gfx/skia/trunk/src/core/SkWriteBuffer.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1
michael@0 2 /*
michael@0 3 * Copyright 2012 Google Inc.
michael@0 4 *
michael@0 5 * Use of this source code is governed by a BSD-style license that can be
michael@0 6 * found in the LICENSE file.
michael@0 7 */
michael@0 8
michael@0 9 #include "SkWriteBuffer.h"
michael@0 10 #include "SkBitmap.h"
michael@0 11 #include "SkData.h"
michael@0 12 #include "SkPixelRef.h"
michael@0 13 #include "SkPtrRecorder.h"
michael@0 14 #include "SkStream.h"
michael@0 15 #include "SkTypeface.h"
michael@0 16
michael@0 17 SkWriteBuffer::SkWriteBuffer(uint32_t flags)
michael@0 18 : fFlags(flags)
michael@0 19 , fFactorySet(NULL)
michael@0 20 , fNamedFactorySet(NULL)
michael@0 21 , fBitmapHeap(NULL)
michael@0 22 , fTFSet(NULL)
michael@0 23 , fBitmapEncoder(NULL) {
michael@0 24 }
michael@0 25
michael@0 26 SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
michael@0 27 : fFlags(flags)
michael@0 28 , fFactorySet(NULL)
michael@0 29 , fNamedFactorySet(NULL)
michael@0 30 , fWriter(storage, storageSize)
michael@0 31 , fBitmapHeap(NULL)
michael@0 32 , fTFSet(NULL)
michael@0 33 , fBitmapEncoder(NULL) {
michael@0 34 }
michael@0 35
michael@0 36 SkWriteBuffer::~SkWriteBuffer() {
michael@0 37 SkSafeUnref(fFactorySet);
michael@0 38 SkSafeUnref(fNamedFactorySet);
michael@0 39 SkSafeUnref(fBitmapHeap);
michael@0 40 SkSafeUnref(fTFSet);
michael@0 41 }
michael@0 42
michael@0 43 void SkWriteBuffer::writeByteArray(const void* data, size_t size) {
michael@0 44 fWriter.write32(SkToU32(size));
michael@0 45 fWriter.writePad(data, size);
michael@0 46 }
michael@0 47
michael@0 48 void SkWriteBuffer::writeBool(bool value) {
michael@0 49 fWriter.writeBool(value);
michael@0 50 }
michael@0 51
michael@0 52 void SkWriteBuffer::writeFixed(SkFixed value) {
michael@0 53 fWriter.write32(value);
michael@0 54 }
michael@0 55
michael@0 56 void SkWriteBuffer::writeScalar(SkScalar value) {
michael@0 57 fWriter.writeScalar(value);
michael@0 58 }
michael@0 59
michael@0 60 void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
michael@0 61 fWriter.write32(count);
michael@0 62 fWriter.write(value, count * sizeof(SkScalar));
michael@0 63 }
michael@0 64
michael@0 65 void SkWriteBuffer::writeInt(int32_t value) {
michael@0 66 fWriter.write32(value);
michael@0 67 }
michael@0 68
michael@0 69 void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
michael@0 70 fWriter.write32(count);
michael@0 71 fWriter.write(value, count * sizeof(int32_t));
michael@0 72 }
michael@0 73
michael@0 74 void SkWriteBuffer::writeUInt(uint32_t value) {
michael@0 75 fWriter.write32(value);
michael@0 76 }
michael@0 77
michael@0 78 void SkWriteBuffer::write32(int32_t value) {
michael@0 79 fWriter.write32(value);
michael@0 80 }
michael@0 81
michael@0 82 void SkWriteBuffer::writeString(const char* value) {
michael@0 83 fWriter.writeString(value);
michael@0 84 }
michael@0 85
michael@0 86 void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength,
michael@0 87 SkPaint::TextEncoding encoding) {
michael@0 88 fWriter.writeInt(encoding);
michael@0 89 fWriter.writeInt(SkToU32(byteLength));
michael@0 90 fWriter.write(value, byteLength);
michael@0 91 }
michael@0 92
michael@0 93
michael@0 94 void SkWriteBuffer::writeColor(const SkColor& color) {
michael@0 95 fWriter.write32(color);
michael@0 96 }
michael@0 97
michael@0 98 void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
michael@0 99 fWriter.write32(count);
michael@0 100 fWriter.write(color, count * sizeof(SkColor));
michael@0 101 }
michael@0 102
michael@0 103 void SkWriteBuffer::writePoint(const SkPoint& point) {
michael@0 104 fWriter.writeScalar(point.fX);
michael@0 105 fWriter.writeScalar(point.fY);
michael@0 106 }
michael@0 107
michael@0 108 void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
michael@0 109 fWriter.write32(count);
michael@0 110 fWriter.write(point, count * sizeof(SkPoint));
michael@0 111 }
michael@0 112
michael@0 113 void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) {
michael@0 114 fWriter.writeMatrix(matrix);
michael@0 115 }
michael@0 116
michael@0 117 void SkWriteBuffer::writeIRect(const SkIRect& rect) {
michael@0 118 fWriter.write(&rect, sizeof(SkIRect));
michael@0 119 }
michael@0 120
michael@0 121 void SkWriteBuffer::writeRect(const SkRect& rect) {
michael@0 122 fWriter.writeRect(rect);
michael@0 123 }
michael@0 124
michael@0 125 void SkWriteBuffer::writeRegion(const SkRegion& region) {
michael@0 126 fWriter.writeRegion(region);
michael@0 127 }
michael@0 128
michael@0 129 void SkWriteBuffer::writePath(const SkPath& path) {
michael@0 130 fWriter.writePath(path);
michael@0 131 }
michael@0 132
michael@0 133 size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) {
michael@0 134 fWriter.write32(SkToU32(length));
michael@0 135 size_t bytesWritten = fWriter.readFromStream(stream, length);
michael@0 136 if (bytesWritten < length) {
michael@0 137 fWriter.reservePad(length - bytesWritten);
michael@0 138 }
michael@0 139 return bytesWritten;
michael@0 140 }
michael@0 141
michael@0 142 bool SkWriteBuffer::writeToStream(SkWStream* stream) {
michael@0 143 return fWriter.writeToStream(stream);
michael@0 144 }
michael@0 145
michael@0 146 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data,
michael@0 147 const SkIPoint& origin) {
michael@0 148 buffer->writeUInt(SkToU32(data->size()));
michael@0 149 buffer->getWriter32()->writePad(data->data(), data->size());
michael@0 150 buffer->write32(origin.fX);
michael@0 151 buffer->write32(origin.fY);
michael@0 152 }
michael@0 153
michael@0 154 void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
michael@0 155 // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
michael@0 156 // right size.
michael@0 157 this->writeInt(bitmap.width());
michael@0 158 this->writeInt(bitmap.height());
michael@0 159
michael@0 160 // Record information about the bitmap in one of three ways, in order of priority:
michael@0 161 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the
michael@0 162 // bitmap entirely or serialize it later as desired. A boolean value of true will be written
michael@0 163 // to the stream to signify that a heap was used.
michael@0 164 // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the
michael@0 165 // bitmap. After writing a boolean value of false, signifying that a heap was not used, write
michael@0 166 // the size of the encoded data. A non-zero size signifies that encoded data was written.
michael@0 167 // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
michael@0 168 // not used, write a zero to signify that the data was not encoded.
michael@0 169 bool useBitmapHeap = fBitmapHeap != NULL;
michael@0 170 // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an
michael@0 171 // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way.
michael@0 172 this->writeBool(useBitmapHeap);
michael@0 173 if (useBitmapHeap) {
michael@0 174 SkASSERT(NULL == fBitmapEncoder);
michael@0 175 int32_t slot = fBitmapHeap->insert(bitmap);
michael@0 176 fWriter.write32(slot);
michael@0 177 // crbug.com/155875
michael@0 178 // The generation ID is not required information. We write it to prevent collisions
michael@0 179 // in SkFlatDictionary. It is possible to get a collision when a previously
michael@0 180 // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary
michael@0 181 // and the instance currently being written is re-using the same slot from the
michael@0 182 // bitmap heap.
michael@0 183 fWriter.write32(bitmap.getGenerationID());
michael@0 184 return;
michael@0 185 }
michael@0 186
michael@0 187 // see if the pixelref already has an encoded version
michael@0 188 if (bitmap.pixelRef()) {
michael@0 189 SkAutoDataUnref data(bitmap.pixelRef()->refEncodedData());
michael@0 190 if (data.get() != NULL) {
michael@0 191 write_encoded_bitmap(this, data, bitmap.pixelRefOrigin());
michael@0 192 return;
michael@0 193 }
michael@0 194 }
michael@0 195
michael@0 196 // see if the caller wants to manually encode
michael@0 197 if (fBitmapEncoder != NULL) {
michael@0 198 SkASSERT(NULL == fBitmapHeap);
michael@0 199 size_t offset = 0; // this parameter is deprecated/ignored
michael@0 200 // if we have to "encode" the bitmap, then we assume there is no
michael@0 201 // offset to share, since we are effectively creating a new pixelref
michael@0 202 SkAutoDataUnref data(fBitmapEncoder(&offset, bitmap));
michael@0 203 if (data.get() != NULL) {
michael@0 204 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0));
michael@0 205 return;
michael@0 206 }
michael@0 207 }
michael@0 208
michael@0 209 // Bitmap was not encoded. Record a zero, implying that the reader need not decode.
michael@0 210 this->writeUInt(0);
michael@0 211 bitmap.flatten(*this);
michael@0 212 }
michael@0 213
michael@0 214 void SkWriteBuffer::writeTypeface(SkTypeface* obj) {
michael@0 215 if (NULL == obj || NULL == fTFSet) {
michael@0 216 fWriter.write32(0);
michael@0 217 } else {
michael@0 218 fWriter.write32(fTFSet->add(obj));
michael@0 219 }
michael@0 220 }
michael@0 221
michael@0 222 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
michael@0 223 SkRefCnt_SafeAssign(fFactorySet, rec);
michael@0 224 if (fNamedFactorySet != NULL) {
michael@0 225 fNamedFactorySet->unref();
michael@0 226 fNamedFactorySet = NULL;
michael@0 227 }
michael@0 228 return rec;
michael@0 229 }
michael@0 230
michael@0 231 SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) {
michael@0 232 SkRefCnt_SafeAssign(fNamedFactorySet, rec);
michael@0 233 if (fFactorySet != NULL) {
michael@0 234 fFactorySet->unref();
michael@0 235 fFactorySet = NULL;
michael@0 236 }
michael@0 237 return rec;
michael@0 238 }
michael@0 239
michael@0 240 SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
michael@0 241 SkRefCnt_SafeAssign(fTFSet, rec);
michael@0 242 return rec;
michael@0 243 }
michael@0 244
michael@0 245 void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) {
michael@0 246 SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap);
michael@0 247 if (bitmapHeap != NULL) {
michael@0 248 SkASSERT(NULL == fBitmapEncoder);
michael@0 249 fBitmapEncoder = NULL;
michael@0 250 }
michael@0 251 }
michael@0 252
michael@0 253 void SkWriteBuffer::setBitmapEncoder(SkPicture::EncodeBitmap bitmapEncoder) {
michael@0 254 fBitmapEncoder = bitmapEncoder;
michael@0 255 if (bitmapEncoder != NULL) {
michael@0 256 SkASSERT(NULL == fBitmapHeap);
michael@0 257 SkSafeUnref(fBitmapHeap);
michael@0 258 fBitmapHeap = NULL;
michael@0 259 }
michael@0 260 }
michael@0 261
michael@0 262 void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
michael@0 263 /*
michael@0 264 * If we have a factoryset, then the first 32bits tell us...
michael@0 265 * 0: failure to write the flattenable
michael@0 266 * >0: (1-based) index into the SkFactorySet or SkNamedFactorySet
michael@0 267 * If we don't have a factoryset, then the first "ptr" is either the
michael@0 268 * factory, or null for failure.
michael@0 269 *
michael@0 270 * The distinction is important, since 0-index is 32bits (always), but a
michael@0 271 * 0-functionptr might be 32 or 64 bits.
michael@0 272 */
michael@0 273 if (NULL == flattenable) {
michael@0 274 if (this->isValidating()) {
michael@0 275 this->writeString("");
michael@0 276 } else if (fFactorySet != NULL || fNamedFactorySet != NULL) {
michael@0 277 this->write32(0);
michael@0 278 } else {
michael@0 279 this->writeFunctionPtr(NULL);
michael@0 280 }
michael@0 281 return;
michael@0 282 }
michael@0 283
michael@0 284 SkFlattenable::Factory factory = flattenable->getFactory();
michael@0 285 SkASSERT(factory != NULL);
michael@0 286
michael@0 287 /*
michael@0 288 * We can write 1 of 3 versions of the flattenable:
michael@0 289 * 1. function-ptr : this is the fastest for the reader, but assumes that
michael@0 290 * the writer and reader are in the same process.
michael@0 291 * 2. index into fFactorySet : This is assumes the writer will later
michael@0 292 * resolve the function-ptrs into strings for its reader. SkPicture
michael@0 293 * does exactly this, by writing a table of names (matching the indices)
michael@0 294 * up front in its serialized form.
michael@0 295 * 3. index into fNamedFactorySet. fNamedFactorySet will also store the
michael@0 296 * name. SkGPipe uses this technique so it can write the name to its
michael@0 297 * stream before writing the flattenable.
michael@0 298 */
michael@0 299 if (this->isValidating()) {
michael@0 300 this->writeString(flattenable->getTypeName());
michael@0 301 } else if (fFactorySet) {
michael@0 302 this->write32(fFactorySet->add(factory));
michael@0 303 } else if (fNamedFactorySet) {
michael@0 304 int32_t index = fNamedFactorySet->find(factory);
michael@0 305 this->write32(index);
michael@0 306 if (0 == index) {
michael@0 307 return;
michael@0 308 }
michael@0 309 } else {
michael@0 310 this->writeFunctionPtr((void*)factory);
michael@0 311 }
michael@0 312
michael@0 313 // make room for the size of the flattened object
michael@0 314 (void)fWriter.reserve(sizeof(uint32_t));
michael@0 315 // record the current size, so we can subtract after the object writes.
michael@0 316 size_t offset = fWriter.bytesWritten();
michael@0 317 // now flatten the object
michael@0 318 flattenable->flatten(*this);
michael@0 319 size_t objSize = fWriter.bytesWritten() - offset;
michael@0 320 // record the obj's size
michael@0 321 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
michael@0 322 }

mercurial