].fY) {
michael@0 48 if (pt.fX <= pts[1].fX) {
michael@0 49 if (ambiguous) {
michael@0 50 *ambiguous = true;
michael@0 51 }
michael@0 52 return true;
michael@0 53 }
michael@0 54 return false;
michael@0 55 }
michael@0 56 // Full line segment evaluation
michael@0 57 SkScalar delta_y = pts[1].fY - pts[0].fY;
michael@0 58 SkScalar delta_x = pts[1].fX - pts[0].fX;
michael@0 59 SkScalar slope = SkScalarDiv(delta_y, delta_x);
michael@0 60 SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
michael@0 61 // Solve for x coordinate at y = pt.fY
michael@0 62 SkScalar x = SkScalarDiv(pt.fY - b, slope);
michael@0 63 return pt.fX <= x;
michael@0 64 }
michael@0 65
michael@0 66 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
michael@0 67 involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
michael@0 68 May also introduce overflow of fixed when we compute our setup.
michael@0 69 */
michael@0 70 // #define DIRECT_EVAL_OF_POLYNOMIALS
michael@0 71
michael@0 72 ////////////////////////////////////////////////////////////////////////
michael@0 73
michael@0 74 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
michael@0 75 SkScalar ab = a - b;
michael@0 76 SkScalar bc = b - c;
michael@0 77 if (ab < 0) {
michael@0 78 bc = -bc;
michael@0 79 }
michael@0 80 return ab == 0 || bc < 0;
michael@0 81 }
michael@0 82
michael@0 83 ////////////////////////////////////////////////////////////////////////
michael@0 84
michael@0 85 static bool is_unit_interval(SkScalar x) {
michael@0 86 return x > 0 && x < SK_Scalar1;
michael@0 87 }
michael@0 88
michael@0 89 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
michael@0 90 SkASSERT(ratio);
michael@0 91
michael@0 92 if (numer < 0) {
michael@0 93 numer = -numer;
michael@0 94 denom = -denom;
michael@0 95 }
michael@0 96
michael@0 97 if (denom == 0 || numer == 0 || numer >= denom) {
michael@0 98 return 0;
michael@0 99 }
michael@0 100
michael@0 101 SkScalar r = SkScalarDiv(numer, denom);
michael@0 102 if (SkScalarIsNaN(r)) {
michael@0 103 return 0;
michael@0 104 }
michael@0 105 SkASSERT(r >= 0 && r < SK_Scalar1);
michael@0 106 if (r == 0) { // catch underflow if numer <<<< denom
michael@0 107 return 0;
michael@0 108 }
michael@0 109 *ratio = r;
michael@0 110 return 1;
michael@0 111 }
michael@0 112
michael@0 113 /** From Numerical Recipes in C.
michael@0 114
michael@0 115 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
michael@0 116 x1 = Q / A
michael@0 117 x2 = C / Q
michael@0 118 */
michael@0 119 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
michael@0 120 SkASSERT(roots);
michael@0 121
michael@0 122 if (A == 0) {
michael@0 123 return valid_unit_divide(-C, B, roots);
michael@0 124 }
michael@0 125
michael@0 126 SkScalar* r = roots;
michael@0 127
michael@0 128 SkScalar R = B*B - 4*A*C;
michael@0 129 if (R < 0 || SkScalarIsNaN(R)) { // complex roots
michael@0 130 return 0;
michael@0 131 }
michael@0 132 R = SkScalarSqrt(R);
michael@0 133
michael@0 134 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
michael@0 135 r += valid_unit_divide(Q, A, r);
michael@0 136 r += valid_unit_divide(C, Q, r);
michael@0 137 if (r - roots == 2) {
michael@0 138 if (roots[0] > roots[1])
michael@0 139 SkTSwap<SkScalar>(roots[0], roots[1]);
michael@0 140 else if (roots[0] == roots[1]) // nearly-equal?
michael@0 141 r -= 1; // skip the double root
michael@0 142 }
michael@0 143 return (int)(r - roots);
michael@0 144 }
michael@0 145
michael@0 146 ///////////////////////////////////////////////////////////////////////////////
michael@0 147 ///////////////////////////////////////////////////////////////////////////////
michael@0 148
michael@0 149 static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
michael@0 150 SkASSERT(src);
michael@0 151 SkASSERT(t >= 0 && t <= SK_Scalar1);
michael@0 152
michael@0 153 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
michael@0 154 SkScalar C = src[0];
michael@0 155 SkScalar A = src[4] - 2 * src[2] + C;
michael@0 156 SkScalar B = 2 * (src[2] - C);
michael@0 157 return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
michael@0 158 #else
michael@0 159 SkScalar ab = SkScalarInterp(src[0], src[2], t);
michael@0 160 SkScalar bc = SkScalarInterp(src[2], src[4], t);
michael@0 161 return SkScalarInterp(ab, bc, t);
michael@0 162 #endif
michael@0 163 }
michael@0 164
michael@0 165 static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) {
michael@0 166 SkScalar A = src[4] - 2 * src[2] + src[0];
michael@0 167 SkScalar B = src[2] - src[0];
michael@0 168
michael@0 169 return 2 * SkScalarMulAdd(A, t, B);
michael@0 170 }
michael@0 171
michael@0 172 static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) {
michael@0 173 SkScalar A = src[4] - 2 * src[2] + src[0];
michael@0 174 SkScalar B = src[2] - src[0];
michael@0 175 return A + 2 * B;
michael@0 176 }
michael@0 177
michael@0 178 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
michael@0 179 SkVector* tangent) {
michael@0 180 SkASSERT(src);
michael@0 181 SkASSERT(t >= 0 && t <= SK_Scalar1);
michael@0 182
michael@0 183 if (pt) {
michael@0 184 pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
michael@0 185 }
michael@0 186 if (tangent) {
michael@0 187 tangent->set(eval_quad_derivative(&src[0].fX, t),
michael@0 188 eval_quad_derivative(&src[0].fY, t));
michael@0 189 }
michael@0 190 }
michael@0 191
michael@0 192 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) {
michael@0 193 SkASSERT(src);
michael@0 194
michael@0 195 if (pt) {
michael@0 196 SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
michael@0 197 SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
michael@0 198 SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
michael@0 199 SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
michael@0 200 pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
michael@0 201 }
michael@0 202 if (tangent) {
michael@0 203 tangent->set(eval_quad_derivative_at_half(&src[0].fX),
michael@0 204 eval_quad_derivative_at_half(&src[0].fY));
michael@0 205 }
michael@0 206 }
michael@0 207
michael@0 208 static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) {
michael@0 209 SkScalar ab = SkScalarInterp(src[0], src[2], t);
michael@0 210 SkScalar bc = SkScalarInterp(src[2], src[4], t);
michael@0 211
michael@0 212 dst[0] = src[0];
michael@0 213 dst[2] = ab;
michael@0 214 dst[4] = SkScalarInterp(ab, bc, t);
michael@0 215 dst[6] = bc;
michael@0 216 dst[8] = src[4];
michael@0 217 }
michael@0 218
michael@0 219 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
michael@0 220 SkASSERT(t > 0 && t < SK_Scalar1);
michael@0 221
michael@0 222 interp_quad_coords(&src[0].fX, &dst[0].fX, t);
michael@0 223 interp_quad_coords(&src[0].fY, &dst[0].fY, t);
michael@0 224 }
michael@0 225
michael@0 226 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
michael@0 227 SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
michael@0 228 SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
michael@0 229 SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
michael@0 230 SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
michael@0 231
michael@0 232 dst[0] = src[0];
michael@0 233 dst[1].set(x01, y01);
michael@0 234 dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
michael@0 235 dst[3].set(x12, y12);
michael@0 236 dst[4] = src[2];
michael@0 237 }
michael@0 238
michael@0 239 /** Quad'(t) = At + B, where
michael@0 240 A = 2(a - 2b + c)
michael@0 241 B = 2(b - a)
michael@0 242 Solve for t, only if it fits between 0 < t < 1
michael@0 243 */
michael@0 244 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
michael@0 245 /* At + B == 0
michael@0 246 t = -B / A
michael@0 247 */
michael@0 248 return valid_unit_divide(a - b, a - b - b + c, tValue);
michael@0 249 }
michael@0 250
michael@0 251 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
michael@0 252 coords[2] = coords[6] = coords[4];
michael@0 253 }
michael@0 254
michael@0 255 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
michael@0 256 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
michael@0 257 */
michael@0 258 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
michael@0 259 SkASSERT(src);
michael@0 260 SkASSERT(dst);
michael@0 261
michael@0 262 SkScalar a = src[0].fY;
michael@0 263 SkScalar b = src[1].fY;
michael@0 264 SkScalar c = src[2].fY;
michael@0 265
michael@0 266 if (is_not_monotonic(a, b, c)) {
michael@0 267 SkScalar tValue;
michael@0 268 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
michael@0 269 SkChopQuadAt(src, dst, tValue);
michael@0 270 flatten_double_quad_extrema(&dst[0].fY);
michael@0 271 return 1;
michael@0 272 }
michael@0 273 // if we get here, we need to force dst to be monotonic, even though
michael@0 274 // we couldn't compute a unit_divide value (probably underflow).
michael@0 275 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
michael@0 276 }
michael@0 277 dst[0].set(src[0].fX, a);
michael@0 278 dst[1].set(src[1].fX, b);
michael@0 279 dst[2].set(src[2].fX, c);
michael@0 280 return 0;
michael@0 281 }
michael@0 282
michael@0 283 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
michael@0 284 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
michael@0 285 */
michael@0 286 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
michael@0 287 SkASSERT(src);
michael@0 288 SkASSERT(dst);
michael@0 289
michael@0 290 SkScalar a = src[0].fX;
michael@0 291 SkScalar b = src[1].fX;
michael@0 292 SkScalar c = src[2].fX;
michael@0 293
michael@0 294 if (is_not_monotonic(a, b, c)) {
michael@0 295 SkScalar tValue;
michael@0 296 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
michael@0 297 SkChopQuadAt(src, dst, tValue);
michael@0 298 flatten_double_quad_extrema(&dst[0].fX);
michael@0 299 return 1;
michael@0 300 }
michael@0 301 // if we get here, we need to force dst to be monotonic, even though
michael@0 302 // we couldn't compute a unit_divide value (probably underflow).
michael@0 303 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
michael@0 304 }
michael@0 305 dst[0].set(a, src[0].fY);
michael@0 306 dst[1].set(b, src[1].fY);
michael@0 307 dst[2].set(c, src[2].fY);
michael@0 308 return 0;
michael@0 309 }
michael@0 310
michael@0 311 // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
michael@0 312 // F'(t) = 2 (b - a) + 2 (a - 2b + c) t
michael@0 313 // F''(t) = 2 (a - 2b + c)
michael@0 314 //
michael@0 315 // A = 2 (b - a)
michael@0 316 // B = 2 (a - 2b + c)
michael@0 317 //
michael@0 318 // Maximum curvature for a quadratic means solving
michael@0 319 // Fx' Fx'' + Fy' Fy'' = 0
michael@0 320 //
michael@0 321 // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
michael@0 322 //
michael@0 323 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
michael@0 324 SkScalar Ax = src[1].fX - src[0].fX;
michael@0 325 SkScalar Ay = src[1].fY - src[0].fY;
michael@0 326 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
michael@0 327 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
michael@0 328 SkScalar t = 0; // 0 means don't chop
michael@0 329
michael@0 330 (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
michael@0 331 return t;
michael@0 332 }
michael@0 333
michael@0 334 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
michael@0 335 SkScalar t = SkFindQuadMaxCurvature(src);
michael@0 336 if (t == 0) {
michael@0 337 memcpy(dst, src, 3 * sizeof(SkPoint));
michael@0 338 return 1;
michael@0 339 } else {
michael@0 340 SkChopQuadAt(src, dst, t);
michael@0 341 return 2;
michael@0 342 }
michael@0 343 }
michael@0 344
michael@0 345 #define SK_ScalarTwoThirds (0.666666666f)
michael@0 346
michael@0 347 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
michael@0 348 const SkScalar scale = SK_ScalarTwoThirds;
michael@0 349 dst[0] = src[0];
michael@0 350 dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
michael@0 351 src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
michael@0 352 dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
michael@0 353 src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
michael@0 354 dst[3] = src[2];
michael@0 355 }
michael@0 356
michael@0 357 //////////////////////////////////////////////////////////////////////////////
michael@0 358 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
michael@0 359 //////////////////////////////////////////////////////////////////////////////
michael@0 360
michael@0 361 static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) {
michael@0 362 coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
michael@0 363 coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
michael@0 364 coeff[2] = 3*(pt[2] - pt[0]);
michael@0 365 coeff[3] = pt[0];
michael@0 366 }
michael@0 367
michael@0 368 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) {
michael@0 369 SkASSERT(pts);
michael@0 370
michael@0 371 if (cx) {
michael@0 372 get_cubic_coeff(&pts[0].fX, cx);
michael@0 373 }
michael@0 374 if (cy) {
michael@0 375 get_cubic_coeff(&pts[0].fY, cy);
michael@0 376 }
michael@0 377 }
michael@0 378
michael@0 379 static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
michael@0 380 SkASSERT(src);
michael@0 381 SkASSERT(t >= 0 && t <= SK_Scalar1);
michael@0 382
michael@0 383 if (t == 0) {
michael@0 384 return src[0];
michael@0 385 }
michael@0 386
michael@0 387 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
michael@0 388 SkScalar D = src[0];
michael@0 389 SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
michael@0 390 SkScalar B = 3*(src[4] - src[2] - src[2] + D);
michael@0 391 SkScalar C = 3*(src[2] - D);
michael@0 392
michael@0 393 return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
michael@0 394 #else
michael@0 395 SkScalar ab = SkScalarInterp(src[0], src[2], t);
michael@0 396 SkScalar bc = SkScalarInterp(src[2], src[4], t);
michael@0 397 SkScalar cd = SkScalarInterp(src[4], src[6], t);
michael@0 398 SkScalar abc = SkScalarInterp(ab, bc, t);
michael@0 399 SkScalar bcd = SkScalarInterp(bc, cd, t);
michael@0 400 return SkScalarInterp(abc, bcd, t);
michael@0 401 #endif
michael@0 402 }
michael@0 403
michael@0 404 /** return At^2 + Bt + C
michael@0 405 */
michael@0 406 static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
michael@0 407 SkASSERT(t >= 0 && t <= SK_Scalar1);
michael@0 408
michael@0 409 return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
michael@0 410 }
michael@0 411
michael@0 412 static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
michael@0 413 SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
michael@0 414 SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
michael@0 415 SkScalar C = src[2] - src[0];
michael@0 416
michael@0 417 return eval_quadratic(A, B, C, t);
michael@0 418 }
michael@0 419
michael@0 420 static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
michael@0 421 SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
michael@0 422 SkScalar B = src[4] - 2 * src[2] + src[0];
michael@0 423
michael@0 424 return SkScalarMulAdd(A, t, B);
michael@0 425 }
michael@0 426
michael@0 427 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
michael@0 428 SkVector* tangent, SkVector* curvature) {
michael@0 429 SkASSERT(src);
michael@0 430 SkASSERT(t >= 0 && t <= SK_Scalar1);
michael@0 431
michael@0 432 if (loc) {
michael@0 433 loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
michael@0 434 }
michael@0 435 if (tangent) {
michael@0 436 tangent->set(eval_cubic_derivative(&src[0].fX, t),
michael@0 437 eval_cubic_derivative(&src[0].fY, t));
michael@0 438 }
michael@0 439 if (curvature) {
michael@0 440 curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
michael@0 441 eval_cubic_2ndDerivative(&src[0].fY, t));
michael@0 442 }
michael@0 443 }
michael@0 444
michael@0 445 /** Cubic'(t) = At^2 + Bt + C, where
michael@0 446 A = 3(-a + 3(b - c) + d)
michael@0 447 B = 6(a - 2b + c)
michael@0 448 C = 3(b - a)
michael@0 449 Solve for t, keeping only those that fit betwee 0 < t < 1
michael@0 450 */
michael@0 451 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
michael@0 452 SkScalar tValues[2]) {
michael@0 453 // we divide A,B,C by 3 to simplify
michael@0 454 SkScalar A = d - a + 3*(b - c);
michael@0 455 SkScalar B = 2*(a - b - b + c);
michael@0 456 SkScalar C = b - a;
michael@0 457
michael@0 458 return SkFindUnitQuadRoots(A, B, C, tValues);
michael@0 459 }
michael@0 460
michael@0 461 static void interp_cubic_coords(const SkScalar* src, SkScalar* dst,
michael@0 462 SkScalar t) {
michael@0 463 SkScalar ab = SkScalarInterp(src[0], src[2], t);
michael@0 464 SkScalar bc = SkScalarInterp(src[2], src[4], t);
michael@0 465 SkScalar cd = SkScalarInterp(src[4], src[6], t);
michael@0 466 SkScalar abc = SkScalarInterp(ab, bc, t);
michael@0 467 SkScalar bcd = SkScalarInterp(bc, cd, t);
michael@0 468 SkScalar abcd = SkScalarInterp(abc, bcd, t);
michael@0 469
michael@0 470 dst[0] = src[0];
michael@0 471 dst[2] = ab;
michael@0 472 dst[4] = abc;
michael@0 473 dst[6] = abcd;
michael@0 474 dst[8] = bcd;
michael@0 475 dst[10] = cd;
michael@0 476 dst[12] = src[6];
michael@0 477 }
michael@0 478
michael@0 479 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
michael@0 480 SkASSERT(t > 0 && t < SK_Scalar1);
michael@0 481
michael@0 482 interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
michael@0 483 interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
michael@0 484 }
michael@0 485
michael@0 486 /* http://code.google.com/p/skia/issues/detail?id=32
michael@0 487
michael@0 488 This test code would fail when we didn't check the return result of
michael@0 489 valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
michael@0 490 that after the first chop, the parameters to valid_unit_divide are equal
michael@0 491 (thanks to finite float precision and rounding in the subtracts). Thus
michael@0 492 even though the 2nd tValue looks < 1.0, after we renormalize it, we end
michael@0 493 up with 1.0, hence the need to check and just return the last cubic as
michael@0 494 a degenerate clump of 4 points in the sampe place.
michael@0 495
michael@0 496 static void test_cubic() {
michael@0 497 SkPoint src[4] = {
michael@0 498 { 556.25000, 523.03003 },
michael@0 499 { 556.23999, 522.96002 },
michael@0 500 { 556.21997, 522.89001 },
michael@0 501 { 556.21997, 522.82001 }
michael@0 502 };
michael@0 503 SkPoint dst[10];
michael@0 504 SkScalar tval[] = { 0.33333334f, 0.99999994f };
michael@0 505 SkChopCubicAt(src, dst, tval, 2);
michael@0 506 }
michael@0 507 */
michael@0 508
michael@0 509 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
michael@0 510 const SkScalar tValues[], int roots) {
michael@0 511 #ifdef SK_DEBUG
michael@0 512 {
michael@0 513 for (int i = 0; i < roots - 1; i++)
michael@0 514 {
michael@0 515 SkASSERT(is_unit_interval(tValues[i]));
michael@0 516 SkASSERT(is_unit_interval(tValues[i+1]));
michael@0 517 SkASSERT(tValues[i] < tValues[i+1]);
michael@0 518 }
michael@0 519 }
michael@0 520 #endif
michael@0 521
michael@0 522 if (dst) {
michael@0 523 if (roots == 0) { // nothing to chop
michael@0 524 memcpy(dst, src, 4*sizeof(SkPoint));
michael@0 525 } else {
michael@0 526 SkScalar t = tValues[0];
michael@0 527 SkPoint tmp[4];
michael@0 528
michael@0 529 for (int i = 0; i < roots; i++) {
michael@0 530 SkChopCubicAt(src, dst, t);
michael@0 531 if (i == roots - 1) {
michael@0 532 break;
michael@0 533 }
michael@0 534
michael@0 535 dst += 3;
michael@0 536 // have src point to the remaining cubic (after the chop)
michael@0 537 memcpy(tmp, dst, 4 * sizeof(SkPoint));
michael@0 538 src = tmp;
michael@0 539
michael@0 540 // watch out in case the renormalized t isn't in range
michael@0 541 if (!valid_unit_divide(tValues[i+1] - tValues[i],
michael@0 542 SK_Scalar1 - tValues[i], &t)) {
michael@0 543 // if we can't, just create a degenerate cubic
michael@0 544 dst[4] = dst[5] = dst[6] = src[3];
michael@0 545 break;
michael@0 546 }
michael@0 547 }
michael@0 548 }
michael@0 549 }
michael@0 550 }
michael@0 551
michael@0 552 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
michael@0 553 SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
michael@0 554 SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
michael@0 555 SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
michael@0 556 SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
michael@0 557 SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
michael@0 558 SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
michael@0 559
michael@0 560 SkScalar x012 = SkScalarAve(x01, x12);
michael@0 561 SkScalar y012 = SkScalarAve(y01, y12);
michael@0 562 SkScalar x123 = SkScalarAve(x12, x23);
michael@0 563 SkScalar y123 = SkScalarAve(y12, y23);
michael@0 564
michael@0 565 dst[0] = src[0];
michael@0 566 dst[1].set(x01, y01);
michael@0 567 dst[2].set(x012, y012);
michael@0 568 dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
michael@0 569 dst[4].set(x123, y123);
michael@0 570 dst[5].set(x23, y23);
michael@0 571 dst[6] = src[3];
michael@0 572 }
michael@0 573
michael@0 574 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
michael@0 575 coords[4] = coords[8] = coords[6];
michael@0 576 }
michael@0 577
michael@0 578 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
michael@0 579 the resulting beziers are monotonic in Y. This is called by the scan
michael@0 580 converter. Depending on what is returned, dst[] is treated as follows:
michael@0 581 0 dst[0..3] is the original cubic
michael@0 582 1 dst[0..3] and dst[3..6] are the two new cubics
michael@0 583 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
michael@0 584 If dst == null, it is ignored and only the count is returned.
michael@0 585 */
michael@0 586 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
michael@0 587 SkScalar tValues[2];
michael@0 588 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
michael@0 589 src[3].fY, tValues);
michael@0 590
michael@0 591 SkChopCubicAt(src, dst, tValues, roots);
michael@0 592 if (dst && roots > 0) {
michael@0 593 // we do some cleanup to ensure our Y extrema are flat
michael@0 594 flatten_double_cubic_extrema(&dst[0].fY);
michael@0 595 if (roots == 2) {
michael@0 596 flatten_double_cubic_extrema(&dst[3].fY);
michael@0 597 }
michael@0 598 }
michael@0 599 return roots;
michael@0 600 }
michael@0 601
michael@0 602 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
michael@0 603 SkScalar tValues[2];
michael@0 604 int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
michael@0 605 src[3].fX, tValues);
michael@0 606
michael@0 607 SkChopCubicAt(src, dst, tValues, roots);
michael@0 608 if (dst && roots > 0) {
michael@0 609 // we do some cleanup to ensure our Y extrema are flat
michael@0 610 flatten_double_cubic_extrema(&dst[0].fX);
michael@0 611 if (roots == 2) {
michael@0 612 flatten_double_cubic_extrema(&dst[3].fX);
michael@0 613 }
michael@0 614 }
michael@0 615 return roots;
michael@0 616 }
michael@0 617
michael@0 618 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
michael@0 619
michael@0 620 Inflection means that curvature is zero.
michael@0 621 Curvature is [F' x F''] / [F'^3]
michael@0 622 So we solve F'x X F''y - F'y X F''y == 0
michael@0 623 After some canceling of the cubic term, we get
michael@0 624 A = b - a
michael@0 625 B = c - 2b + a
michael@0 626 C = d - 3c + 3b - a
michael@0 627 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
michael@0 628 */
michael@0 629 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
michael@0 630 SkScalar Ax = src[1].fX - src[0].fX;
michael@0 631 SkScalar Ay = src[1].fY - src[0].fY;
michael@0 632 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
michael@0 633 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
michael@0 634 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
michael@0 635 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
michael@0 636
michael@0 637 return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
michael@0 638 Ax*Cy - Ay*Cx,
michael@0 639 Ax*By - Ay*Bx,
michael@0 640 tValues);
michael@0 641 }
michael@0 642
michael@0 643 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
michael@0 644 SkScalar tValues[2];
michael@0 645 int count = SkFindCubicInflections(src, tValues);
michael@0 646
michael@0 647 if (dst) {
michael@0 648 if (count == 0) {
michael@0 649 memcpy(dst, src, 4 * sizeof(SkPoint));
michael@0 650 } else {
michael@0 651 SkChopCubicAt(src, dst, tValues, count);
michael@0 652 }
michael@0 653 }
michael@0 654 return count + 1;
michael@0 655 }
michael@0 656
michael@0 657 template <typename T> void bubble_sort(T array[], int count) {
michael@0 658 for (int i = count - 1; i > 0; --i)
michael@0 659 for (int j = i; j > 0; --j)
michael@0 660 if (array[j] < array[j-1])
michael@0 661 {
michael@0 662 T tmp(array[j]);
michael@0 663 array[j] = array[j-1];
michael@0 664 array[j-1] = tmp;
michael@0 665 }
michael@0 666 }
michael@0 667
michael@0 668 /**
michael@0 669 * Given an array and count, remove all pair-wise duplicates from the array,
michael@0 670 * keeping the existing sorting, and return the new count
michael@0 671 */
michael@0 672 static int collaps_duplicates(SkScalar array[], int count) {
michael@0 673 for (int n = count; n > 1; --n) {
michael@0 674 if (array[0] == array[1]) {
michael@0 675 for (int i = 1; i < n; ++i) {
michael@0 676 array[i - 1] = array[i];
michael@0 677 }
michael@0 678 count -= 1;
michael@0 679 } else {
michael@0 680 array += 1;
michael@0 681 }
michael@0 682 }
michael@0 683 return count;
michael@0 684 }
michael@0 685
michael@0 686 #ifdef SK_DEBUG
michael@0 687
michael@0 688 #define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array)
michael@0 689
michael@0 690 static void test_collaps_duplicates() {
michael@0 691 static bool gOnce;
michael@0 692 if (gOnce) { return; }
michael@0 693 gOnce = true;
michael@0 694 const SkScalar src0[] = { 0 };
michael@0 695 const SkScalar src1[] = { 0, 0 };
michael@0 696 const SkScalar src2[] = { 0, 1 };
michael@0 697 const SkScalar src3[] = { 0, 0, 0 };
michael@0 698 const SkScalar src4[] = { 0, 0, 1 };
michael@0 699 const SkScalar src5[] = { 0, 1, 1 };
michael@0 700 const SkScalar src6[] = { 0, 1, 2 };
michael@0 701 const struct {
michael@0 702 const SkScalar* fData;
michael@0 703 int fCount;
michael@0 704 int fCollapsedCount;
michael@0 705 } data[] = {
michael@0 706 { TEST_COLLAPS_ENTRY(src0), 1 },
michael@0 707 { TEST_COLLAPS_ENTRY(src1), 1 },
michael@0 708 { TEST_COLLAPS_ENTRY(src2), 2 },
michael@0 709 { TEST_COLLAPS_ENTRY(src3), 1 },
michael@0 710 { TEST_COLLAPS_ENTRY(src4), 2 },
michael@0 711 { TEST_COLLAPS_ENTRY(src5), 2 },
michael@0 712 { TEST_COLLAPS_ENTRY(src6), 3 },
michael@0 713 };
michael@0 714 for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
michael@0 715 SkScalar dst[3];
michael@0 716 memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
michael@0 717 int count = collaps_duplicates(dst, data[i].fCount);
michael@0 718 SkASSERT(data[i].fCollapsedCount == count);
michael@0 719 for (int j = 1; j < count; ++j) {
michael@0 720 SkASSERT(dst[j-1] < dst[j]);
michael@0 721 }
michael@0 722 }
michael@0 723 }
michael@0 724 #endif
michael@0 725
michael@0 726 static SkScalar SkScalarCubeRoot(SkScalar x) {
michael@0 727 return SkScalarPow(x, 0.3333333f);
michael@0 728 }
michael@0 729
michael@0 730 /* Solve coeff(t) == 0, returning the number of roots that
michael@0 731 lie withing 0 < t < 1.
michael@0 732 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
michael@0 733
michael@0 734 Eliminates repeated roots (so that all tValues are distinct, and are always
michael@0 735 in increasing order.
michael@0 736 */
michael@0 737 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
michael@0 738 if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic
michael@0 739 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
michael@0 740 }
michael@0 741
michael@0 742 SkScalar a, b, c, Q, R;
michael@0 743
michael@0 744 {
michael@0 745 SkASSERT(coeff[0] != 0);
michael@0 746
michael@0 747 SkScalar inva = SkScalarInvert(coeff[0]);
michael@0 748 a = coeff[1] * inva;
michael@0 749 b = coeff[2] * inva;
michael@0 750 c = coeff[3] * inva;
michael@0 751 }
michael@0 752 Q = (a*a - b*3) / 9;
michael@0 753 R = (2*a*a*a - 9*a*b + 27*c) / 54;
michael@0 754
michael@0 755 SkScalar Q3 = Q * Q * Q;
michael@0 756 SkScalar R2MinusQ3 = R * R - Q3;
michael@0 757 SkScalar adiv3 = a / 3;
michael@0 758
michael@0 759 SkScalar* roots = tValues;
michael@0 760 SkScalar r;
michael@0 761
michael@0 762 if (R2MinusQ3 < 0) { // we have 3 real roots
michael@0 763 SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
michael@0 764 SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
michael@0 765
michael@0 766 r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
michael@0 767 if (is_unit_interval(r)) {
michael@0 768 *roots++ = r;
michael@0 769 }
michael@0 770 r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
michael@0 771 if (is_unit_interval(r)) {
michael@0 772 *roots++ = r;
michael@0 773 }
michael@0 774 r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
michael@0 775 if (is_unit_interval(r)) {
michael@0 776 *roots++ = r;
michael@0 777 }
michael@0 778 SkDEBUGCODE(test_collaps_duplicates();)
michael@0 779
michael@0 780 // now sort the roots
michael@0 781 int count = (int)(roots - tValues);
michael@0 782 SkASSERT((unsigned)count <= 3);
michael@0 783 bubble_sort(tValues, count);
michael@0 784 count = collaps_duplicates(tValues, count);
michael@0 785 roots = tValues + count; // so we compute the proper count below
michael@0 786 } else { // we have 1 real root
michael@0 787 SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
michael@0 788 A = SkScalarCubeRoot(A);
michael@0 789 if (R > 0) {
michael@0 790 A = -A;
michael@0 791 }
michael@0 792 if (A != 0) {
michael@0 793 A += Q / A;
michael@0 794 }
michael@0 795 r = A - adiv3;
michael@0 796 if (is_unit_interval(r)) {
michael@0 797 *roots++ = r;
michael@0 798 }
michael@0 799 }
michael@0 800
michael@0 801 return (int)(roots - tValues);
michael@0 802 }
michael@0 803
michael@0 804 /* Looking for F' dot F'' == 0
michael@0 805
michael@0 806 A = b - a
michael@0 807 B = c - 2b + a
michael@0 808 C = d - 3c + 3b - a
michael@0 809
michael@0 810 F' = 3Ct^2 + 6Bt + 3A
michael@0 811 F'' = 6Ct + 6B
michael@0 812
michael@0 813 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
michael@0 814 */
michael@0 815 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
michael@0 816 SkScalar a = src[2] - src[0];
michael@0 817 SkScalar b = src[4] - 2 * src[2] + src[0];
michael@0 818 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
michael@0 819
michael@0 820 coeff[0] = c * c;
michael@0 821 coeff[1] = 3 * b * c;
michael@0 822 coeff[2] = 2 * b * b + c * a;
michael@0 823 coeff[3] = a * b;
michael@0 824 }
michael@0 825
michael@0 826 /* Looking for F' dot F'' == 0
michael@0 827
michael@0 828 A = b - a
michael@0 829 B = c - 2b + a
michael@0 830 C = d - 3c + 3b - a
michael@0 831
michael@0 832 F' = 3Ct^2 + 6Bt + 3A
michael@0 833 F'' = 6Ct + 6B
michael@0 834
michael@0 835 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
michael@0 836 */
michael@0 837 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
michael@0 838 SkScalar coeffX[4], coeffY[4];
michael@0 839 int i;
michael@0 840
michael@0 841 formulate_F1DotF2(&src[0].fX, coeffX);
michael@0 842 formulate_F1DotF2(&src[0].fY, coeffY);
michael@0 843
michael@0 844 for (i = 0; i < 4; i++) {
michael@0 845 coeffX[i] += coeffY[i];
michael@0 846 }
michael@0 847
michael@0 848 SkScalar t[3];
michael@0 849 int count = solve_cubic_poly(coeffX, t);
michael@0 850 int maxCount = 0;
michael@0 851
michael@0 852 // now remove extrema where the curvature is zero (mins)
michael@0 853 // !!!! need a test for this !!!!
michael@0 854 for (i = 0; i < count; i++) {
michael@0 855 // if (not_min_curvature())
michael@0 856 if (t[i] > 0 && t[i] < SK_Scalar1) {
michael@0 857 tValues[maxCount++] = t[i];
michael@0 858 }
michael@0 859 }
michael@0 860 return maxCount;
michael@0 861 }
michael@0 862
michael@0 863 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
michael@0 864 SkScalar tValues[3]) {
michael@0 865 SkScalar t_storage[3];
michael@0 866
michael@0 867 if (tValues == NULL) {
michael@0 868 tValues = t_storage;
michael@0 869 }
michael@0 870
michael@0 871 int count = SkFindCubicMaxCurvature(src, tValues);
michael@0 872
michael@0 873 if (dst) {
michael@0 874 if (count == 0) {
michael@0 875 memcpy(dst, src, 4 * sizeof(SkPoint));
michael@0 876 } else {
michael@0 877 SkChopCubicAt(src, dst, tValues, count);
michael@0 878 }
michael@0 879 }
michael@0 880 return count + 1;
michael@0 881 }
michael@0 882
michael@0 883 bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
michael@0 884 bool* ambiguous) {
michael@0 885 if (ambiguous) {
michael@0 886 *ambiguous = false;
michael@0 887 }
michael@0 888
michael@0 889 // Find the minimum and maximum y of the extrema, which are the
michael@0 890 // first and last points since this cubic is monotonic
michael@0 891 SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
michael@0 892 SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);
michael@0 893
michael@0 894 if (pt.fY == cubic[0].fY
michael@0 895 || pt.fY < min_y
michael@0 896 || pt.fY > max_y) {
michael@0 897 // The query line definitely does not cross the curve
michael@0 898 if (ambiguous) {
michael@0 899 *ambiguous = (pt.fY == cubic[0].fY);
michael@0 900 }
michael@0 901 return false;
michael@0 902 }
michael@0 903
michael@0 904 bool pt_at_extremum = (pt.fY == cubic[3].fY);
michael@0 905
michael@0 906 SkScalar min_x =
michael@0 907 SkMinScalar(
michael@0 908 SkMinScalar(
michael@0 909 SkMinScalar(cubic[0].fX, cubic[1].fX),
michael@0 910 cubic[2].fX),
michael@0 911 cubic[3].fX);
michael@0 912 if (pt.fX < min_x) {
michael@0 913 // The query line definitely crosses the curve
michael@0 914 if (ambiguous) {
michael@0 915 *ambiguous = pt_at_extremum;
michael@0 916 }
michael@0 917 return true;
michael@0 918 }
michael@0 919
michael@0 920 SkScalar max_x =
michael@0 921 SkMaxScalar(
michael@0 922 SkMaxScalar(
michael@0 923 SkMaxScalar(cubic[0].fX, cubic[1].fX),
michael@0 924 cubic[2].fX),
michael@0 925 cubic[3].fX);
michael@0 926 if (pt.fX > max_x) {
michael@0 927 // The query line definitely does not cross the curve
michael@0 928 return false;
michael@0 929 }
michael@0 930
michael@0 931 // Do a binary search to find the parameter value which makes y as
michael@0 932 // close as possible to the query point. See whether the query
michael@0 933 // line's origin is to the left of the associated x coordinate.
michael@0 934
michael@0 935 // kMaxIter is chosen as the number of mantissa bits for a float,
michael@0 936 // since there's no way we are going to get more precision by
michael@0 937 // iterating more times than that.
michael@0 938 const int kMaxIter = 23;
michael@0 939 SkPoint eval;
michael@0 940 int iter = 0;
michael@0 941 SkScalar upper_t;
michael@0 942 SkScalar lower_t;
michael@0 943 // Need to invert direction of t parameter if cubic goes up
michael@0 944 // instead of down
michael@0 945 if (cubic[3].fY > cubic[0].fY) {
michael@0 946 upper_t = SK_Scalar1;
michael@0 947 lower_t = 0;
michael@0 948 } else {
michael@0 949 upper_t = 0;
michael@0 950 lower_t = SK_Scalar1;
michael@0 951 }
michael@0 952 do {
michael@0 953 SkScalar t = SkScalarAve(upper_t, lower_t);
michael@0 954 SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
michael@0 955 if (pt.fY > eval.fY) {
michael@0 956 lower_t = t;
michael@0 957 } else {
michael@0 958 upper_t = t;
michael@0 959 }
michael@0 960 } while (++iter < kMaxIter
michael@0 961 && !SkScalarNearlyZero(eval.fY - pt.fY));
michael@0 962 if (pt.fX <= eval.fX) {
michael@0 963 if (ambiguous) {
michael@0 964 *ambiguous = pt_at_extremum;
michael@0 965 }
michael@0 966 return true;
michael@0 967 }
michael@0 968 return false;
michael@0 969 }
michael@0 970
michael@0 971 int SkNumXRayCrossingsForCubic(const SkXRay& pt,
michael@0 972 const SkPoint cubic[4],
michael@0 973 bool* ambiguous) {
michael@0 974 int num_crossings = 0;
michael@0 975 SkPoint monotonic_cubics[10];
michael@0 976 int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
michael@0 977 if (ambiguous) {
michael@0 978 *ambiguous = false;
michael@0 979 }
michael@0 980 bool locally_ambiguous;
michael@0 981 if (SkXRayCrossesMonotonicCubic(pt,
michael@0 982 &monotonic_cubics[0],
michael@0 983 &locally_ambiguous))
michael@0 984 ++num_crossings;
michael@0 985 if (ambiguous) {
michael@0 986 *ambiguous |= locally_ambiguous;
michael@0 987 }
michael@0 988 if (num_monotonic_cubics > 0)
michael@0 989 if (SkXRayCrossesMonotonicCubic(pt,
michael@0 990 &monotonic_cubics[3],
michael@0 991 &locally_ambiguous))
michael@0 992 ++num_crossings;
michael@0 993 if (ambiguous) {
michael@0 994 *ambiguous |= locally_ambiguous;
michael@0 995 }
michael@0 996 if (num_monotonic_cubics > 1)
michael@0 997 if (SkXRayCrossesMonotonicCubic(pt,
michael@0 998 &monotonic_cubics[6],
michael@0 999 &locally_ambiguous))
michael@0 1000 ++num_crossings;
michael@0 1001 if (ambiguous) {
michael@0 1002 *ambiguous |= locally_ambiguous;
michael@0 1003 }
michael@0 1004 return num_crossings;
michael@0 1005 }
michael@0 1006
michael@0 1007 ///////////////////////////////////////////////////////////////////////////////
michael@0 1008
michael@0 1009 /* Find t value for quadratic [a, b, c] = d.
michael@0 1010 Return 0 if there is no solution within [0, 1)
michael@0 1011 */
michael@0 1012 static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
michael@0 1013 // At^2 + Bt + C = d
michael@0 1014 SkScalar A = a - 2 * b + c;
michael@0 1015 SkScalar B = 2 * (b - a);
michael@0 1016 SkScalar C = a - d;
michael@0 1017
michael@0 1018 SkScalar roots[2];
michael@0 1019 int count = SkFindUnitQuadRoots(A, B, C, roots);
michael@0 1020
michael@0 1021 SkASSERT(count <= 1);
michael@0 1022 return count == 1 ? roots[0] : 0;
michael@0 1023 }
michael@0 1024
michael@0 1025 /* given a quad-curve and a point (x,y), chop the quad at that point and place
michael@0 1026 the new off-curve point and endpoint into 'dest'.
michael@0 1027 Should only return false if the computed pos is the start of the curve
michael@0 1028 (i.e. root == 0)
michael@0 1029 */
michael@0 1030 static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
michael@0 1031 SkPoint* dest) {
michael@0 1032 const SkScalar* base;
michael@0 1033 SkScalar value;
michael@0 1034
michael@0 1035 if (SkScalarAbs(x) < SkScalarAbs(y)) {
michael@0 1036 base = &quad[0].fX;
michael@0 1037 value = x;
michael@0 1038 } else {
michael@0 1039 base = &quad[0].fY;
michael@0 1040 value = y;
michael@0 1041 }
michael@0 1042
michael@0 1043 // note: this returns 0 if it thinks value is out of range, meaning the
michael@0 1044 // root might return something outside of [0, 1)
michael@0 1045 SkScalar t = quad_solve(base[0], base[2], base[4], value);
michael@0 1046
michael@0 1047 if (t > 0) {
michael@0 1048 SkPoint tmp[5];
michael@0 1049 SkChopQuadAt(quad, tmp, t);
michael@0 1050 dest[0] = tmp[1];
michael@0 1051 dest[1].set(x, y);
michael@0 1052 return true;
michael@0 1053 } else {
michael@0 1054 /* t == 0 means either the value triggered a root outside of [0, 1)
michael@0 1055 For our purposes, we can ignore the <= 0 roots, but we want to
michael@0 1056 catch the >= 1 roots (which given our caller, will basically mean
michael@0 1057 a root of 1, give-or-take numerical instability). If we are in the
michael@0 1058 >= 1 case, return the existing offCurve point.
michael@0 1059
michael@0 1060 The test below checks to see if we are close to the "end" of the
michael@0 1061 curve (near base[4]). Rather than specifying a tolerance, I just
michael@0 1062 check to see if value is on to the right/left of the middle point
michael@0 1063 (depending on the direction/sign of the end points).
michael@0 1064 */
michael@0 1065 if ((base[0] < base[4] && value > base[2]) ||
michael@0 1066 (base[0] > base[4] && value < base[2])) // should root have been 1
michael@0 1067 {
michael@0 1068 dest[0] = quad[1];
michael@0 1069 dest[1].set(x, y);
michael@0 1070 return true;
michael@0 1071 }
michael@0 1072 }
michael@0 1073 return false;
michael@0 1074 }
michael@0 1075
michael@0 1076 static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
michael@0 1077 // The mid point of the quadratic arc approximation is half way between the two
michael@0 1078 // control points. The float epsilon adjustment moves the on curve point out by
michael@0 1079 // two bits, distributing the convex test error between the round rect
michael@0 1080 // approximation and the convex cross product sign equality test.
michael@0 1081 #define SK_MID_RRECT_OFFSET \
michael@0 1082 (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
michael@0 1083 { SK_Scalar1, 0 },
michael@0 1084 { SK_Scalar1, SK_ScalarTanPIOver8 },
michael@0 1085 { SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET },
michael@0 1086 { SK_ScalarTanPIOver8, SK_Scalar1 },
michael@0 1087
michael@0 1088 { 0, SK_Scalar1 },
michael@0 1089 { -SK_ScalarTanPIOver8, SK_Scalar1 },
michael@0 1090 { -SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET },
michael@0 1091 { -SK_Scalar1, SK_ScalarTanPIOver8 },
michael@0 1092
michael@0 1093 { -SK_Scalar1, 0 },
michael@0 1094 { -SK_Scalar1, -SK_ScalarTanPIOver8 },
michael@0 1095 { -SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET },
michael@0 1096 { -SK_ScalarTanPIOver8, -SK_Scalar1 },
michael@0 1097
michael@0 1098 { 0, -SK_Scalar1 },
michael@0 1099 { SK_ScalarTanPIOver8, -SK_Scalar1 },
michael@0 1100 { SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET },
michael@0 1101 { SK_Scalar1, -SK_ScalarTanPIOver8 },
michael@0 1102
michael@0 1103 { SK_Scalar1, 0 }
michael@0 1104 #undef SK_MID_RRECT_OFFSET
michael@0 1105 };
michael@0 1106
michael@0 1107 int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
michael@0 1108 SkRotationDirection dir, const SkMatrix* userMatrix,
michael@0 1109 SkPoint quadPoints[]) {
michael@0 1110 // rotate by x,y so that uStart is (1.0)
michael@0 1111 SkScalar x = SkPoint::DotProduct(uStart, uStop);
michael@0 1112 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
michael@0 1113
michael@0 1114 SkScalar absX = SkScalarAbs(x);
michael@0 1115 SkScalar absY = SkScalarAbs(y);
michael@0 1116
michael@0 1117 int pointCount;
michael@0 1118
michael@0 1119 // check for (effectively) coincident vectors
michael@0 1120 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
michael@0 1121 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
michael@0 1122 if (absY <= SK_ScalarNearlyZero && x > 0 &&
michael@0 1123 ((y >= 0 && kCW_SkRotationDirection == dir) ||
michael@0 1124 (y <= 0 && kCCW_SkRotationDirection == dir))) {
michael@0 1125
michael@0 1126 // just return the start-point
michael@0 1127 quadPoints[0].set(SK_Scalar1, 0);
michael@0 1128 pointCount = 1;
michael@0 1129 } else {
michael@0 1130 if (dir == kCCW_SkRotationDirection) {
michael@0 1131 y = -y;
michael@0 1132 }
michael@0 1133 // what octant (quadratic curve) is [xy] in?
michael@0 1134 int oct = 0;
michael@0 1135 bool sameSign = true;
michael@0 1136
michael@0 1137 if (0 == y) {
michael@0 1138 oct = 4; // 180
michael@0 1139 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
michael@0 1140 } else if (0 == x) {
michael@0 1141 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
michael@0 1142 oct = y > 0 ? 2 : 6; // 90 : 270
michael@0 1143 } else {
michael@0 1144 if (y < 0) {
michael@0 1145 oct += 4;
michael@0 1146 }
michael@0 1147 if ((x < 0) != (y < 0)) {
michael@0 1148 oct += 2;
michael@0 1149 sameSign = false;
michael@0 1150 }
michael@0 1151 if ((absX < absY) == sameSign) {
michael@0 1152 oct += 1;
michael@0 1153 }
michael@0 1154 }
michael@0 1155
michael@0 1156 int wholeCount = oct << 1;
michael@0 1157 memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
michael@0 1158
michael@0 1159 const SkPoint* arc = &gQuadCirclePts[wholeCount];
michael@0 1160 if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
michael@0 1161 wholeCount += 2;
michael@0 1162 }
michael@0 1163 pointCount = wholeCount + 1;
michael@0 1164 }
michael@0 1165
michael@0 1166 // now handle counter-clockwise and the initial unitStart rotation
michael@0 1167 SkMatrix matrix;
michael@0 1168 matrix.setSinCos(uStart.fY, uStart.fX);
michael@0 1169 if (dir == kCCW_SkRotationDirection) {
michael@0 1170 matrix.preScale(SK_Scalar1, -SK_Scalar1);
michael@0 1171 }
michael@0 1172 if (userMatrix) {
michael@0 1173 matrix.postConcat(*userMatrix);
michael@0 1174 }
michael@0 1175 matrix.mapPoints(quadPoints, pointCount);
michael@0 1176 return pointCount;
michael@0 1177 }
michael@0 1178
michael@0 1179
michael@0 1180 ///////////////////////////////////////////////////////////////////////////////
michael@0 1181 //
michael@0 1182 // NURB representation for conics. Helpful explanations at:
michael@0 1183 //
michael@0 1184 // http://citeseerx.ist.psu.edu/viewdoc/
michael@0 1185 // download?doi=10.1.1.44.5740&rep=rep1&type=ps
michael@0 1186 // and
michael@0 1187 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
michael@0 1188 //
michael@0 1189 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
michael@0 1190 // ------------------------------------------
michael@0 1191 // ((1 - t)^2 + t^2 + 2 (1 - t) t w)
michael@0 1192 //
michael@0 1193 // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
michael@0 1194 // ------------------------------------------------
michael@0 1195 // {t^2 (2 - 2 w), t (-2 + 2 w), 1}
michael@0 1196 //
michael@0 1197
michael@0 1198 static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
michael@0 1199 SkASSERT(src);
michael@0 1200 SkASSERT(t >= 0 && t <= SK_Scalar1);
michael@0 1201
michael@0 1202 SkScalar src2w = SkScalarMul(src[2], w);
michael@0 1203 SkScalar C = src[0];
michael@0 1204 SkScalar A = src[4] - 2 * src2w + C;
michael@0 1205 SkScalar B = 2 * (src2w - C);
michael@0 1206 SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
michael@0 1207
michael@0 1208 B = 2 * (w - SK_Scalar1);
michael@0 1209 C = SK_Scalar1;
michael@0 1210 A = -B;
michael@0 1211 SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
michael@0 1212
michael@0 1213 return SkScalarDiv(numer, denom);
michael@0 1214 }
michael@0 1215
michael@0 1216 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
michael@0 1217 //
michael@0 1218 // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
michael@0 1219 // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
michael@0 1220 // t^0 : -2 P0 w + 2 P1 w
michael@0 1221 //
michael@0 1222 // We disregard magnitude, so we can freely ignore the denominator of F', and
michael@0 1223 // divide the numerator by 2
michael@0 1224 //
michael@0 1225 // coeff[0] for t^2
michael@0 1226 // coeff[1] for t^1
michael@0 1227 // coeff[2] for t^0
michael@0 1228 //
michael@0 1229 static void conic_deriv_coeff(const SkScalar src[],
michael@0 1230 SkScalar w,
michael@0 1231 SkScalar coeff[3]) {
michael@0 1232 const SkScalar P20 = src[4] - src[0];
michael@0 1233 const SkScalar P10 = src[2] - src[0];
michael@0 1234 const SkScalar wP10 = w * P10;
michael@0 1235 coeff[0] = w * P20 - P20;
michael@0 1236 coeff[1] = P20 - 2 * wP10;
michael@0 1237 coeff[2] = wP10;
michael@0 1238 }
michael@0 1239
michael@0 1240 static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
michael@0 1241 SkScalar coeff[3];
michael@0 1242 conic_deriv_coeff(coord, w, coeff);
michael@0 1243 return t * (t * coeff[0] + coeff[1]) + coeff[2];
michael@0 1244 }
michael@0 1245
michael@0 1246 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
michael@0 1247 SkScalar coeff[3];
michael@0 1248 conic_deriv_coeff(src, w, coeff);
michael@0 1249
michael@0 1250 SkScalar tValues[2];
michael@0 1251 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
michael@0 1252 SkASSERT(0 == roots || 1 == roots);
michael@0 1253
michael@0 1254 if (1 == roots) {
michael@0 1255 *t = tValues[0];
michael@0 1256 return true;
michael@0 1257 }
michael@0 1258 return false;
michael@0 1259 }
michael@0 1260
michael@0 1261 struct SkP3D {
michael@0 1262 SkScalar fX, fY, fZ;
michael@0 1263
michael@0 1264 void set(SkScalar x, SkScalar y, SkScalar z) {
michael@0 1265 fX = x; fY = y; fZ = z;
michael@0 1266 }
michael@0 1267
michael@0 1268 void projectDown(SkPoint* dst) const {
michael@0 1269 dst->set(fX / fZ, fY / fZ);
michael@0 1270 }
michael@0 1271 };
michael@0 1272
michael@0 1273 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
michael@0 1274 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
michael@0 1275 SkScalar ab = SkScalarInterp(src[0], src[3], t);
michael@0 1276 SkScalar bc = SkScalarInterp(src[3], src[6], t);
michael@0 1277 dst[0] = ab;
michael@0 1278 dst[3] = SkScalarInterp(ab, bc, t);
michael@0 1279 dst[6] = bc;
michael@0 1280 }
michael@0 1281
michael@0 1282 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
michael@0 1283 dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
michael@0 1284 dst[1].set(src[1].fX * w, src[1].fY * w, w);
michael@0 1285 dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
michael@0 1286 }
michael@0 1287
michael@0 1288 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
michael@0 1289 SkASSERT(t >= 0 && t <= SK_Scalar1);
michael@0 1290
michael@0 1291 if (pt) {
michael@0 1292 pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
michael@0 1293 conic_eval_pos(&fPts[0].fY, fW, t));
michael@0 1294 }
michael@0 1295 if (tangent) {
michael@0 1296 tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
michael@0 1297 conic_eval_tan(&fPts[0].fY, fW, t));
michael@0 1298 }
michael@0 1299 }
michael@0 1300
michael@0 1301 void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
michael@0 1302 SkP3D tmp[3], tmp2[3];
michael@0 1303
michael@0 1304 ratquad_mapTo3D(fPts, fW, tmp);
michael@0 1305
michael@0 1306 p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
michael@0 1307 p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
michael@0 1308 p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
michael@0 1309
michael@0 1310 dst[0].fPts[0] = fPts[0];
michael@0 1311 tmp2[0].projectDown(&dst[0].fPts[1]);
michael@0 1312 tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
michael@0 1313 tmp2[2].projectDown(&dst[1].fPts[1]);
michael@0 1314 dst[1].fPts[2] = fPts[2];
michael@0 1315
michael@0 1316 // to put in "standard form", where w0 and w2 are both 1, we compute the
michael@0 1317 // new w1 as sqrt(w1*w1/w0*w2)
michael@0 1318 // or
michael@0 1319 // w1 /= sqrt(w0*w2)
michael@0 1320 //
michael@0 1321 // However, in our case, we know that for dst[0]:
michael@0 1322 // w0 == 1, and for dst[1], w2 == 1
michael@0 1323 //
michael@0 1324 SkScalar root = SkScalarSqrt(tmp2[1].fZ);
michael@0 1325 dst[0].fW = tmp2[0].fZ / root;
michael@0 1326 dst[1].fW = tmp2[2].fZ / root;
michael@0 1327 }
michael@0 1328
michael@0 1329 static SkScalar subdivide_w_value(SkScalar w) {
michael@0 1330 return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
michael@0 1331 }
michael@0 1332
michael@0 1333 void SkConic::chop(SkConic dst[2]) const {
michael@0 1334 SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
michael@0 1335 SkScalar p1x = fW * fPts[1].fX;
michael@0 1336 SkScalar p1y = fW * fPts[1].fY;
michael@0 1337 SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
michael@0 1338 SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;
michael@0 1339
michael@0 1340 dst[0].fPts[0] = fPts[0];
michael@0 1341 dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
michael@0 1342 (fPts[0].fY + p1y) * scale);
michael@0 1343 dst[0].fPts[2].set(mx, my);
michael@0 1344
michael@0 1345 dst[1].fPts[0].set(mx, my);
michael@0 1346 dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
michael@0 1347 (p1y + fPts[2].fY) * scale);
michael@0 1348 dst[1].fPts[2] = fPts[2];
michael@0 1349
michael@0 1350 dst[0].fW = dst[1].fW = subdivide_w_value(fW);
michael@0 1351 }
michael@0 1352
michael@0 1353 /*
michael@0 1354 * "High order approximation of conic sections by quadratic splines"
michael@0 1355 * by Michael Floater, 1993
michael@0 1356 */
michael@0 1357 #define AS_QUAD_ERROR_SETUP \
michael@0 1358 SkScalar a = fW - 1; \
michael@0 1359 SkScalar k = a / (4 * (2 + a)); \
michael@0 1360 SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
michael@0 1361 SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
michael@0 1362
michael@0 1363 void SkConic::computeAsQuadError(SkVector* err) const {
michael@0 1364 AS_QUAD_ERROR_SETUP
michael@0 1365 err->set(x, y);
michael@0 1366 }
michael@0 1367
michael@0 1368 bool SkConic::asQuadTol(SkScalar tol) const {
michael@0 1369 AS_QUAD_ERROR_SETUP
michael@0 1370 return (x * x + y * y) <= tol * tol;
michael@0 1371 }
michael@0 1372
michael@0 1373 int SkConic::computeQuadPOW2(SkScalar tol) const {
michael@0 1374 AS_QUAD_ERROR_SETUP
michael@0 1375 SkScalar error = SkScalarSqrt(x * x + y * y) - tol;
michael@0 1376
michael@0 1377 if (error <= 0) {
michael@0 1378 return 0;
michael@0 1379 }
michael@0 1380 uint32_t ierr = (uint32_t)error;
michael@0 1381 return (34 - SkCLZ(ierr)) >> 1;
michael@0 1382 }
michael@0 1383
michael@0 1384 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
michael@0 1385 SkASSERT(level >= 0);
michael@0 1386
michael@0 1387 if (0 == level) {
michael@0 1388 memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
michael@0 1389 return pts + 2;
michael@0 1390 } else {
michael@0 1391 SkConic dst[2];
michael@0 1392 src.chop(dst);
michael@0 1393 --level;
michael@0 1394 pts = subdivide(dst[0], pts, level);
michael@0 1395 return subdivide(dst[1], pts, level);
michael@0 1396 }
michael@0 1397 }
michael@0 1398
michael@0 1399 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
michael@0 1400 SkASSERT(pow2 >= 0);
michael@0 1401 *pts = fPts[0];
michael@0 1402 SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
michael@0 1403 SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
michael@0 1404 return 1 << pow2;
michael@0 1405 }
michael@0 1406
michael@0 1407 bool SkConic::findXExtrema(SkScalar* t) const {
michael@0 1408 return conic_find_extrema(&fPts[0].fX, fW, t);
michael@0 1409 }
michael@0 1410
michael@0 1411 bool SkConic::findYExtrema(SkScalar* t) const {
michael@0 1412 return conic_find_extrema(&fPts[0].fY, fW, t);
michael@0 1413 }
michael@0 1414
michael@0 1415 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
michael@0 1416 SkScalar t;
michael@0 1417 if (this->findXExtrema(&t)) {
michael@0 1418 this->chopAt(t, dst);
michael@0 1419 // now clean-up the middle, since we know t was meant to be at
michael@0 1420 // an X-extrema
michael@0 1421 SkScalar value = dst[0].fPts[2].fX;
michael@0 1422 dst[0].fPts[1].fX = value;
michael@0 1423 dst[1].fPts[0].fX = value;
michael@0 1424 dst[1].fPts[1].fX = value;
michael@0 1425 return true;
michael@0 1426 }
michael@0 1427 return false;
michael@0 1428 }
michael@0 1429
michael@0 1430 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
michael@0 1431 SkScalar t;
michael@0 1432 if (this->findYExtrema(&t)) {
michael@0 1433 this->chopAt(t, dst);
michael@0 1434 // now clean-up the middle, since we know t was meant to be at
michael@0 1435 // an Y-extrema
michael@0 1436 SkScalar value = dst[0].fPts[2].fY;
michael@0 1437 dst[0].fPts[1].fY = value;
michael@0 1438 dst[1].fPts[0].fY = value;
michael@0 1439 dst[1].fPts[1].fY = value;
michael@0 1440 return true;
michael@0 1441 }
michael@0 1442 return false;
michael@0 1443 }
michael@0 1444
michael@0 1445 void SkConic::computeTightBounds(SkRect* bounds) const {
michael@0 1446 SkPoint pts[4];
michael@0 1447 pts[0] = fPts[0];
michael@0 1448 pts[1] = fPts[2];
michael@0 1449 int count = 2;
michael@0 1450
michael@0 1451 SkScalar t;
michael@0 1452 if (this->findXExtrema(&t)) {
michael@0 1453 this->evalAt(t, &pts[count++]);
michael@0 1454 }
michael@0 1455 if (this->findYExtrema(&t)) {
michael@0 1456 this->evalAt(t, &pts[count++]);
michael@0 1457 }
michael@0 1458 bounds->set(pts, count);
michael@0 1459 }
michael@0 1460
michael@0 1461 void SkConic::computeFastBounds(SkRect* bounds) const {
michael@0 1462 bounds->set(fPts, 3);
michael@0 1463 }
michael@0 1464
michael@0 1465 bool SkConic::findMaxCurvature(SkScalar* t) const {
michael@0 1466 // TODO: Implement me
michael@0 1467 return false;
michael@0 1468 }

mercurial