gfx/skia/trunk/src/core/SkWriteBuffer.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     2 /*
     3  * Copyright 2012 Google Inc.
     4  *
     5  * Use of this source code is governed by a BSD-style license that can be
     6  * found in the LICENSE file.
     7  */
     9 #include "SkWriteBuffer.h"
    10 #include "SkBitmap.h"
    11 #include "SkData.h"
    12 #include "SkPixelRef.h"
    13 #include "SkPtrRecorder.h"
    14 #include "SkStream.h"
    15 #include "SkTypeface.h"
    17 SkWriteBuffer::SkWriteBuffer(uint32_t flags)
    18     : fFlags(flags)
    19     , fFactorySet(NULL)
    20     , fNamedFactorySet(NULL)
    21     , fBitmapHeap(NULL)
    22     , fTFSet(NULL)
    23     , fBitmapEncoder(NULL) {
    24 }
    26 SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
    27     : fFlags(flags)
    28     , fFactorySet(NULL)
    29     , fNamedFactorySet(NULL)
    30     , fWriter(storage, storageSize)
    31     , fBitmapHeap(NULL)
    32     , fTFSet(NULL)
    33     , fBitmapEncoder(NULL) {
    34 }
    36 SkWriteBuffer::~SkWriteBuffer() {
    37     SkSafeUnref(fFactorySet);
    38     SkSafeUnref(fNamedFactorySet);
    39     SkSafeUnref(fBitmapHeap);
    40     SkSafeUnref(fTFSet);
    41 }
    43 void SkWriteBuffer::writeByteArray(const void* data, size_t size) {
    44     fWriter.write32(SkToU32(size));
    45     fWriter.writePad(data, size);
    46 }
    48 void SkWriteBuffer::writeBool(bool value) {
    49     fWriter.writeBool(value);
    50 }
    52 void SkWriteBuffer::writeFixed(SkFixed value) {
    53     fWriter.write32(value);
    54 }
    56 void SkWriteBuffer::writeScalar(SkScalar value) {
    57     fWriter.writeScalar(value);
    58 }
    60 void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
    61     fWriter.write32(count);
    62     fWriter.write(value, count * sizeof(SkScalar));
    63 }
    65 void SkWriteBuffer::writeInt(int32_t value) {
    66     fWriter.write32(value);
    67 }
    69 void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
    70     fWriter.write32(count);
    71     fWriter.write(value, count * sizeof(int32_t));
    72 }
    74 void SkWriteBuffer::writeUInt(uint32_t value) {
    75     fWriter.write32(value);
    76 }
    78 void SkWriteBuffer::write32(int32_t value) {
    79     fWriter.write32(value);
    80 }
    82 void SkWriteBuffer::writeString(const char* value) {
    83     fWriter.writeString(value);
    84 }
    86 void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength,
    87                                               SkPaint::TextEncoding encoding) {
    88     fWriter.writeInt(encoding);
    89     fWriter.writeInt(SkToU32(byteLength));
    90     fWriter.write(value, byteLength);
    91 }
    94 void SkWriteBuffer::writeColor(const SkColor& color) {
    95     fWriter.write32(color);
    96 }
    98 void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
    99     fWriter.write32(count);
   100     fWriter.write(color, count * sizeof(SkColor));
   101 }
   103 void SkWriteBuffer::writePoint(const SkPoint& point) {
   104     fWriter.writeScalar(point.fX);
   105     fWriter.writeScalar(point.fY);
   106 }
   108 void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
   109     fWriter.write32(count);
   110     fWriter.write(point, count * sizeof(SkPoint));
   111 }
   113 void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) {
   114     fWriter.writeMatrix(matrix);
   115 }
   117 void SkWriteBuffer::writeIRect(const SkIRect& rect) {
   118     fWriter.write(&rect, sizeof(SkIRect));
   119 }
   121 void SkWriteBuffer::writeRect(const SkRect& rect) {
   122     fWriter.writeRect(rect);
   123 }
   125 void SkWriteBuffer::writeRegion(const SkRegion& region) {
   126     fWriter.writeRegion(region);
   127 }
   129 void SkWriteBuffer::writePath(const SkPath& path) {
   130     fWriter.writePath(path);
   131 }
   133 size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) {
   134     fWriter.write32(SkToU32(length));
   135     size_t bytesWritten = fWriter.readFromStream(stream, length);
   136     if (bytesWritten < length) {
   137         fWriter.reservePad(length - bytesWritten);
   138     }
   139     return bytesWritten;
   140 }
   142 bool SkWriteBuffer::writeToStream(SkWStream* stream) {
   143     return fWriter.writeToStream(stream);
   144 }
   146 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data,
   147                                  const SkIPoint& origin) {
   148     buffer->writeUInt(SkToU32(data->size()));
   149     buffer->getWriter32()->writePad(data->data(), data->size());
   150     buffer->write32(origin.fX);
   151     buffer->write32(origin.fY);
   152 }
   154 void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
   155     // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
   156     // right size.
   157     this->writeInt(bitmap.width());
   158     this->writeInt(bitmap.height());
   160     // Record information about the bitmap in one of three ways, in order of priority:
   161     // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the
   162     //    bitmap entirely or serialize it later as desired. A boolean value of true will be written
   163     //    to the stream to signify that a heap was used.
   164     // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the
   165     //    bitmap. After writing a boolean value of false, signifying that a heap was not used, write
   166     //    the size of the encoded data. A non-zero size signifies that encoded data was written.
   167     // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
   168     //    not used, write a zero to signify that the data was not encoded.
   169     bool useBitmapHeap = fBitmapHeap != NULL;
   170     // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an
   171     // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way.
   172     this->writeBool(useBitmapHeap);
   173     if (useBitmapHeap) {
   174         SkASSERT(NULL == fBitmapEncoder);
   175         int32_t slot = fBitmapHeap->insert(bitmap);
   176         fWriter.write32(slot);
   177         // crbug.com/155875
   178         // The generation ID is not required information. We write it to prevent collisions
   179         // in SkFlatDictionary.  It is possible to get a collision when a previously
   180         // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary
   181         // and the instance currently being written is re-using the same slot from the
   182         // bitmap heap.
   183         fWriter.write32(bitmap.getGenerationID());
   184         return;
   185     }
   187     // see if the pixelref already has an encoded version
   188     if (bitmap.pixelRef()) {
   189         SkAutoDataUnref data(bitmap.pixelRef()->refEncodedData());
   190         if (data.get() != NULL) {
   191             write_encoded_bitmap(this, data, bitmap.pixelRefOrigin());
   192             return;
   193         }
   194     }
   196     // see if the caller wants to manually encode
   197     if (fBitmapEncoder != NULL) {
   198         SkASSERT(NULL == fBitmapHeap);
   199         size_t offset = 0;  // this parameter is deprecated/ignored
   200         // if we have to "encode" the bitmap, then we assume there is no
   201         // offset to share, since we are effectively creating a new pixelref
   202         SkAutoDataUnref data(fBitmapEncoder(&offset, bitmap));
   203         if (data.get() != NULL) {
   204             write_encoded_bitmap(this, data, SkIPoint::Make(0, 0));
   205             return;
   206         }
   207     }
   209     // Bitmap was not encoded. Record a zero, implying that the reader need not decode.
   210     this->writeUInt(0);
   211     bitmap.flatten(*this);
   212 }
   214 void SkWriteBuffer::writeTypeface(SkTypeface* obj) {
   215     if (NULL == obj || NULL == fTFSet) {
   216         fWriter.write32(0);
   217     } else {
   218         fWriter.write32(fTFSet->add(obj));
   219     }
   220 }
   222 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
   223     SkRefCnt_SafeAssign(fFactorySet, rec);
   224     if (fNamedFactorySet != NULL) {
   225         fNamedFactorySet->unref();
   226         fNamedFactorySet = NULL;
   227     }
   228     return rec;
   229 }
   231 SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) {
   232     SkRefCnt_SafeAssign(fNamedFactorySet, rec);
   233     if (fFactorySet != NULL) {
   234         fFactorySet->unref();
   235         fFactorySet = NULL;
   236     }
   237     return rec;
   238 }
   240 SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
   241     SkRefCnt_SafeAssign(fTFSet, rec);
   242     return rec;
   243 }
   245 void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) {
   246     SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap);
   247     if (bitmapHeap != NULL) {
   248         SkASSERT(NULL == fBitmapEncoder);
   249         fBitmapEncoder = NULL;
   250     }
   251 }
   253 void SkWriteBuffer::setBitmapEncoder(SkPicture::EncodeBitmap bitmapEncoder) {
   254     fBitmapEncoder = bitmapEncoder;
   255     if (bitmapEncoder != NULL) {
   256         SkASSERT(NULL == fBitmapHeap);
   257         SkSafeUnref(fBitmapHeap);
   258         fBitmapHeap = NULL;
   259     }
   260 }
   262 void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
   263     /*
   264      *  If we have a factoryset, then the first 32bits tell us...
   265      *       0: failure to write the flattenable
   266      *      >0: (1-based) index into the SkFactorySet or SkNamedFactorySet
   267      *  If we don't have a factoryset, then the first "ptr" is either the
   268      *  factory, or null for failure.
   269      *
   270      *  The distinction is important, since 0-index is 32bits (always), but a
   271      *  0-functionptr might be 32 or 64 bits.
   272      */
   273     if (NULL == flattenable) {
   274         if (this->isValidating()) {
   275             this->writeString("");
   276         } else if (fFactorySet != NULL || fNamedFactorySet != NULL) {
   277             this->write32(0);
   278         } else {
   279             this->writeFunctionPtr(NULL);
   280         }
   281         return;
   282     }
   284     SkFlattenable::Factory factory = flattenable->getFactory();
   285     SkASSERT(factory != NULL);
   287     /*
   288      *  We can write 1 of 3 versions of the flattenable:
   289      *  1.  function-ptr : this is the fastest for the reader, but assumes that
   290      *      the writer and reader are in the same process.
   291      *  2.  index into fFactorySet : This is assumes the writer will later
   292      *      resolve the function-ptrs into strings for its reader. SkPicture
   293      *      does exactly this, by writing a table of names (matching the indices)
   294      *      up front in its serialized form.
   295      *  3.  index into fNamedFactorySet. fNamedFactorySet will also store the
   296      *      name. SkGPipe uses this technique so it can write the name to its
   297      *      stream before writing the flattenable.
   298      */
   299     if (this->isValidating()) {
   300         this->writeString(flattenable->getTypeName());
   301     } else if (fFactorySet) {
   302         this->write32(fFactorySet->add(factory));
   303     } else if (fNamedFactorySet) {
   304         int32_t index = fNamedFactorySet->find(factory);
   305         this->write32(index);
   306         if (0 == index) {
   307             return;
   308         }
   309     } else {
   310         this->writeFunctionPtr((void*)factory);
   311     }
   313     // make room for the size of the flattened object
   314     (void)fWriter.reserve(sizeof(uint32_t));
   315     // record the current size, so we can subtract after the object writes.
   316     size_t offset = fWriter.bytesWritten();
   317     // now flatten the object
   318     flattenable->flatten(*this);
   319     size_t objSize = fWriter.bytesWritten() - offset;
   320     // record the obj's size
   321     fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
   322 }

mercurial