Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
2 /*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
9 #include "SkWriteBuffer.h"
10 #include "SkBitmap.h"
11 #include "SkData.h"
12 #include "SkPixelRef.h"
13 #include "SkPtrRecorder.h"
14 #include "SkStream.h"
15 #include "SkTypeface.h"
17 SkWriteBuffer::SkWriteBuffer(uint32_t flags)
18 : fFlags(flags)
19 , fFactorySet(NULL)
20 , fNamedFactorySet(NULL)
21 , fBitmapHeap(NULL)
22 , fTFSet(NULL)
23 , fBitmapEncoder(NULL) {
24 }
26 SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
27 : fFlags(flags)
28 , fFactorySet(NULL)
29 , fNamedFactorySet(NULL)
30 , fWriter(storage, storageSize)
31 , fBitmapHeap(NULL)
32 , fTFSet(NULL)
33 , fBitmapEncoder(NULL) {
34 }
36 SkWriteBuffer::~SkWriteBuffer() {
37 SkSafeUnref(fFactorySet);
38 SkSafeUnref(fNamedFactorySet);
39 SkSafeUnref(fBitmapHeap);
40 SkSafeUnref(fTFSet);
41 }
43 void SkWriteBuffer::writeByteArray(const void* data, size_t size) {
44 fWriter.write32(SkToU32(size));
45 fWriter.writePad(data, size);
46 }
48 void SkWriteBuffer::writeBool(bool value) {
49 fWriter.writeBool(value);
50 }
52 void SkWriteBuffer::writeFixed(SkFixed value) {
53 fWriter.write32(value);
54 }
56 void SkWriteBuffer::writeScalar(SkScalar value) {
57 fWriter.writeScalar(value);
58 }
60 void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
61 fWriter.write32(count);
62 fWriter.write(value, count * sizeof(SkScalar));
63 }
65 void SkWriteBuffer::writeInt(int32_t value) {
66 fWriter.write32(value);
67 }
69 void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
70 fWriter.write32(count);
71 fWriter.write(value, count * sizeof(int32_t));
72 }
74 void SkWriteBuffer::writeUInt(uint32_t value) {
75 fWriter.write32(value);
76 }
78 void SkWriteBuffer::write32(int32_t value) {
79 fWriter.write32(value);
80 }
82 void SkWriteBuffer::writeString(const char* value) {
83 fWriter.writeString(value);
84 }
86 void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength,
87 SkPaint::TextEncoding encoding) {
88 fWriter.writeInt(encoding);
89 fWriter.writeInt(SkToU32(byteLength));
90 fWriter.write(value, byteLength);
91 }
94 void SkWriteBuffer::writeColor(const SkColor& color) {
95 fWriter.write32(color);
96 }
98 void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
99 fWriter.write32(count);
100 fWriter.write(color, count * sizeof(SkColor));
101 }
103 void SkWriteBuffer::writePoint(const SkPoint& point) {
104 fWriter.writeScalar(point.fX);
105 fWriter.writeScalar(point.fY);
106 }
108 void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
109 fWriter.write32(count);
110 fWriter.write(point, count * sizeof(SkPoint));
111 }
113 void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) {
114 fWriter.writeMatrix(matrix);
115 }
117 void SkWriteBuffer::writeIRect(const SkIRect& rect) {
118 fWriter.write(&rect, sizeof(SkIRect));
119 }
121 void SkWriteBuffer::writeRect(const SkRect& rect) {
122 fWriter.writeRect(rect);
123 }
125 void SkWriteBuffer::writeRegion(const SkRegion& region) {
126 fWriter.writeRegion(region);
127 }
129 void SkWriteBuffer::writePath(const SkPath& path) {
130 fWriter.writePath(path);
131 }
133 size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) {
134 fWriter.write32(SkToU32(length));
135 size_t bytesWritten = fWriter.readFromStream(stream, length);
136 if (bytesWritten < length) {
137 fWriter.reservePad(length - bytesWritten);
138 }
139 return bytesWritten;
140 }
142 bool SkWriteBuffer::writeToStream(SkWStream* stream) {
143 return fWriter.writeToStream(stream);
144 }
146 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data,
147 const SkIPoint& origin) {
148 buffer->writeUInt(SkToU32(data->size()));
149 buffer->getWriter32()->writePad(data->data(), data->size());
150 buffer->write32(origin.fX);
151 buffer->write32(origin.fY);
152 }
154 void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
155 // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
156 // right size.
157 this->writeInt(bitmap.width());
158 this->writeInt(bitmap.height());
160 // Record information about the bitmap in one of three ways, in order of priority:
161 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the
162 // bitmap entirely or serialize it later as desired. A boolean value of true will be written
163 // to the stream to signify that a heap was used.
164 // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the
165 // bitmap. After writing a boolean value of false, signifying that a heap was not used, write
166 // the size of the encoded data. A non-zero size signifies that encoded data was written.
167 // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
168 // not used, write a zero to signify that the data was not encoded.
169 bool useBitmapHeap = fBitmapHeap != NULL;
170 // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an
171 // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way.
172 this->writeBool(useBitmapHeap);
173 if (useBitmapHeap) {
174 SkASSERT(NULL == fBitmapEncoder);
175 int32_t slot = fBitmapHeap->insert(bitmap);
176 fWriter.write32(slot);
177 // crbug.com/155875
178 // The generation ID is not required information. We write it to prevent collisions
179 // in SkFlatDictionary. It is possible to get a collision when a previously
180 // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary
181 // and the instance currently being written is re-using the same slot from the
182 // bitmap heap.
183 fWriter.write32(bitmap.getGenerationID());
184 return;
185 }
187 // see if the pixelref already has an encoded version
188 if (bitmap.pixelRef()) {
189 SkAutoDataUnref data(bitmap.pixelRef()->refEncodedData());
190 if (data.get() != NULL) {
191 write_encoded_bitmap(this, data, bitmap.pixelRefOrigin());
192 return;
193 }
194 }
196 // see if the caller wants to manually encode
197 if (fBitmapEncoder != NULL) {
198 SkASSERT(NULL == fBitmapHeap);
199 size_t offset = 0; // this parameter is deprecated/ignored
200 // if we have to "encode" the bitmap, then we assume there is no
201 // offset to share, since we are effectively creating a new pixelref
202 SkAutoDataUnref data(fBitmapEncoder(&offset, bitmap));
203 if (data.get() != NULL) {
204 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0));
205 return;
206 }
207 }
209 // Bitmap was not encoded. Record a zero, implying that the reader need not decode.
210 this->writeUInt(0);
211 bitmap.flatten(*this);
212 }
214 void SkWriteBuffer::writeTypeface(SkTypeface* obj) {
215 if (NULL == obj || NULL == fTFSet) {
216 fWriter.write32(0);
217 } else {
218 fWriter.write32(fTFSet->add(obj));
219 }
220 }
222 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
223 SkRefCnt_SafeAssign(fFactorySet, rec);
224 if (fNamedFactorySet != NULL) {
225 fNamedFactorySet->unref();
226 fNamedFactorySet = NULL;
227 }
228 return rec;
229 }
231 SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) {
232 SkRefCnt_SafeAssign(fNamedFactorySet, rec);
233 if (fFactorySet != NULL) {
234 fFactorySet->unref();
235 fFactorySet = NULL;
236 }
237 return rec;
238 }
240 SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
241 SkRefCnt_SafeAssign(fTFSet, rec);
242 return rec;
243 }
245 void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) {
246 SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap);
247 if (bitmapHeap != NULL) {
248 SkASSERT(NULL == fBitmapEncoder);
249 fBitmapEncoder = NULL;
250 }
251 }
253 void SkWriteBuffer::setBitmapEncoder(SkPicture::EncodeBitmap bitmapEncoder) {
254 fBitmapEncoder = bitmapEncoder;
255 if (bitmapEncoder != NULL) {
256 SkASSERT(NULL == fBitmapHeap);
257 SkSafeUnref(fBitmapHeap);
258 fBitmapHeap = NULL;
259 }
260 }
262 void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
263 /*
264 * If we have a factoryset, then the first 32bits tell us...
265 * 0: failure to write the flattenable
266 * >0: (1-based) index into the SkFactorySet or SkNamedFactorySet
267 * If we don't have a factoryset, then the first "ptr" is either the
268 * factory, or null for failure.
269 *
270 * The distinction is important, since 0-index is 32bits (always), but a
271 * 0-functionptr might be 32 or 64 bits.
272 */
273 if (NULL == flattenable) {
274 if (this->isValidating()) {
275 this->writeString("");
276 } else if (fFactorySet != NULL || fNamedFactorySet != NULL) {
277 this->write32(0);
278 } else {
279 this->writeFunctionPtr(NULL);
280 }
281 return;
282 }
284 SkFlattenable::Factory factory = flattenable->getFactory();
285 SkASSERT(factory != NULL);
287 /*
288 * We can write 1 of 3 versions of the flattenable:
289 * 1. function-ptr : this is the fastest for the reader, but assumes that
290 * the writer and reader are in the same process.
291 * 2. index into fFactorySet : This is assumes the writer will later
292 * resolve the function-ptrs into strings for its reader. SkPicture
293 * does exactly this, by writing a table of names (matching the indices)
294 * up front in its serialized form.
295 * 3. index into fNamedFactorySet. fNamedFactorySet will also store the
296 * name. SkGPipe uses this technique so it can write the name to its
297 * stream before writing the flattenable.
298 */
299 if (this->isValidating()) {
300 this->writeString(flattenable->getTypeName());
301 } else if (fFactorySet) {
302 this->write32(fFactorySet->add(factory));
303 } else if (fNamedFactorySet) {
304 int32_t index = fNamedFactorySet->find(factory);
305 this->write32(index);
306 if (0 == index) {
307 return;
308 }
309 } else {
310 this->writeFunctionPtr((void*)factory);
311 }
313 // make room for the size of the flattened object
314 (void)fWriter.reserve(sizeof(uint32_t));
315 // record the current size, so we can subtract after the object writes.
316 size_t offset = fWriter.bytesWritten();
317 // now flatten the object
318 flattenable->flatten(*this);
319 size_t objSize = fWriter.bytesWritten() - offset;
320 // record the obj's size
321 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
322 }