gfx/skia/trunk/src/core/SkGeometry.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2  * Copyright 2006 The Android Open Source Project
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     8 #include "SkGeometry.h"
     9 #include "SkMatrix.h"
    11 bool SkXRayCrossesLine(const SkXRay& pt,
    12                        const SkPoint pts[2],
    13                        bool* ambiguous) {
    14     if (ambiguous) {
    15         *ambiguous = false;
    16     }
    17     // Determine quick discards.
    18     // Consider query line going exactly through point 0 to not
    19     // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
    20     if (pt.fY == pts[0].fY) {
    21         if (ambiguous) {
    22             *ambiguous = true;
    23         }
    24         return false;
    25     }
    26     if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
    27         return false;
    28     if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
    29         return false;
    30     if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
    31         return false;
    32     // Determine degenerate cases
    33     if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
    34         return false;
    35     if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
    36         // We've already determined the query point lies within the
    37         // vertical range of the line segment.
    38         if (pt.fX <= pts[0].fX) {
    39             if (ambiguous) {
    40                 *ambiguous = (pt.fY == pts[1].fY);
    41             }
    42             return true;
    43         }
    44         return false;
    45     }
    46     // Ambiguity check
    47     if (pt.fY == pts[1].fY) {
    48         if (pt.fX <= pts[1].fX) {
    49             if (ambiguous) {
    50                 *ambiguous = true;
    51             }
    52             return true;
    53         }
    54         return false;
    55     }
    56     // Full line segment evaluation
    57     SkScalar delta_y = pts[1].fY - pts[0].fY;
    58     SkScalar delta_x = pts[1].fX - pts[0].fX;
    59     SkScalar slope = SkScalarDiv(delta_y, delta_x);
    60     SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
    61     // Solve for x coordinate at y = pt.fY
    62     SkScalar x = SkScalarDiv(pt.fY - b, slope);
    63     return pt.fX <= x;
    64 }
    66 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
    67     involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
    68     May also introduce overflow of fixed when we compute our setup.
    69 */
    70 //    #define DIRECT_EVAL_OF_POLYNOMIALS
    72 ////////////////////////////////////////////////////////////////////////
    74 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
    75     SkScalar ab = a - b;
    76     SkScalar bc = b - c;
    77     if (ab < 0) {
    78         bc = -bc;
    79     }
    80     return ab == 0 || bc < 0;
    81 }
    83 ////////////////////////////////////////////////////////////////////////
    85 static bool is_unit_interval(SkScalar x) {
    86     return x > 0 && x < SK_Scalar1;
    87 }
    89 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
    90     SkASSERT(ratio);
    92     if (numer < 0) {
    93         numer = -numer;
    94         denom = -denom;
    95     }
    97     if (denom == 0 || numer == 0 || numer >= denom) {
    98         return 0;
    99     }
   101     SkScalar r = SkScalarDiv(numer, denom);
   102     if (SkScalarIsNaN(r)) {
   103         return 0;
   104     }
   105     SkASSERT(r >= 0 && r < SK_Scalar1);
   106     if (r == 0) { // catch underflow if numer <<<< denom
   107         return 0;
   108     }
   109     *ratio = r;
   110     return 1;
   111 }
   113 /** From Numerical Recipes in C.
   115     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
   116     x1 = Q / A
   117     x2 = C / Q
   118 */
   119 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
   120     SkASSERT(roots);
   122     if (A == 0) {
   123         return valid_unit_divide(-C, B, roots);
   124     }
   126     SkScalar* r = roots;
   128     SkScalar R = B*B - 4*A*C;
   129     if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
   130         return 0;
   131     }
   132     R = SkScalarSqrt(R);
   134     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
   135     r += valid_unit_divide(Q, A, r);
   136     r += valid_unit_divide(C, Q, r);
   137     if (r - roots == 2) {
   138         if (roots[0] > roots[1])
   139             SkTSwap<SkScalar>(roots[0], roots[1]);
   140         else if (roots[0] == roots[1])  // nearly-equal?
   141             r -= 1; // skip the double root
   142     }
   143     return (int)(r - roots);
   144 }
   146 ///////////////////////////////////////////////////////////////////////////////
   147 ///////////////////////////////////////////////////////////////////////////////
   149 static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
   150     SkASSERT(src);
   151     SkASSERT(t >= 0 && t <= SK_Scalar1);
   153 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
   154     SkScalar    C = src[0];
   155     SkScalar    A = src[4] - 2 * src[2] + C;
   156     SkScalar    B = 2 * (src[2] - C);
   157     return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
   158 #else
   159     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
   160     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
   161     return SkScalarInterp(ab, bc, t);
   162 #endif
   163 }
   165 static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) {
   166     SkScalar A = src[4] - 2 * src[2] + src[0];
   167     SkScalar B = src[2] - src[0];
   169     return 2 * SkScalarMulAdd(A, t, B);
   170 }
   172 static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) {
   173     SkScalar A = src[4] - 2 * src[2] + src[0];
   174     SkScalar B = src[2] - src[0];
   175     return A + 2 * B;
   176 }
   178 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
   179                   SkVector* tangent) {
   180     SkASSERT(src);
   181     SkASSERT(t >= 0 && t <= SK_Scalar1);
   183     if (pt) {
   184         pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
   185     }
   186     if (tangent) {
   187         tangent->set(eval_quad_derivative(&src[0].fX, t),
   188                      eval_quad_derivative(&src[0].fY, t));
   189     }
   190 }
   192 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) {
   193     SkASSERT(src);
   195     if (pt) {
   196         SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
   197         SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
   198         SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
   199         SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
   200         pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
   201     }
   202     if (tangent) {
   203         tangent->set(eval_quad_derivative_at_half(&src[0].fX),
   204                      eval_quad_derivative_at_half(&src[0].fY));
   205     }
   206 }
   208 static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) {
   209     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
   210     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
   212     dst[0] = src[0];
   213     dst[2] = ab;
   214     dst[4] = SkScalarInterp(ab, bc, t);
   215     dst[6] = bc;
   216     dst[8] = src[4];
   217 }
   219 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
   220     SkASSERT(t > 0 && t < SK_Scalar1);
   222     interp_quad_coords(&src[0].fX, &dst[0].fX, t);
   223     interp_quad_coords(&src[0].fY, &dst[0].fY, t);
   224 }
   226 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
   227     SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
   228     SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
   229     SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
   230     SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
   232     dst[0] = src[0];
   233     dst[1].set(x01, y01);
   234     dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
   235     dst[3].set(x12, y12);
   236     dst[4] = src[2];
   237 }
   239 /** Quad'(t) = At + B, where
   240     A = 2(a - 2b + c)
   241     B = 2(b - a)
   242     Solve for t, only if it fits between 0 < t < 1
   243 */
   244 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
   245     /*  At + B == 0
   246         t = -B / A
   247     */
   248     return valid_unit_divide(a - b, a - b - b + c, tValue);
   249 }
   251 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
   252     coords[2] = coords[6] = coords[4];
   253 }
   255 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
   256  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
   257  */
   258 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
   259     SkASSERT(src);
   260     SkASSERT(dst);
   262     SkScalar a = src[0].fY;
   263     SkScalar b = src[1].fY;
   264     SkScalar c = src[2].fY;
   266     if (is_not_monotonic(a, b, c)) {
   267         SkScalar    tValue;
   268         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
   269             SkChopQuadAt(src, dst, tValue);
   270             flatten_double_quad_extrema(&dst[0].fY);
   271             return 1;
   272         }
   273         // if we get here, we need to force dst to be monotonic, even though
   274         // we couldn't compute a unit_divide value (probably underflow).
   275         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
   276     }
   277     dst[0].set(src[0].fX, a);
   278     dst[1].set(src[1].fX, b);
   279     dst[2].set(src[2].fX, c);
   280     return 0;
   281 }
   283 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
   284     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
   285  */
   286 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
   287     SkASSERT(src);
   288     SkASSERT(dst);
   290     SkScalar a = src[0].fX;
   291     SkScalar b = src[1].fX;
   292     SkScalar c = src[2].fX;
   294     if (is_not_monotonic(a, b, c)) {
   295         SkScalar tValue;
   296         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
   297             SkChopQuadAt(src, dst, tValue);
   298             flatten_double_quad_extrema(&dst[0].fX);
   299             return 1;
   300         }
   301         // if we get here, we need to force dst to be monotonic, even though
   302         // we couldn't compute a unit_divide value (probably underflow).
   303         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
   304     }
   305     dst[0].set(a, src[0].fY);
   306     dst[1].set(b, src[1].fY);
   307     dst[2].set(c, src[2].fY);
   308     return 0;
   309 }
   311 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
   312 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
   313 //  F''(t)  = 2 (a - 2b + c)
   314 //
   315 //  A = 2 (b - a)
   316 //  B = 2 (a - 2b + c)
   317 //
   318 //  Maximum curvature for a quadratic means solving
   319 //  Fx' Fx'' + Fy' Fy'' = 0
   320 //
   321 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
   322 //
   323 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
   324     SkScalar    Ax = src[1].fX - src[0].fX;
   325     SkScalar    Ay = src[1].fY - src[0].fY;
   326     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
   327     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
   328     SkScalar    t = 0;  // 0 means don't chop
   330     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
   331     return t;
   332 }
   334 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
   335     SkScalar t = SkFindQuadMaxCurvature(src);
   336     if (t == 0) {
   337         memcpy(dst, src, 3 * sizeof(SkPoint));
   338         return 1;
   339     } else {
   340         SkChopQuadAt(src, dst, t);
   341         return 2;
   342     }
   343 }
   345 #define SK_ScalarTwoThirds  (0.666666666f)
   347 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
   348     const SkScalar scale = SK_ScalarTwoThirds;
   349     dst[0] = src[0];
   350     dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
   351                src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
   352     dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
   353                src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
   354     dst[3] = src[2];
   355 }
   357 //////////////////////////////////////////////////////////////////////////////
   358 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
   359 //////////////////////////////////////////////////////////////////////////////
   361 static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) {
   362     coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
   363     coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
   364     coeff[2] = 3*(pt[2] - pt[0]);
   365     coeff[3] = pt[0];
   366 }
   368 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) {
   369     SkASSERT(pts);
   371     if (cx) {
   372         get_cubic_coeff(&pts[0].fX, cx);
   373     }
   374     if (cy) {
   375         get_cubic_coeff(&pts[0].fY, cy);
   376     }
   377 }
   379 static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
   380     SkASSERT(src);
   381     SkASSERT(t >= 0 && t <= SK_Scalar1);
   383     if (t == 0) {
   384         return src[0];
   385     }
   387 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
   388     SkScalar D = src[0];
   389     SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
   390     SkScalar B = 3*(src[4] - src[2] - src[2] + D);
   391     SkScalar C = 3*(src[2] - D);
   393     return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
   394 #else
   395     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
   396     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
   397     SkScalar    cd = SkScalarInterp(src[4], src[6], t);
   398     SkScalar    abc = SkScalarInterp(ab, bc, t);
   399     SkScalar    bcd = SkScalarInterp(bc, cd, t);
   400     return SkScalarInterp(abc, bcd, t);
   401 #endif
   402 }
   404 /** return At^2 + Bt + C
   405 */
   406 static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
   407     SkASSERT(t >= 0 && t <= SK_Scalar1);
   409     return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
   410 }
   412 static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
   413     SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
   414     SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
   415     SkScalar C = src[2] - src[0];
   417     return eval_quadratic(A, B, C, t);
   418 }
   420 static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
   421     SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
   422     SkScalar B = src[4] - 2 * src[2] + src[0];
   424     return SkScalarMulAdd(A, t, B);
   425 }
   427 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
   428                    SkVector* tangent, SkVector* curvature) {
   429     SkASSERT(src);
   430     SkASSERT(t >= 0 && t <= SK_Scalar1);
   432     if (loc) {
   433         loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
   434     }
   435     if (tangent) {
   436         tangent->set(eval_cubic_derivative(&src[0].fX, t),
   437                      eval_cubic_derivative(&src[0].fY, t));
   438     }
   439     if (curvature) {
   440         curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
   441                        eval_cubic_2ndDerivative(&src[0].fY, t));
   442     }
   443 }
   445 /** Cubic'(t) = At^2 + Bt + C, where
   446     A = 3(-a + 3(b - c) + d)
   447     B = 6(a - 2b + c)
   448     C = 3(b - a)
   449     Solve for t, keeping only those that fit betwee 0 < t < 1
   450 */
   451 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
   452                        SkScalar tValues[2]) {
   453     // we divide A,B,C by 3 to simplify
   454     SkScalar A = d - a + 3*(b - c);
   455     SkScalar B = 2*(a - b - b + c);
   456     SkScalar C = b - a;
   458     return SkFindUnitQuadRoots(A, B, C, tValues);
   459 }
   461 static void interp_cubic_coords(const SkScalar* src, SkScalar* dst,
   462                                 SkScalar t) {
   463     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
   464     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
   465     SkScalar    cd = SkScalarInterp(src[4], src[6], t);
   466     SkScalar    abc = SkScalarInterp(ab, bc, t);
   467     SkScalar    bcd = SkScalarInterp(bc, cd, t);
   468     SkScalar    abcd = SkScalarInterp(abc, bcd, t);
   470     dst[0] = src[0];
   471     dst[2] = ab;
   472     dst[4] = abc;
   473     dst[6] = abcd;
   474     dst[8] = bcd;
   475     dst[10] = cd;
   476     dst[12] = src[6];
   477 }
   479 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
   480     SkASSERT(t > 0 && t < SK_Scalar1);
   482     interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
   483     interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
   484 }
   486 /*  http://code.google.com/p/skia/issues/detail?id=32
   488     This test code would fail when we didn't check the return result of
   489     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
   490     that after the first chop, the parameters to valid_unit_divide are equal
   491     (thanks to finite float precision and rounding in the subtracts). Thus
   492     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
   493     up with 1.0, hence the need to check and just return the last cubic as
   494     a degenerate clump of 4 points in the sampe place.
   496     static void test_cubic() {
   497         SkPoint src[4] = {
   498             { 556.25000, 523.03003 },
   499             { 556.23999, 522.96002 },
   500             { 556.21997, 522.89001 },
   501             { 556.21997, 522.82001 }
   502         };
   503         SkPoint dst[10];
   504         SkScalar tval[] = { 0.33333334f, 0.99999994f };
   505         SkChopCubicAt(src, dst, tval, 2);
   506     }
   507  */
   509 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
   510                    const SkScalar tValues[], int roots) {
   511 #ifdef SK_DEBUG
   512     {
   513         for (int i = 0; i < roots - 1; i++)
   514         {
   515             SkASSERT(is_unit_interval(tValues[i]));
   516             SkASSERT(is_unit_interval(tValues[i+1]));
   517             SkASSERT(tValues[i] < tValues[i+1]);
   518         }
   519     }
   520 #endif
   522     if (dst) {
   523         if (roots == 0) { // nothing to chop
   524             memcpy(dst, src, 4*sizeof(SkPoint));
   525         } else {
   526             SkScalar    t = tValues[0];
   527             SkPoint     tmp[4];
   529             for (int i = 0; i < roots; i++) {
   530                 SkChopCubicAt(src, dst, t);
   531                 if (i == roots - 1) {
   532                     break;
   533                 }
   535                 dst += 3;
   536                 // have src point to the remaining cubic (after the chop)
   537                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
   538                 src = tmp;
   540                 // watch out in case the renormalized t isn't in range
   541                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
   542                                        SK_Scalar1 - tValues[i], &t)) {
   543                     // if we can't, just create a degenerate cubic
   544                     dst[4] = dst[5] = dst[6] = src[3];
   545                     break;
   546                 }
   547             }
   548         }
   549     }
   550 }
   552 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
   553     SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
   554     SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
   555     SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
   556     SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
   557     SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
   558     SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
   560     SkScalar x012 = SkScalarAve(x01, x12);
   561     SkScalar y012 = SkScalarAve(y01, y12);
   562     SkScalar x123 = SkScalarAve(x12, x23);
   563     SkScalar y123 = SkScalarAve(y12, y23);
   565     dst[0] = src[0];
   566     dst[1].set(x01, y01);
   567     dst[2].set(x012, y012);
   568     dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
   569     dst[4].set(x123, y123);
   570     dst[5].set(x23, y23);
   571     dst[6] = src[3];
   572 }
   574 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
   575     coords[4] = coords[8] = coords[6];
   576 }
   578 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
   579     the resulting beziers are monotonic in Y. This is called by the scan
   580     converter.  Depending on what is returned, dst[] is treated as follows:
   581     0   dst[0..3] is the original cubic
   582     1   dst[0..3] and dst[3..6] are the two new cubics
   583     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
   584     If dst == null, it is ignored and only the count is returned.
   585 */
   586 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
   587     SkScalar    tValues[2];
   588     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
   589                                            src[3].fY, tValues);
   591     SkChopCubicAt(src, dst, tValues, roots);
   592     if (dst && roots > 0) {
   593         // we do some cleanup to ensure our Y extrema are flat
   594         flatten_double_cubic_extrema(&dst[0].fY);
   595         if (roots == 2) {
   596             flatten_double_cubic_extrema(&dst[3].fY);
   597         }
   598     }
   599     return roots;
   600 }
   602 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
   603     SkScalar    tValues[2];
   604     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
   605                                            src[3].fX, tValues);
   607     SkChopCubicAt(src, dst, tValues, roots);
   608     if (dst && roots > 0) {
   609         // we do some cleanup to ensure our Y extrema are flat
   610         flatten_double_cubic_extrema(&dst[0].fX);
   611         if (roots == 2) {
   612             flatten_double_cubic_extrema(&dst[3].fX);
   613         }
   614     }
   615     return roots;
   616 }
   618 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
   620     Inflection means that curvature is zero.
   621     Curvature is [F' x F''] / [F'^3]
   622     So we solve F'x X F''y - F'y X F''y == 0
   623     After some canceling of the cubic term, we get
   624     A = b - a
   625     B = c - 2b + a
   626     C = d - 3c + 3b - a
   627     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
   628 */
   629 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
   630     SkScalar    Ax = src[1].fX - src[0].fX;
   631     SkScalar    Ay = src[1].fY - src[0].fY;
   632     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
   633     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
   634     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
   635     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
   637     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
   638                                Ax*Cy - Ay*Cx,
   639                                Ax*By - Ay*Bx,
   640                                tValues);
   641 }
   643 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
   644     SkScalar    tValues[2];
   645     int         count = SkFindCubicInflections(src, tValues);
   647     if (dst) {
   648         if (count == 0) {
   649             memcpy(dst, src, 4 * sizeof(SkPoint));
   650         } else {
   651             SkChopCubicAt(src, dst, tValues, count);
   652         }
   653     }
   654     return count + 1;
   655 }
   657 template <typename T> void bubble_sort(T array[], int count) {
   658     for (int i = count - 1; i > 0; --i)
   659         for (int j = i; j > 0; --j)
   660             if (array[j] < array[j-1])
   661             {
   662                 T   tmp(array[j]);
   663                 array[j] = array[j-1];
   664                 array[j-1] = tmp;
   665             }
   666 }
   668 /**
   669  *  Given an array and count, remove all pair-wise duplicates from the array,
   670  *  keeping the existing sorting, and return the new count
   671  */
   672 static int collaps_duplicates(SkScalar array[], int count) {
   673     for (int n = count; n > 1; --n) {
   674         if (array[0] == array[1]) {
   675             for (int i = 1; i < n; ++i) {
   676                 array[i - 1] = array[i];
   677             }
   678             count -= 1;
   679         } else {
   680             array += 1;
   681         }
   682     }
   683     return count;
   684 }
   686 #ifdef SK_DEBUG
   688 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
   690 static void test_collaps_duplicates() {
   691     static bool gOnce;
   692     if (gOnce) { return; }
   693     gOnce = true;
   694     const SkScalar src0[] = { 0 };
   695     const SkScalar src1[] = { 0, 0 };
   696     const SkScalar src2[] = { 0, 1 };
   697     const SkScalar src3[] = { 0, 0, 0 };
   698     const SkScalar src4[] = { 0, 0, 1 };
   699     const SkScalar src5[] = { 0, 1, 1 };
   700     const SkScalar src6[] = { 0, 1, 2 };
   701     const struct {
   702         const SkScalar* fData;
   703         int fCount;
   704         int fCollapsedCount;
   705     } data[] = {
   706         { TEST_COLLAPS_ENTRY(src0), 1 },
   707         { TEST_COLLAPS_ENTRY(src1), 1 },
   708         { TEST_COLLAPS_ENTRY(src2), 2 },
   709         { TEST_COLLAPS_ENTRY(src3), 1 },
   710         { TEST_COLLAPS_ENTRY(src4), 2 },
   711         { TEST_COLLAPS_ENTRY(src5), 2 },
   712         { TEST_COLLAPS_ENTRY(src6), 3 },
   713     };
   714     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
   715         SkScalar dst[3];
   716         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
   717         int count = collaps_duplicates(dst, data[i].fCount);
   718         SkASSERT(data[i].fCollapsedCount == count);
   719         for (int j = 1; j < count; ++j) {
   720             SkASSERT(dst[j-1] < dst[j]);
   721         }
   722     }
   723 }
   724 #endif
   726 static SkScalar SkScalarCubeRoot(SkScalar x) {
   727     return SkScalarPow(x, 0.3333333f);
   728 }
   730 /*  Solve coeff(t) == 0, returning the number of roots that
   731     lie withing 0 < t < 1.
   732     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
   734     Eliminates repeated roots (so that all tValues are distinct, and are always
   735     in increasing order.
   736 */
   737 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
   738     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
   739         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
   740     }
   742     SkScalar a, b, c, Q, R;
   744     {
   745         SkASSERT(coeff[0] != 0);
   747         SkScalar inva = SkScalarInvert(coeff[0]);
   748         a = coeff[1] * inva;
   749         b = coeff[2] * inva;
   750         c = coeff[3] * inva;
   751     }
   752     Q = (a*a - b*3) / 9;
   753     R = (2*a*a*a - 9*a*b + 27*c) / 54;
   755     SkScalar Q3 = Q * Q * Q;
   756     SkScalar R2MinusQ3 = R * R - Q3;
   757     SkScalar adiv3 = a / 3;
   759     SkScalar*   roots = tValues;
   760     SkScalar    r;
   762     if (R2MinusQ3 < 0) { // we have 3 real roots
   763         SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
   764         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
   766         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
   767         if (is_unit_interval(r)) {
   768             *roots++ = r;
   769         }
   770         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
   771         if (is_unit_interval(r)) {
   772             *roots++ = r;
   773         }
   774         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
   775         if (is_unit_interval(r)) {
   776             *roots++ = r;
   777         }
   778         SkDEBUGCODE(test_collaps_duplicates();)
   780         // now sort the roots
   781         int count = (int)(roots - tValues);
   782         SkASSERT((unsigned)count <= 3);
   783         bubble_sort(tValues, count);
   784         count = collaps_duplicates(tValues, count);
   785         roots = tValues + count;    // so we compute the proper count below
   786     } else {              // we have 1 real root
   787         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
   788         A = SkScalarCubeRoot(A);
   789         if (R > 0) {
   790             A = -A;
   791         }
   792         if (A != 0) {
   793             A += Q / A;
   794         }
   795         r = A - adiv3;
   796         if (is_unit_interval(r)) {
   797             *roots++ = r;
   798         }
   799     }
   801     return (int)(roots - tValues);
   802 }
   804 /*  Looking for F' dot F'' == 0
   806     A = b - a
   807     B = c - 2b + a
   808     C = d - 3c + 3b - a
   810     F' = 3Ct^2 + 6Bt + 3A
   811     F'' = 6Ct + 6B
   813     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
   814 */
   815 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
   816     SkScalar    a = src[2] - src[0];
   817     SkScalar    b = src[4] - 2 * src[2] + src[0];
   818     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
   820     coeff[0] = c * c;
   821     coeff[1] = 3 * b * c;
   822     coeff[2] = 2 * b * b + c * a;
   823     coeff[3] = a * b;
   824 }
   826 /*  Looking for F' dot F'' == 0
   828     A = b - a
   829     B = c - 2b + a
   830     C = d - 3c + 3b - a
   832     F' = 3Ct^2 + 6Bt + 3A
   833     F'' = 6Ct + 6B
   835     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
   836 */
   837 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
   838     SkScalar coeffX[4], coeffY[4];
   839     int      i;
   841     formulate_F1DotF2(&src[0].fX, coeffX);
   842     formulate_F1DotF2(&src[0].fY, coeffY);
   844     for (i = 0; i < 4; i++) {
   845         coeffX[i] += coeffY[i];
   846     }
   848     SkScalar    t[3];
   849     int         count = solve_cubic_poly(coeffX, t);
   850     int         maxCount = 0;
   852     // now remove extrema where the curvature is zero (mins)
   853     // !!!! need a test for this !!!!
   854     for (i = 0; i < count; i++) {
   855         // if (not_min_curvature())
   856         if (t[i] > 0 && t[i] < SK_Scalar1) {
   857             tValues[maxCount++] = t[i];
   858         }
   859     }
   860     return maxCount;
   861 }
   863 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
   864                               SkScalar tValues[3]) {
   865     SkScalar    t_storage[3];
   867     if (tValues == NULL) {
   868         tValues = t_storage;
   869     }
   871     int count = SkFindCubicMaxCurvature(src, tValues);
   873     if (dst) {
   874         if (count == 0) {
   875             memcpy(dst, src, 4 * sizeof(SkPoint));
   876         } else {
   877             SkChopCubicAt(src, dst, tValues, count);
   878         }
   879     }
   880     return count + 1;
   881 }
   883 bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
   884                                  bool* ambiguous) {
   885     if (ambiguous) {
   886         *ambiguous = false;
   887     }
   889     // Find the minimum and maximum y of the extrema, which are the
   890     // first and last points since this cubic is monotonic
   891     SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
   892     SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);
   894     if (pt.fY == cubic[0].fY
   895         || pt.fY < min_y
   896         || pt.fY > max_y) {
   897         // The query line definitely does not cross the curve
   898         if (ambiguous) {
   899             *ambiguous = (pt.fY == cubic[0].fY);
   900         }
   901         return false;
   902     }
   904     bool pt_at_extremum = (pt.fY == cubic[3].fY);
   906     SkScalar min_x =
   907         SkMinScalar(
   908             SkMinScalar(
   909                 SkMinScalar(cubic[0].fX, cubic[1].fX),
   910                 cubic[2].fX),
   911             cubic[3].fX);
   912     if (pt.fX < min_x) {
   913         // The query line definitely crosses the curve
   914         if (ambiguous) {
   915             *ambiguous = pt_at_extremum;
   916         }
   917         return true;
   918     }
   920     SkScalar max_x =
   921         SkMaxScalar(
   922             SkMaxScalar(
   923                 SkMaxScalar(cubic[0].fX, cubic[1].fX),
   924                 cubic[2].fX),
   925             cubic[3].fX);
   926     if (pt.fX > max_x) {
   927         // The query line definitely does not cross the curve
   928         return false;
   929     }
   931     // Do a binary search to find the parameter value which makes y as
   932     // close as possible to the query point. See whether the query
   933     // line's origin is to the left of the associated x coordinate.
   935     // kMaxIter is chosen as the number of mantissa bits for a float,
   936     // since there's no way we are going to get more precision by
   937     // iterating more times than that.
   938     const int kMaxIter = 23;
   939     SkPoint eval;
   940     int iter = 0;
   941     SkScalar upper_t;
   942     SkScalar lower_t;
   943     // Need to invert direction of t parameter if cubic goes up
   944     // instead of down
   945     if (cubic[3].fY > cubic[0].fY) {
   946         upper_t = SK_Scalar1;
   947         lower_t = 0;
   948     } else {
   949         upper_t = 0;
   950         lower_t = SK_Scalar1;
   951     }
   952     do {
   953         SkScalar t = SkScalarAve(upper_t, lower_t);
   954         SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
   955         if (pt.fY > eval.fY) {
   956             lower_t = t;
   957         } else {
   958             upper_t = t;
   959         }
   960     } while (++iter < kMaxIter
   961              && !SkScalarNearlyZero(eval.fY - pt.fY));
   962     if (pt.fX <= eval.fX) {
   963         if (ambiguous) {
   964             *ambiguous = pt_at_extremum;
   965         }
   966         return true;
   967     }
   968     return false;
   969 }
   971 int SkNumXRayCrossingsForCubic(const SkXRay& pt,
   972                                const SkPoint cubic[4],
   973                                bool* ambiguous) {
   974     int num_crossings = 0;
   975     SkPoint monotonic_cubics[10];
   976     int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
   977     if (ambiguous) {
   978         *ambiguous = false;
   979     }
   980     bool locally_ambiguous;
   981     if (SkXRayCrossesMonotonicCubic(pt,
   982                                     &monotonic_cubics[0],
   983                                     &locally_ambiguous))
   984         ++num_crossings;
   985     if (ambiguous) {
   986         *ambiguous |= locally_ambiguous;
   987     }
   988     if (num_monotonic_cubics > 0)
   989         if (SkXRayCrossesMonotonicCubic(pt,
   990                                         &monotonic_cubics[3],
   991                                         &locally_ambiguous))
   992             ++num_crossings;
   993     if (ambiguous) {
   994         *ambiguous |= locally_ambiguous;
   995     }
   996     if (num_monotonic_cubics > 1)
   997         if (SkXRayCrossesMonotonicCubic(pt,
   998                                         &monotonic_cubics[6],
   999                                         &locally_ambiguous))
  1000             ++num_crossings;
  1001     if (ambiguous) {
  1002         *ambiguous |= locally_ambiguous;
  1004     return num_crossings;
  1007 ///////////////////////////////////////////////////////////////////////////////
  1009 /*  Find t value for quadratic [a, b, c] = d.
  1010     Return 0 if there is no solution within [0, 1)
  1011 */
  1012 static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
  1013     // At^2 + Bt + C = d
  1014     SkScalar A = a - 2 * b + c;
  1015     SkScalar B = 2 * (b - a);
  1016     SkScalar C = a - d;
  1018     SkScalar    roots[2];
  1019     int         count = SkFindUnitQuadRoots(A, B, C, roots);
  1021     SkASSERT(count <= 1);
  1022     return count == 1 ? roots[0] : 0;
  1025 /*  given a quad-curve and a point (x,y), chop the quad at that point and place
  1026     the new off-curve point and endpoint into 'dest'.
  1027     Should only return false if the computed pos is the start of the curve
  1028     (i.e. root == 0)
  1029 */
  1030 static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
  1031                                 SkPoint* dest) {
  1032     const SkScalar* base;
  1033     SkScalar        value;
  1035     if (SkScalarAbs(x) < SkScalarAbs(y)) {
  1036         base = &quad[0].fX;
  1037         value = x;
  1038     } else {
  1039         base = &quad[0].fY;
  1040         value = y;
  1043     // note: this returns 0 if it thinks value is out of range, meaning the
  1044     // root might return something outside of [0, 1)
  1045     SkScalar t = quad_solve(base[0], base[2], base[4], value);
  1047     if (t > 0) {
  1048         SkPoint tmp[5];
  1049         SkChopQuadAt(quad, tmp, t);
  1050         dest[0] = tmp[1];
  1051         dest[1].set(x, y);
  1052         return true;
  1053     } else {
  1054         /*  t == 0 means either the value triggered a root outside of [0, 1)
  1055             For our purposes, we can ignore the <= 0 roots, but we want to
  1056             catch the >= 1 roots (which given our caller, will basically mean
  1057             a root of 1, give-or-take numerical instability). If we are in the
  1058             >= 1 case, return the existing offCurve point.
  1060             The test below checks to see if we are close to the "end" of the
  1061             curve (near base[4]). Rather than specifying a tolerance, I just
  1062             check to see if value is on to the right/left of the middle point
  1063             (depending on the direction/sign of the end points).
  1064         */
  1065         if ((base[0] < base[4] && value > base[2]) ||
  1066             (base[0] > base[4] && value < base[2]))   // should root have been 1
  1068             dest[0] = quad[1];
  1069             dest[1].set(x, y);
  1070             return true;
  1073     return false;
  1076 static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
  1077 // The mid point of the quadratic arc approximation is half way between the two
  1078 // control points. The float epsilon adjustment moves the on curve point out by
  1079 // two bits, distributing the convex test error between the round rect
  1080 // approximation and the convex cross product sign equality test.
  1081 #define SK_MID_RRECT_OFFSET \
  1082     (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
  1083     { SK_Scalar1,            0                      },
  1084     { SK_Scalar1,            SK_ScalarTanPIOver8    },
  1085     { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
  1086     { SK_ScalarTanPIOver8,   SK_Scalar1             },
  1088     { 0,                     SK_Scalar1             },
  1089     { -SK_ScalarTanPIOver8,  SK_Scalar1             },
  1090     { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
  1091     { -SK_Scalar1,           SK_ScalarTanPIOver8    },
  1093     { -SK_Scalar1,           0                      },
  1094     { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
  1095     { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
  1096     { -SK_ScalarTanPIOver8,  -SK_Scalar1            },
  1098     { 0,                     -SK_Scalar1            },
  1099     { SK_ScalarTanPIOver8,   -SK_Scalar1            },
  1100     { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
  1101     { SK_Scalar1,            -SK_ScalarTanPIOver8   },
  1103     { SK_Scalar1,            0                      }
  1104 #undef SK_MID_RRECT_OFFSET
  1105 };
  1107 int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
  1108                    SkRotationDirection dir, const SkMatrix* userMatrix,
  1109                    SkPoint quadPoints[]) {
  1110     // rotate by x,y so that uStart is (1.0)
  1111     SkScalar x = SkPoint::DotProduct(uStart, uStop);
  1112     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
  1114     SkScalar absX = SkScalarAbs(x);
  1115     SkScalar absY = SkScalarAbs(y);
  1117     int pointCount;
  1119     // check for (effectively) coincident vectors
  1120     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
  1121     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
  1122     if (absY <= SK_ScalarNearlyZero && x > 0 &&
  1123         ((y >= 0 && kCW_SkRotationDirection == dir) ||
  1124          (y <= 0 && kCCW_SkRotationDirection == dir))) {
  1126         // just return the start-point
  1127         quadPoints[0].set(SK_Scalar1, 0);
  1128         pointCount = 1;
  1129     } else {
  1130         if (dir == kCCW_SkRotationDirection) {
  1131             y = -y;
  1133         // what octant (quadratic curve) is [xy] in?
  1134         int oct = 0;
  1135         bool sameSign = true;
  1137         if (0 == y) {
  1138             oct = 4;        // 180
  1139             SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
  1140         } else if (0 == x) {
  1141             SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
  1142             oct = y > 0 ? 2 : 6; // 90 : 270
  1143         } else {
  1144             if (y < 0) {
  1145                 oct += 4;
  1147             if ((x < 0) != (y < 0)) {
  1148                 oct += 2;
  1149                 sameSign = false;
  1151             if ((absX < absY) == sameSign) {
  1152                 oct += 1;
  1156         int wholeCount = oct << 1;
  1157         memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
  1159         const SkPoint* arc = &gQuadCirclePts[wholeCount];
  1160         if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
  1161             wholeCount += 2;
  1163         pointCount = wholeCount + 1;
  1166     // now handle counter-clockwise and the initial unitStart rotation
  1167     SkMatrix    matrix;
  1168     matrix.setSinCos(uStart.fY, uStart.fX);
  1169     if (dir == kCCW_SkRotationDirection) {
  1170         matrix.preScale(SK_Scalar1, -SK_Scalar1);
  1172     if (userMatrix) {
  1173         matrix.postConcat(*userMatrix);
  1175     matrix.mapPoints(quadPoints, pointCount);
  1176     return pointCount;
  1180 ///////////////////////////////////////////////////////////////////////////////
  1181 //
  1182 // NURB representation for conics.  Helpful explanations at:
  1183 //
  1184 // http://citeseerx.ist.psu.edu/viewdoc/
  1185 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
  1186 // and
  1187 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
  1188 //
  1189 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
  1190 //     ------------------------------------------
  1191 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
  1192 //
  1193 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
  1194 //     ------------------------------------------------
  1195 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
  1196 //
  1198 static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
  1199     SkASSERT(src);
  1200     SkASSERT(t >= 0 && t <= SK_Scalar1);
  1202     SkScalar    src2w = SkScalarMul(src[2], w);
  1203     SkScalar    C = src[0];
  1204     SkScalar    A = src[4] - 2 * src2w + C;
  1205     SkScalar    B = 2 * (src2w - C);
  1206     SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
  1208     B = 2 * (w - SK_Scalar1);
  1209     C = SK_Scalar1;
  1210     A = -B;
  1211     SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
  1213     return SkScalarDiv(numer, denom);
  1216 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
  1217 //
  1218 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
  1219 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
  1220 //  t^0 : -2 P0 w + 2 P1 w
  1221 //
  1222 //  We disregard magnitude, so we can freely ignore the denominator of F', and
  1223 //  divide the numerator by 2
  1224 //
  1225 //    coeff[0] for t^2
  1226 //    coeff[1] for t^1
  1227 //    coeff[2] for t^0
  1228 //
  1229 static void conic_deriv_coeff(const SkScalar src[],
  1230                               SkScalar w,
  1231                               SkScalar coeff[3]) {
  1232     const SkScalar P20 = src[4] - src[0];
  1233     const SkScalar P10 = src[2] - src[0];
  1234     const SkScalar wP10 = w * P10;
  1235     coeff[0] = w * P20 - P20;
  1236     coeff[1] = P20 - 2 * wP10;
  1237     coeff[2] = wP10;
  1240 static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
  1241     SkScalar coeff[3];
  1242     conic_deriv_coeff(coord, w, coeff);
  1243     return t * (t * coeff[0] + coeff[1]) + coeff[2];
  1246 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
  1247     SkScalar coeff[3];
  1248     conic_deriv_coeff(src, w, coeff);
  1250     SkScalar tValues[2];
  1251     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
  1252     SkASSERT(0 == roots || 1 == roots);
  1254     if (1 == roots) {
  1255         *t = tValues[0];
  1256         return true;
  1258     return false;
  1261 struct SkP3D {
  1262     SkScalar fX, fY, fZ;
  1264     void set(SkScalar x, SkScalar y, SkScalar z) {
  1265         fX = x; fY = y; fZ = z;
  1268     void projectDown(SkPoint* dst) const {
  1269         dst->set(fX / fZ, fY / fZ);
  1271 };
  1273 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
  1274 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
  1275     SkScalar ab = SkScalarInterp(src[0], src[3], t);
  1276     SkScalar bc = SkScalarInterp(src[3], src[6], t);
  1277     dst[0] = ab;
  1278     dst[3] = SkScalarInterp(ab, bc, t);
  1279     dst[6] = bc;
  1282 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
  1283     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
  1284     dst[1].set(src[1].fX * w, src[1].fY * w, w);
  1285     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
  1288 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
  1289     SkASSERT(t >= 0 && t <= SK_Scalar1);
  1291     if (pt) {
  1292         pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
  1293                 conic_eval_pos(&fPts[0].fY, fW, t));
  1295     if (tangent) {
  1296         tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
  1297                      conic_eval_tan(&fPts[0].fY, fW, t));
  1301 void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
  1302     SkP3D tmp[3], tmp2[3];
  1304     ratquad_mapTo3D(fPts, fW, tmp);
  1306     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
  1307     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
  1308     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
  1310     dst[0].fPts[0] = fPts[0];
  1311     tmp2[0].projectDown(&dst[0].fPts[1]);
  1312     tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
  1313     tmp2[2].projectDown(&dst[1].fPts[1]);
  1314     dst[1].fPts[2] = fPts[2];
  1316     // to put in "standard form", where w0 and w2 are both 1, we compute the
  1317     // new w1 as sqrt(w1*w1/w0*w2)
  1318     // or
  1319     // w1 /= sqrt(w0*w2)
  1320     //
  1321     // However, in our case, we know that for dst[0]:
  1322     //     w0 == 1, and for dst[1], w2 == 1
  1323     //
  1324     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
  1325     dst[0].fW = tmp2[0].fZ / root;
  1326     dst[1].fW = tmp2[2].fZ / root;
  1329 static SkScalar subdivide_w_value(SkScalar w) {
  1330     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
  1333 void SkConic::chop(SkConic dst[2]) const {
  1334     SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
  1335     SkScalar p1x = fW * fPts[1].fX;
  1336     SkScalar p1y = fW * fPts[1].fY;
  1337     SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
  1338     SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;
  1340     dst[0].fPts[0] = fPts[0];
  1341     dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
  1342                        (fPts[0].fY + p1y) * scale);
  1343     dst[0].fPts[2].set(mx, my);
  1345     dst[1].fPts[0].set(mx, my);
  1346     dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
  1347                        (p1y + fPts[2].fY) * scale);
  1348     dst[1].fPts[2] = fPts[2];
  1350     dst[0].fW = dst[1].fW = subdivide_w_value(fW);
  1353 /*
  1354  *  "High order approximation of conic sections by quadratic splines"
  1355  *      by Michael Floater, 1993
  1356  */
  1357 #define AS_QUAD_ERROR_SETUP                                         \
  1358     SkScalar a = fW - 1;                                            \
  1359     SkScalar k = a / (4 * (2 + a));                                 \
  1360     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
  1361     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
  1363 void SkConic::computeAsQuadError(SkVector* err) const {
  1364     AS_QUAD_ERROR_SETUP
  1365     err->set(x, y);
  1368 bool SkConic::asQuadTol(SkScalar tol) const {
  1369     AS_QUAD_ERROR_SETUP
  1370     return (x * x + y * y) <= tol * tol;
  1373 int SkConic::computeQuadPOW2(SkScalar tol) const {
  1374     AS_QUAD_ERROR_SETUP
  1375     SkScalar error = SkScalarSqrt(x * x + y * y) - tol;
  1377     if (error <= 0) {
  1378         return 0;
  1380     uint32_t ierr = (uint32_t)error;
  1381     return (34 - SkCLZ(ierr)) >> 1;
  1384 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
  1385     SkASSERT(level >= 0);
  1387     if (0 == level) {
  1388         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
  1389         return pts + 2;
  1390     } else {
  1391         SkConic dst[2];
  1392         src.chop(dst);
  1393         --level;
  1394         pts = subdivide(dst[0], pts, level);
  1395         return subdivide(dst[1], pts, level);
  1399 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
  1400     SkASSERT(pow2 >= 0);
  1401     *pts = fPts[0];
  1402     SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
  1403     SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
  1404     return 1 << pow2;
  1407 bool SkConic::findXExtrema(SkScalar* t) const {
  1408     return conic_find_extrema(&fPts[0].fX, fW, t);
  1411 bool SkConic::findYExtrema(SkScalar* t) const {
  1412     return conic_find_extrema(&fPts[0].fY, fW, t);
  1415 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
  1416     SkScalar t;
  1417     if (this->findXExtrema(&t)) {
  1418         this->chopAt(t, dst);
  1419         // now clean-up the middle, since we know t was meant to be at
  1420         // an X-extrema
  1421         SkScalar value = dst[0].fPts[2].fX;
  1422         dst[0].fPts[1].fX = value;
  1423         dst[1].fPts[0].fX = value;
  1424         dst[1].fPts[1].fX = value;
  1425         return true;
  1427     return false;
  1430 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
  1431     SkScalar t;
  1432     if (this->findYExtrema(&t)) {
  1433         this->chopAt(t, dst);
  1434         // now clean-up the middle, since we know t was meant to be at
  1435         // an Y-extrema
  1436         SkScalar value = dst[0].fPts[2].fY;
  1437         dst[0].fPts[1].fY = value;
  1438         dst[1].fPts[0].fY = value;
  1439         dst[1].fPts[1].fY = value;
  1440         return true;
  1442     return false;
  1445 void SkConic::computeTightBounds(SkRect* bounds) const {
  1446     SkPoint pts[4];
  1447     pts[0] = fPts[0];
  1448     pts[1] = fPts[2];
  1449     int count = 2;
  1451     SkScalar t;
  1452     if (this->findXExtrema(&t)) {
  1453         this->evalAt(t, &pts[count++]);
  1455     if (this->findYExtrema(&t)) {
  1456         this->evalAt(t, &pts[count++]);
  1458     bounds->set(pts, count);
  1461 void SkConic::computeFastBounds(SkRect* bounds) const {
  1462     bounds->set(fPts, 3);
  1465 bool SkConic::findMaxCurvature(SkScalar* t) const {
  1466     // TODO: Implement me
  1467     return false;

mercurial