Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | /* |
michael@0 | 2 | * Copyright 2011 Google Inc. |
michael@0 | 3 | * |
michael@0 | 4 | * Use of this source code is governed by a BSD-style license that can be |
michael@0 | 5 | * found in the LICENSE file. |
michael@0 | 6 | */ |
michael@0 | 7 | |
michael@0 | 8 | #include "GrPathUtils.h" |
michael@0 | 9 | |
michael@0 | 10 | #include "GrPoint.h" |
michael@0 | 11 | #include "SkGeometry.h" |
michael@0 | 12 | |
michael@0 | 13 | SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol, |
michael@0 | 14 | const SkMatrix& viewM, |
michael@0 | 15 | const SkRect& pathBounds) { |
michael@0 | 16 | // In order to tesselate the path we get a bound on how much the matrix can |
michael@0 | 17 | // stretch when mapping to screen coordinates. |
michael@0 | 18 | SkScalar stretch = viewM.getMaxStretch(); |
michael@0 | 19 | SkScalar srcTol = devTol; |
michael@0 | 20 | |
michael@0 | 21 | if (stretch < 0) { |
michael@0 | 22 | // take worst case mapRadius amoung four corners. |
michael@0 | 23 | // (less than perfect) |
michael@0 | 24 | for (int i = 0; i < 4; ++i) { |
michael@0 | 25 | SkMatrix mat; |
michael@0 | 26 | mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight, |
michael@0 | 27 | (i < 2) ? pathBounds.fTop : pathBounds.fBottom); |
michael@0 | 28 | mat.postConcat(viewM); |
michael@0 | 29 | stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1)); |
michael@0 | 30 | } |
michael@0 | 31 | } |
michael@0 | 32 | srcTol = SkScalarDiv(srcTol, stretch); |
michael@0 | 33 | return srcTol; |
michael@0 | 34 | } |
michael@0 | 35 | |
michael@0 | 36 | static const int MAX_POINTS_PER_CURVE = 1 << 10; |
michael@0 | 37 | static const SkScalar gMinCurveTol = 0.0001f; |
michael@0 | 38 | |
michael@0 | 39 | uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[], |
michael@0 | 40 | SkScalar tol) { |
michael@0 | 41 | if (tol < gMinCurveTol) { |
michael@0 | 42 | tol = gMinCurveTol; |
michael@0 | 43 | } |
michael@0 | 44 | SkASSERT(tol > 0); |
michael@0 | 45 | |
michael@0 | 46 | SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]); |
michael@0 | 47 | if (d <= tol) { |
michael@0 | 48 | return 1; |
michael@0 | 49 | } else { |
michael@0 | 50 | // Each time we subdivide, d should be cut in 4. So we need to |
michael@0 | 51 | // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x) |
michael@0 | 52 | // points. |
michael@0 | 53 | // 2^(log4(x)) = sqrt(x); |
michael@0 | 54 | int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol))); |
michael@0 | 55 | int pow2 = GrNextPow2(temp); |
michael@0 | 56 | // Because of NaNs & INFs we can wind up with a degenerate temp |
michael@0 | 57 | // such that pow2 comes out negative. Also, our point generator |
michael@0 | 58 | // will always output at least one pt. |
michael@0 | 59 | if (pow2 < 1) { |
michael@0 | 60 | pow2 = 1; |
michael@0 | 61 | } |
michael@0 | 62 | return GrMin(pow2, MAX_POINTS_PER_CURVE); |
michael@0 | 63 | } |
michael@0 | 64 | } |
michael@0 | 65 | |
michael@0 | 66 | uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0, |
michael@0 | 67 | const GrPoint& p1, |
michael@0 | 68 | const GrPoint& p2, |
michael@0 | 69 | SkScalar tolSqd, |
michael@0 | 70 | GrPoint** points, |
michael@0 | 71 | uint32_t pointsLeft) { |
michael@0 | 72 | if (pointsLeft < 2 || |
michael@0 | 73 | (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { |
michael@0 | 74 | (*points)[0] = p2; |
michael@0 | 75 | *points += 1; |
michael@0 | 76 | return 1; |
michael@0 | 77 | } |
michael@0 | 78 | |
michael@0 | 79 | GrPoint q[] = { |
michael@0 | 80 | { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, |
michael@0 | 81 | { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, |
michael@0 | 82 | }; |
michael@0 | 83 | GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }; |
michael@0 | 84 | |
michael@0 | 85 | pointsLeft >>= 1; |
michael@0 | 86 | uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft); |
michael@0 | 87 | uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft); |
michael@0 | 88 | return a + b; |
michael@0 | 89 | } |
michael@0 | 90 | |
michael@0 | 91 | uint32_t GrPathUtils::cubicPointCount(const GrPoint points[], |
michael@0 | 92 | SkScalar tol) { |
michael@0 | 93 | if (tol < gMinCurveTol) { |
michael@0 | 94 | tol = gMinCurveTol; |
michael@0 | 95 | } |
michael@0 | 96 | SkASSERT(tol > 0); |
michael@0 | 97 | |
michael@0 | 98 | SkScalar d = GrMax( |
michael@0 | 99 | points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]), |
michael@0 | 100 | points[2].distanceToLineSegmentBetweenSqd(points[0], points[3])); |
michael@0 | 101 | d = SkScalarSqrt(d); |
michael@0 | 102 | if (d <= tol) { |
michael@0 | 103 | return 1; |
michael@0 | 104 | } else { |
michael@0 | 105 | int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol))); |
michael@0 | 106 | int pow2 = GrNextPow2(temp); |
michael@0 | 107 | // Because of NaNs & INFs we can wind up with a degenerate temp |
michael@0 | 108 | // such that pow2 comes out negative. Also, our point generator |
michael@0 | 109 | // will always output at least one pt. |
michael@0 | 110 | if (pow2 < 1) { |
michael@0 | 111 | pow2 = 1; |
michael@0 | 112 | } |
michael@0 | 113 | return GrMin(pow2, MAX_POINTS_PER_CURVE); |
michael@0 | 114 | } |
michael@0 | 115 | } |
michael@0 | 116 | |
michael@0 | 117 | uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0, |
michael@0 | 118 | const GrPoint& p1, |
michael@0 | 119 | const GrPoint& p2, |
michael@0 | 120 | const GrPoint& p3, |
michael@0 | 121 | SkScalar tolSqd, |
michael@0 | 122 | GrPoint** points, |
michael@0 | 123 | uint32_t pointsLeft) { |
michael@0 | 124 | if (pointsLeft < 2 || |
michael@0 | 125 | (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && |
michael@0 | 126 | p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { |
michael@0 | 127 | (*points)[0] = p3; |
michael@0 | 128 | *points += 1; |
michael@0 | 129 | return 1; |
michael@0 | 130 | } |
michael@0 | 131 | GrPoint q[] = { |
michael@0 | 132 | { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, |
michael@0 | 133 | { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, |
michael@0 | 134 | { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } |
michael@0 | 135 | }; |
michael@0 | 136 | GrPoint r[] = { |
michael@0 | 137 | { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, |
michael@0 | 138 | { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } |
michael@0 | 139 | }; |
michael@0 | 140 | GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; |
michael@0 | 141 | pointsLeft >>= 1; |
michael@0 | 142 | uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft); |
michael@0 | 143 | uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft); |
michael@0 | 144 | return a + b; |
michael@0 | 145 | } |
michael@0 | 146 | |
michael@0 | 147 | int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, |
michael@0 | 148 | SkScalar tol) { |
michael@0 | 149 | if (tol < gMinCurveTol) { |
michael@0 | 150 | tol = gMinCurveTol; |
michael@0 | 151 | } |
michael@0 | 152 | SkASSERT(tol > 0); |
michael@0 | 153 | |
michael@0 | 154 | int pointCount = 0; |
michael@0 | 155 | *subpaths = 1; |
michael@0 | 156 | |
michael@0 | 157 | bool first = true; |
michael@0 | 158 | |
michael@0 | 159 | SkPath::Iter iter(path, false); |
michael@0 | 160 | SkPath::Verb verb; |
michael@0 | 161 | |
michael@0 | 162 | GrPoint pts[4]; |
michael@0 | 163 | while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
michael@0 | 164 | |
michael@0 | 165 | switch (verb) { |
michael@0 | 166 | case SkPath::kLine_Verb: |
michael@0 | 167 | pointCount += 1; |
michael@0 | 168 | break; |
michael@0 | 169 | case SkPath::kQuad_Verb: |
michael@0 | 170 | pointCount += quadraticPointCount(pts, tol); |
michael@0 | 171 | break; |
michael@0 | 172 | case SkPath::kCubic_Verb: |
michael@0 | 173 | pointCount += cubicPointCount(pts, tol); |
michael@0 | 174 | break; |
michael@0 | 175 | case SkPath::kMove_Verb: |
michael@0 | 176 | pointCount += 1; |
michael@0 | 177 | if (!first) { |
michael@0 | 178 | ++(*subpaths); |
michael@0 | 179 | } |
michael@0 | 180 | break; |
michael@0 | 181 | default: |
michael@0 | 182 | break; |
michael@0 | 183 | } |
michael@0 | 184 | first = false; |
michael@0 | 185 | } |
michael@0 | 186 | return pointCount; |
michael@0 | 187 | } |
michael@0 | 188 | |
michael@0 | 189 | void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) { |
michael@0 | 190 | SkMatrix m; |
michael@0 | 191 | // We want M such that M * xy_pt = uv_pt |
michael@0 | 192 | // We know M * control_pts = [0 1/2 1] |
michael@0 | 193 | // [0 0 1] |
michael@0 | 194 | // [1 1 1] |
michael@0 | 195 | // And control_pts = [x0 x1 x2] |
michael@0 | 196 | // [y0 y1 y2] |
michael@0 | 197 | // [1 1 1 ] |
michael@0 | 198 | // We invert the control pt matrix and post concat to both sides to get M. |
michael@0 | 199 | // Using the known form of the control point matrix and the result, we can |
michael@0 | 200 | // optimize and improve precision. |
michael@0 | 201 | |
michael@0 | 202 | double x0 = qPts[0].fX; |
michael@0 | 203 | double y0 = qPts[0].fY; |
michael@0 | 204 | double x1 = qPts[1].fX; |
michael@0 | 205 | double y1 = qPts[1].fY; |
michael@0 | 206 | double x2 = qPts[2].fX; |
michael@0 | 207 | double y2 = qPts[2].fY; |
michael@0 | 208 | double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2; |
michael@0 | 209 | |
michael@0 | 210 | if (!sk_float_isfinite(det) |
michael@0 | 211 | || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) { |
michael@0 | 212 | // The quad is degenerate. Hopefully this is rare. Find the pts that are |
michael@0 | 213 | // farthest apart to compute a line (unless it is really a pt). |
michael@0 | 214 | SkScalar maxD = qPts[0].distanceToSqd(qPts[1]); |
michael@0 | 215 | int maxEdge = 0; |
michael@0 | 216 | SkScalar d = qPts[1].distanceToSqd(qPts[2]); |
michael@0 | 217 | if (d > maxD) { |
michael@0 | 218 | maxD = d; |
michael@0 | 219 | maxEdge = 1; |
michael@0 | 220 | } |
michael@0 | 221 | d = qPts[2].distanceToSqd(qPts[0]); |
michael@0 | 222 | if (d > maxD) { |
michael@0 | 223 | maxD = d; |
michael@0 | 224 | maxEdge = 2; |
michael@0 | 225 | } |
michael@0 | 226 | // We could have a tolerance here, not sure if it would improve anything |
michael@0 | 227 | if (maxD > 0) { |
michael@0 | 228 | // Set the matrix to give (u = 0, v = distance_to_line) |
michael@0 | 229 | GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge]; |
michael@0 | 230 | // when looking from the point 0 down the line we want positive |
michael@0 | 231 | // distances to be to the left. This matches the non-degenerate |
michael@0 | 232 | // case. |
michael@0 | 233 | lineVec.setOrthog(lineVec, GrPoint::kLeft_Side); |
michael@0 | 234 | lineVec.dot(qPts[0]); |
michael@0 | 235 | // first row |
michael@0 | 236 | fM[0] = 0; |
michael@0 | 237 | fM[1] = 0; |
michael@0 | 238 | fM[2] = 0; |
michael@0 | 239 | // second row |
michael@0 | 240 | fM[3] = lineVec.fX; |
michael@0 | 241 | fM[4] = lineVec.fY; |
michael@0 | 242 | fM[5] = -lineVec.dot(qPts[maxEdge]); |
michael@0 | 243 | } else { |
michael@0 | 244 | // It's a point. It should cover zero area. Just set the matrix such |
michael@0 | 245 | // that (u, v) will always be far away from the quad. |
michael@0 | 246 | fM[0] = 0; fM[1] = 0; fM[2] = 100.f; |
michael@0 | 247 | fM[3] = 0; fM[4] = 0; fM[5] = 100.f; |
michael@0 | 248 | } |
michael@0 | 249 | } else { |
michael@0 | 250 | double scale = 1.0/det; |
michael@0 | 251 | |
michael@0 | 252 | // compute adjugate matrix |
michael@0 | 253 | double a0, a1, a2, a3, a4, a5, a6, a7, a8; |
michael@0 | 254 | a0 = y1-y2; |
michael@0 | 255 | a1 = x2-x1; |
michael@0 | 256 | a2 = x1*y2-x2*y1; |
michael@0 | 257 | |
michael@0 | 258 | a3 = y2-y0; |
michael@0 | 259 | a4 = x0-x2; |
michael@0 | 260 | a5 = x2*y0-x0*y2; |
michael@0 | 261 | |
michael@0 | 262 | a6 = y0-y1; |
michael@0 | 263 | a7 = x1-x0; |
michael@0 | 264 | a8 = x0*y1-x1*y0; |
michael@0 | 265 | |
michael@0 | 266 | // this performs the uv_pts*adjugate(control_pts) multiply, |
michael@0 | 267 | // then does the scale by 1/det afterwards to improve precision |
michael@0 | 268 | m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale); |
michael@0 | 269 | m[SkMatrix::kMSkewX] = (float)((0.5*a4 + a7)*scale); |
michael@0 | 270 | m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale); |
michael@0 | 271 | |
michael@0 | 272 | m[SkMatrix::kMSkewY] = (float)(a6*scale); |
michael@0 | 273 | m[SkMatrix::kMScaleY] = (float)(a7*scale); |
michael@0 | 274 | m[SkMatrix::kMTransY] = (float)(a8*scale); |
michael@0 | 275 | |
michael@0 | 276 | m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale); |
michael@0 | 277 | m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale); |
michael@0 | 278 | m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale); |
michael@0 | 279 | |
michael@0 | 280 | // The matrix should not have perspective. |
michael@0 | 281 | SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f); |
michael@0 | 282 | SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL); |
michael@0 | 283 | SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL); |
michael@0 | 284 | |
michael@0 | 285 | // It may not be normalized to have 1.0 in the bottom right |
michael@0 | 286 | float m33 = m.get(SkMatrix::kMPersp2); |
michael@0 | 287 | if (1.f != m33) { |
michael@0 | 288 | m33 = 1.f / m33; |
michael@0 | 289 | fM[0] = m33 * m.get(SkMatrix::kMScaleX); |
michael@0 | 290 | fM[1] = m33 * m.get(SkMatrix::kMSkewX); |
michael@0 | 291 | fM[2] = m33 * m.get(SkMatrix::kMTransX); |
michael@0 | 292 | fM[3] = m33 * m.get(SkMatrix::kMSkewY); |
michael@0 | 293 | fM[4] = m33 * m.get(SkMatrix::kMScaleY); |
michael@0 | 294 | fM[5] = m33 * m.get(SkMatrix::kMTransY); |
michael@0 | 295 | } else { |
michael@0 | 296 | fM[0] = m.get(SkMatrix::kMScaleX); |
michael@0 | 297 | fM[1] = m.get(SkMatrix::kMSkewX); |
michael@0 | 298 | fM[2] = m.get(SkMatrix::kMTransX); |
michael@0 | 299 | fM[3] = m.get(SkMatrix::kMSkewY); |
michael@0 | 300 | fM[4] = m.get(SkMatrix::kMScaleY); |
michael@0 | 301 | fM[5] = m.get(SkMatrix::kMTransY); |
michael@0 | 302 | } |
michael@0 | 303 | } |
michael@0 | 304 | } |
michael@0 | 305 | |
michael@0 | 306 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 307 | |
michael@0 | 308 | // k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 ) |
michael@0 | 309 | // l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1)) |
michael@0 | 310 | // m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2)) |
michael@0 | 311 | void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) { |
michael@0 | 312 | const SkScalar w2 = 2.f * weight; |
michael@0 | 313 | klm[0] = p[2].fY - p[0].fY; |
michael@0 | 314 | klm[1] = p[0].fX - p[2].fX; |
michael@0 | 315 | klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX; |
michael@0 | 316 | |
michael@0 | 317 | klm[3] = w2 * (p[1].fY - p[0].fY); |
michael@0 | 318 | klm[4] = w2 * (p[0].fX - p[1].fX); |
michael@0 | 319 | klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY); |
michael@0 | 320 | |
michael@0 | 321 | klm[6] = w2 * (p[2].fY - p[1].fY); |
michael@0 | 322 | klm[7] = w2 * (p[1].fX - p[2].fX); |
michael@0 | 323 | klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY); |
michael@0 | 324 | |
michael@0 | 325 | // scale the max absolute value of coeffs to 10 |
michael@0 | 326 | SkScalar scale = 0.f; |
michael@0 | 327 | for (int i = 0; i < 9; ++i) { |
michael@0 | 328 | scale = SkMaxScalar(scale, SkScalarAbs(klm[i])); |
michael@0 | 329 | } |
michael@0 | 330 | SkASSERT(scale > 0.f); |
michael@0 | 331 | scale = 10.f / scale; |
michael@0 | 332 | for (int i = 0; i < 9; ++i) { |
michael@0 | 333 | klm[i] *= scale; |
michael@0 | 334 | } |
michael@0 | 335 | } |
michael@0 | 336 | |
michael@0 | 337 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 338 | |
michael@0 | 339 | namespace { |
michael@0 | 340 | |
michael@0 | 341 | // a is the first control point of the cubic. |
michael@0 | 342 | // ab is the vector from a to the second control point. |
michael@0 | 343 | // dc is the vector from the fourth to the third control point. |
michael@0 | 344 | // d is the fourth control point. |
michael@0 | 345 | // p is the candidate quadratic control point. |
michael@0 | 346 | // this assumes that the cubic doesn't inflect and is simple |
michael@0 | 347 | bool is_point_within_cubic_tangents(const SkPoint& a, |
michael@0 | 348 | const SkVector& ab, |
michael@0 | 349 | const SkVector& dc, |
michael@0 | 350 | const SkPoint& d, |
michael@0 | 351 | SkPath::Direction dir, |
michael@0 | 352 | const SkPoint p) { |
michael@0 | 353 | SkVector ap = p - a; |
michael@0 | 354 | SkScalar apXab = ap.cross(ab); |
michael@0 | 355 | if (SkPath::kCW_Direction == dir) { |
michael@0 | 356 | if (apXab > 0) { |
michael@0 | 357 | return false; |
michael@0 | 358 | } |
michael@0 | 359 | } else { |
michael@0 | 360 | SkASSERT(SkPath::kCCW_Direction == dir); |
michael@0 | 361 | if (apXab < 0) { |
michael@0 | 362 | return false; |
michael@0 | 363 | } |
michael@0 | 364 | } |
michael@0 | 365 | |
michael@0 | 366 | SkVector dp = p - d; |
michael@0 | 367 | SkScalar dpXdc = dp.cross(dc); |
michael@0 | 368 | if (SkPath::kCW_Direction == dir) { |
michael@0 | 369 | if (dpXdc < 0) { |
michael@0 | 370 | return false; |
michael@0 | 371 | } |
michael@0 | 372 | } else { |
michael@0 | 373 | SkASSERT(SkPath::kCCW_Direction == dir); |
michael@0 | 374 | if (dpXdc > 0) { |
michael@0 | 375 | return false; |
michael@0 | 376 | } |
michael@0 | 377 | } |
michael@0 | 378 | return true; |
michael@0 | 379 | } |
michael@0 | 380 | |
michael@0 | 381 | void convert_noninflect_cubic_to_quads(const SkPoint p[4], |
michael@0 | 382 | SkScalar toleranceSqd, |
michael@0 | 383 | bool constrainWithinTangents, |
michael@0 | 384 | SkPath::Direction dir, |
michael@0 | 385 | SkTArray<SkPoint, true>* quads, |
michael@0 | 386 | int sublevel = 0) { |
michael@0 | 387 | |
michael@0 | 388 | // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is |
michael@0 | 389 | // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1]. |
michael@0 | 390 | |
michael@0 | 391 | SkVector ab = p[1] - p[0]; |
michael@0 | 392 | SkVector dc = p[2] - p[3]; |
michael@0 | 393 | |
michael@0 | 394 | if (ab.isZero()) { |
michael@0 | 395 | if (dc.isZero()) { |
michael@0 | 396 | SkPoint* degQuad = quads->push_back_n(3); |
michael@0 | 397 | degQuad[0] = p[0]; |
michael@0 | 398 | degQuad[1] = p[0]; |
michael@0 | 399 | degQuad[2] = p[3]; |
michael@0 | 400 | return; |
michael@0 | 401 | } |
michael@0 | 402 | ab = p[2] - p[0]; |
michael@0 | 403 | } |
michael@0 | 404 | if (dc.isZero()) { |
michael@0 | 405 | dc = p[1] - p[3]; |
michael@0 | 406 | } |
michael@0 | 407 | |
michael@0 | 408 | // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that |
michael@0 | 409 | // the quad point falls between the tangents becomes hard to enforce and we are likely to hit |
michael@0 | 410 | // the max subdivision count. However, in this case the cubic is approaching a line and the |
michael@0 | 411 | // accuracy of the quad point isn't so important. We check if the two middle cubic control |
michael@0 | 412 | // points are very close to the baseline vector. If so then we just pick quadratic points on the |
michael@0 | 413 | // control polygon. |
michael@0 | 414 | |
michael@0 | 415 | if (constrainWithinTangents) { |
michael@0 | 416 | SkVector da = p[0] - p[3]; |
michael@0 | 417 | SkScalar invDALengthSqd = da.lengthSqd(); |
michael@0 | 418 | if (invDALengthSqd > SK_ScalarNearlyZero) { |
michael@0 | 419 | invDALengthSqd = SkScalarInvert(invDALengthSqd); |
michael@0 | 420 | // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a. |
michael@0 | 421 | // same goed for point c using vector cd. |
michael@0 | 422 | SkScalar detABSqd = ab.cross(da); |
michael@0 | 423 | detABSqd = SkScalarSquare(detABSqd); |
michael@0 | 424 | SkScalar detDCSqd = dc.cross(da); |
michael@0 | 425 | detDCSqd = SkScalarSquare(detDCSqd); |
michael@0 | 426 | if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd && |
michael@0 | 427 | SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) { |
michael@0 | 428 | SkPoint b = p[0] + ab; |
michael@0 | 429 | SkPoint c = p[3] + dc; |
michael@0 | 430 | SkPoint mid = b + c; |
michael@0 | 431 | mid.scale(SK_ScalarHalf); |
michael@0 | 432 | // Insert two quadratics to cover the case when ab points away from d and/or dc |
michael@0 | 433 | // points away from a. |
michael@0 | 434 | if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) { |
michael@0 | 435 | SkPoint* qpts = quads->push_back_n(6); |
michael@0 | 436 | qpts[0] = p[0]; |
michael@0 | 437 | qpts[1] = b; |
michael@0 | 438 | qpts[2] = mid; |
michael@0 | 439 | qpts[3] = mid; |
michael@0 | 440 | qpts[4] = c; |
michael@0 | 441 | qpts[5] = p[3]; |
michael@0 | 442 | } else { |
michael@0 | 443 | SkPoint* qpts = quads->push_back_n(3); |
michael@0 | 444 | qpts[0] = p[0]; |
michael@0 | 445 | qpts[1] = mid; |
michael@0 | 446 | qpts[2] = p[3]; |
michael@0 | 447 | } |
michael@0 | 448 | return; |
michael@0 | 449 | } |
michael@0 | 450 | } |
michael@0 | 451 | } |
michael@0 | 452 | |
michael@0 | 453 | static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2; |
michael@0 | 454 | static const int kMaxSubdivs = 10; |
michael@0 | 455 | |
michael@0 | 456 | ab.scale(kLengthScale); |
michael@0 | 457 | dc.scale(kLengthScale); |
michael@0 | 458 | |
michael@0 | 459 | // e0 and e1 are extrapolations along vectors ab and dc. |
michael@0 | 460 | SkVector c0 = p[0]; |
michael@0 | 461 | c0 += ab; |
michael@0 | 462 | SkVector c1 = p[3]; |
michael@0 | 463 | c1 += dc; |
michael@0 | 464 | |
michael@0 | 465 | SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1); |
michael@0 | 466 | if (dSqd < toleranceSqd) { |
michael@0 | 467 | SkPoint cAvg = c0; |
michael@0 | 468 | cAvg += c1; |
michael@0 | 469 | cAvg.scale(SK_ScalarHalf); |
michael@0 | 470 | |
michael@0 | 471 | bool subdivide = false; |
michael@0 | 472 | |
michael@0 | 473 | if (constrainWithinTangents && |
michael@0 | 474 | !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) { |
michael@0 | 475 | // choose a new cAvg that is the intersection of the two tangent lines. |
michael@0 | 476 | ab.setOrthog(ab); |
michael@0 | 477 | SkScalar z0 = -ab.dot(p[0]); |
michael@0 | 478 | dc.setOrthog(dc); |
michael@0 | 479 | SkScalar z1 = -dc.dot(p[3]); |
michael@0 | 480 | cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY); |
michael@0 | 481 | cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1); |
michael@0 | 482 | SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX); |
michael@0 | 483 | z = SkScalarInvert(z); |
michael@0 | 484 | cAvg.fX *= z; |
michael@0 | 485 | cAvg.fY *= z; |
michael@0 | 486 | if (sublevel <= kMaxSubdivs) { |
michael@0 | 487 | SkScalar d0Sqd = c0.distanceToSqd(cAvg); |
michael@0 | 488 | SkScalar d1Sqd = c1.distanceToSqd(cAvg); |
michael@0 | 489 | // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know |
michael@0 | 490 | // the distances and tolerance can't be negative. |
michael@0 | 491 | // (d0 + d1)^2 > toleranceSqd |
michael@0 | 492 | // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd |
michael@0 | 493 | SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd)); |
michael@0 | 494 | subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd; |
michael@0 | 495 | } |
michael@0 | 496 | } |
michael@0 | 497 | if (!subdivide) { |
michael@0 | 498 | SkPoint* pts = quads->push_back_n(3); |
michael@0 | 499 | pts[0] = p[0]; |
michael@0 | 500 | pts[1] = cAvg; |
michael@0 | 501 | pts[2] = p[3]; |
michael@0 | 502 | return; |
michael@0 | 503 | } |
michael@0 | 504 | } |
michael@0 | 505 | SkPoint choppedPts[7]; |
michael@0 | 506 | SkChopCubicAtHalf(p, choppedPts); |
michael@0 | 507 | convert_noninflect_cubic_to_quads(choppedPts + 0, |
michael@0 | 508 | toleranceSqd, |
michael@0 | 509 | constrainWithinTangents, |
michael@0 | 510 | dir, |
michael@0 | 511 | quads, |
michael@0 | 512 | sublevel + 1); |
michael@0 | 513 | convert_noninflect_cubic_to_quads(choppedPts + 3, |
michael@0 | 514 | toleranceSqd, |
michael@0 | 515 | constrainWithinTangents, |
michael@0 | 516 | dir, |
michael@0 | 517 | quads, |
michael@0 | 518 | sublevel + 1); |
michael@0 | 519 | } |
michael@0 | 520 | } |
michael@0 | 521 | |
michael@0 | 522 | void GrPathUtils::convertCubicToQuads(const GrPoint p[4], |
michael@0 | 523 | SkScalar tolScale, |
michael@0 | 524 | bool constrainWithinTangents, |
michael@0 | 525 | SkPath::Direction dir, |
michael@0 | 526 | SkTArray<SkPoint, true>* quads) { |
michael@0 | 527 | SkPoint chopped[10]; |
michael@0 | 528 | int count = SkChopCubicAtInflections(p, chopped); |
michael@0 | 529 | |
michael@0 | 530 | // base tolerance is 1 pixel. |
michael@0 | 531 | static const SkScalar kTolerance = SK_Scalar1; |
michael@0 | 532 | const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance)); |
michael@0 | 533 | |
michael@0 | 534 | for (int i = 0; i < count; ++i) { |
michael@0 | 535 | SkPoint* cubic = chopped + 3*i; |
michael@0 | 536 | convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads); |
michael@0 | 537 | } |
michael@0 | 538 | |
michael@0 | 539 | } |
michael@0 | 540 | |
michael@0 | 541 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 542 | |
michael@0 | 543 | enum CubicType { |
michael@0 | 544 | kSerpentine_CubicType, |
michael@0 | 545 | kCusp_CubicType, |
michael@0 | 546 | kLoop_CubicType, |
michael@0 | 547 | kQuadratic_CubicType, |
michael@0 | 548 | kLine_CubicType, |
michael@0 | 549 | kPoint_CubicType |
michael@0 | 550 | }; |
michael@0 | 551 | |
michael@0 | 552 | // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2) |
michael@0 | 553 | // Classification: |
michael@0 | 554 | // discr(I) > 0 Serpentine |
michael@0 | 555 | // discr(I) = 0 Cusp |
michael@0 | 556 | // discr(I) < 0 Loop |
michael@0 | 557 | // d0 = d1 = 0 Quadratic |
michael@0 | 558 | // d0 = d1 = d2 = 0 Line |
michael@0 | 559 | // p0 = p1 = p2 = p3 Point |
michael@0 | 560 | static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) { |
michael@0 | 561 | if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) { |
michael@0 | 562 | return kPoint_CubicType; |
michael@0 | 563 | } |
michael@0 | 564 | const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]); |
michael@0 | 565 | if (discr > SK_ScalarNearlyZero) { |
michael@0 | 566 | return kSerpentine_CubicType; |
michael@0 | 567 | } else if (discr < -SK_ScalarNearlyZero) { |
michael@0 | 568 | return kLoop_CubicType; |
michael@0 | 569 | } else { |
michael@0 | 570 | if (0.f == d[0] && 0.f == d[1]) { |
michael@0 | 571 | return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType); |
michael@0 | 572 | } else { |
michael@0 | 573 | return kCusp_CubicType; |
michael@0 | 574 | } |
michael@0 | 575 | } |
michael@0 | 576 | } |
michael@0 | 577 | |
michael@0 | 578 | // Assumes the third component of points is 1. |
michael@0 | 579 | // Calcs p0 . (p1 x p2) |
michael@0 | 580 | static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { |
michael@0 | 581 | const SkScalar xComp = p0.fX * (p1.fY - p2.fY); |
michael@0 | 582 | const SkScalar yComp = p0.fY * (p2.fX - p1.fX); |
michael@0 | 583 | const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX; |
michael@0 | 584 | return (xComp + yComp + wComp); |
michael@0 | 585 | } |
michael@0 | 586 | |
michael@0 | 587 | // Solves linear system to extract klm |
michael@0 | 588 | // P.K = k (similarly for l, m) |
michael@0 | 589 | // Where P is matrix of control points |
michael@0 | 590 | // K is coefficients for the line K |
michael@0 | 591 | // k is vector of values of K evaluated at the control points |
michael@0 | 592 | // Solving for K, thus K = P^(-1) . k |
michael@0 | 593 | static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4], |
michael@0 | 594 | const SkScalar controlL[4], const SkScalar controlM[4], |
michael@0 | 595 | SkScalar k[3], SkScalar l[3], SkScalar m[3]) { |
michael@0 | 596 | SkMatrix matrix; |
michael@0 | 597 | matrix.setAll(p[0].fX, p[0].fY, 1.f, |
michael@0 | 598 | p[1].fX, p[1].fY, 1.f, |
michael@0 | 599 | p[2].fX, p[2].fY, 1.f); |
michael@0 | 600 | SkMatrix inverse; |
michael@0 | 601 | if (matrix.invert(&inverse)) { |
michael@0 | 602 | inverse.mapHomogeneousPoints(k, controlK, 1); |
michael@0 | 603 | inverse.mapHomogeneousPoints(l, controlL, 1); |
michael@0 | 604 | inverse.mapHomogeneousPoints(m, controlM, 1); |
michael@0 | 605 | } |
michael@0 | 606 | |
michael@0 | 607 | } |
michael@0 | 608 | |
michael@0 | 609 | static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { |
michael@0 | 610 | SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]); |
michael@0 | 611 | SkScalar ls = 3.f * d[1] - tempSqrt; |
michael@0 | 612 | SkScalar lt = 6.f * d[0]; |
michael@0 | 613 | SkScalar ms = 3.f * d[1] + tempSqrt; |
michael@0 | 614 | SkScalar mt = 6.f * d[0]; |
michael@0 | 615 | |
michael@0 | 616 | k[0] = ls * ms; |
michael@0 | 617 | k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f; |
michael@0 | 618 | k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f; |
michael@0 | 619 | k[3] = (lt - ls) * (mt - ms); |
michael@0 | 620 | |
michael@0 | 621 | l[0] = ls * ls * ls; |
michael@0 | 622 | const SkScalar lt_ls = lt - ls; |
michael@0 | 623 | l[1] = ls * ls * lt_ls * -1.f; |
michael@0 | 624 | l[2] = lt_ls * lt_ls * ls; |
michael@0 | 625 | l[3] = -1.f * lt_ls * lt_ls * lt_ls; |
michael@0 | 626 | |
michael@0 | 627 | m[0] = ms * ms * ms; |
michael@0 | 628 | const SkScalar mt_ms = mt - ms; |
michael@0 | 629 | m[1] = ms * ms * mt_ms * -1.f; |
michael@0 | 630 | m[2] = mt_ms * mt_ms * ms; |
michael@0 | 631 | m[3] = -1.f * mt_ms * mt_ms * mt_ms; |
michael@0 | 632 | |
michael@0 | 633 | // If d0 < 0 we need to flip the orientation of our curve |
michael@0 | 634 | // This is done by negating the k and l values |
michael@0 | 635 | // We want negative distance values to be on the inside |
michael@0 | 636 | if ( d[0] > 0) { |
michael@0 | 637 | for (int i = 0; i < 4; ++i) { |
michael@0 | 638 | k[i] = -k[i]; |
michael@0 | 639 | l[i] = -l[i]; |
michael@0 | 640 | } |
michael@0 | 641 | } |
michael@0 | 642 | } |
michael@0 | 643 | |
michael@0 | 644 | static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { |
michael@0 | 645 | SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); |
michael@0 | 646 | SkScalar ls = d[1] - tempSqrt; |
michael@0 | 647 | SkScalar lt = 2.f * d[0]; |
michael@0 | 648 | SkScalar ms = d[1] + tempSqrt; |
michael@0 | 649 | SkScalar mt = 2.f * d[0]; |
michael@0 | 650 | |
michael@0 | 651 | k[0] = ls * ms; |
michael@0 | 652 | k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f; |
michael@0 | 653 | k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f; |
michael@0 | 654 | k[3] = (lt - ls) * (mt - ms); |
michael@0 | 655 | |
michael@0 | 656 | l[0] = ls * ls * ms; |
michael@0 | 657 | l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f; |
michael@0 | 658 | l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f; |
michael@0 | 659 | l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms); |
michael@0 | 660 | |
michael@0 | 661 | m[0] = ls * ms * ms; |
michael@0 | 662 | m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f; |
michael@0 | 663 | m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f; |
michael@0 | 664 | m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms); |
michael@0 | 665 | |
michael@0 | 666 | |
michael@0 | 667 | // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0), |
michael@0 | 668 | // we need to flip the orientation of our curve. |
michael@0 | 669 | // This is done by negating the k and l values |
michael@0 | 670 | if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) { |
michael@0 | 671 | for (int i = 0; i < 4; ++i) { |
michael@0 | 672 | k[i] = -k[i]; |
michael@0 | 673 | l[i] = -l[i]; |
michael@0 | 674 | } |
michael@0 | 675 | } |
michael@0 | 676 | } |
michael@0 | 677 | |
michael@0 | 678 | static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { |
michael@0 | 679 | const SkScalar ls = d[2]; |
michael@0 | 680 | const SkScalar lt = 3.f * d[1]; |
michael@0 | 681 | |
michael@0 | 682 | k[0] = ls; |
michael@0 | 683 | k[1] = ls - lt / 3.f; |
michael@0 | 684 | k[2] = ls - 2.f * lt / 3.f; |
michael@0 | 685 | k[3] = ls - lt; |
michael@0 | 686 | |
michael@0 | 687 | l[0] = ls * ls * ls; |
michael@0 | 688 | const SkScalar ls_lt = ls - lt; |
michael@0 | 689 | l[1] = ls * ls * ls_lt; |
michael@0 | 690 | l[2] = ls_lt * ls_lt * ls; |
michael@0 | 691 | l[3] = ls_lt * ls_lt * ls_lt; |
michael@0 | 692 | |
michael@0 | 693 | m[0] = 1.f; |
michael@0 | 694 | m[1] = 1.f; |
michael@0 | 695 | m[2] = 1.f; |
michael@0 | 696 | m[3] = 1.f; |
michael@0 | 697 | } |
michael@0 | 698 | |
michael@0 | 699 | // For the case when a cubic is actually a quadratic |
michael@0 | 700 | // M = |
michael@0 | 701 | // 0 0 0 |
michael@0 | 702 | // 1/3 0 1/3 |
michael@0 | 703 | // 2/3 1/3 2/3 |
michael@0 | 704 | // 1 1 1 |
michael@0 | 705 | static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { |
michael@0 | 706 | k[0] = 0.f; |
michael@0 | 707 | k[1] = 1.f/3.f; |
michael@0 | 708 | k[2] = 2.f/3.f; |
michael@0 | 709 | k[3] = 1.f; |
michael@0 | 710 | |
michael@0 | 711 | l[0] = 0.f; |
michael@0 | 712 | l[1] = 0.f; |
michael@0 | 713 | l[2] = 1.f/3.f; |
michael@0 | 714 | l[3] = 1.f; |
michael@0 | 715 | |
michael@0 | 716 | m[0] = 0.f; |
michael@0 | 717 | m[1] = 1.f/3.f; |
michael@0 | 718 | m[2] = 2.f/3.f; |
michael@0 | 719 | m[3] = 1.f; |
michael@0 | 720 | |
michael@0 | 721 | // If d2 < 0 we need to flip the orientation of our curve |
michael@0 | 722 | // This is done by negating the k and l values |
michael@0 | 723 | if ( d[2] > 0) { |
michael@0 | 724 | for (int i = 0; i < 4; ++i) { |
michael@0 | 725 | k[i] = -k[i]; |
michael@0 | 726 | l[i] = -l[i]; |
michael@0 | 727 | } |
michael@0 | 728 | } |
michael@0 | 729 | } |
michael@0 | 730 | |
michael@0 | 731 | // Calc coefficients of I(s,t) where roots of I are inflection points of curve |
michael@0 | 732 | // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2) |
michael@0 | 733 | // d0 = a1 - 2*a2+3*a3 |
michael@0 | 734 | // d1 = -a2 + 3*a3 |
michael@0 | 735 | // d2 = 3*a3 |
michael@0 | 736 | // a1 = p0 . (p3 x p2) |
michael@0 | 737 | // a2 = p1 . (p0 x p3) |
michael@0 | 738 | // a3 = p2 . (p1 x p0) |
michael@0 | 739 | // Places the values of d1, d2, d3 in array d passed in |
michael@0 | 740 | static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) { |
michael@0 | 741 | SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]); |
michael@0 | 742 | SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]); |
michael@0 | 743 | SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]); |
michael@0 | 744 | |
michael@0 | 745 | // need to scale a's or values in later calculations will grow to high |
michael@0 | 746 | SkScalar max = SkScalarAbs(a1); |
michael@0 | 747 | max = SkMaxScalar(max, SkScalarAbs(a2)); |
michael@0 | 748 | max = SkMaxScalar(max, SkScalarAbs(a3)); |
michael@0 | 749 | max = 1.f/max; |
michael@0 | 750 | a1 = a1 * max; |
michael@0 | 751 | a2 = a2 * max; |
michael@0 | 752 | a3 = a3 * max; |
michael@0 | 753 | |
michael@0 | 754 | d[2] = 3.f * a3; |
michael@0 | 755 | d[1] = d[2] - a2; |
michael@0 | 756 | d[0] = d[1] - a2 + a1; |
michael@0 | 757 | } |
michael@0 | 758 | |
michael@0 | 759 | int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9], |
michael@0 | 760 | SkScalar klm_rev[3]) { |
michael@0 | 761 | // Variable to store the two parametric values at the loop double point |
michael@0 | 762 | SkScalar smallS = 0.f; |
michael@0 | 763 | SkScalar largeS = 0.f; |
michael@0 | 764 | |
michael@0 | 765 | SkScalar d[3]; |
michael@0 | 766 | calc_cubic_inflection_func(src, d); |
michael@0 | 767 | |
michael@0 | 768 | CubicType cType = classify_cubic(src, d); |
michael@0 | 769 | |
michael@0 | 770 | int chop_count = 0; |
michael@0 | 771 | if (kLoop_CubicType == cType) { |
michael@0 | 772 | SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); |
michael@0 | 773 | SkScalar ls = d[1] - tempSqrt; |
michael@0 | 774 | SkScalar lt = 2.f * d[0]; |
michael@0 | 775 | SkScalar ms = d[1] + tempSqrt; |
michael@0 | 776 | SkScalar mt = 2.f * d[0]; |
michael@0 | 777 | ls = ls / lt; |
michael@0 | 778 | ms = ms / mt; |
michael@0 | 779 | // need to have t values sorted since this is what is expected by SkChopCubicAt |
michael@0 | 780 | if (ls <= ms) { |
michael@0 | 781 | smallS = ls; |
michael@0 | 782 | largeS = ms; |
michael@0 | 783 | } else { |
michael@0 | 784 | smallS = ms; |
michael@0 | 785 | largeS = ls; |
michael@0 | 786 | } |
michael@0 | 787 | |
michael@0 | 788 | SkScalar chop_ts[2]; |
michael@0 | 789 | if (smallS > 0.f && smallS < 1.f) { |
michael@0 | 790 | chop_ts[chop_count++] = smallS; |
michael@0 | 791 | } |
michael@0 | 792 | if (largeS > 0.f && largeS < 1.f) { |
michael@0 | 793 | chop_ts[chop_count++] = largeS; |
michael@0 | 794 | } |
michael@0 | 795 | if(dst) { |
michael@0 | 796 | SkChopCubicAt(src, dst, chop_ts, chop_count); |
michael@0 | 797 | } |
michael@0 | 798 | } else { |
michael@0 | 799 | if (dst) { |
michael@0 | 800 | memcpy(dst, src, sizeof(SkPoint) * 4); |
michael@0 | 801 | } |
michael@0 | 802 | } |
michael@0 | 803 | |
michael@0 | 804 | if (klm && klm_rev) { |
michael@0 | 805 | // Set klm_rev to to match the sub_section of cubic that needs to have its orientation |
michael@0 | 806 | // flipped. This will always be the section that is the "loop" |
michael@0 | 807 | if (2 == chop_count) { |
michael@0 | 808 | klm_rev[0] = 1.f; |
michael@0 | 809 | klm_rev[1] = -1.f; |
michael@0 | 810 | klm_rev[2] = 1.f; |
michael@0 | 811 | } else if (1 == chop_count) { |
michael@0 | 812 | if (smallS < 0.f) { |
michael@0 | 813 | klm_rev[0] = -1.f; |
michael@0 | 814 | klm_rev[1] = 1.f; |
michael@0 | 815 | } else { |
michael@0 | 816 | klm_rev[0] = 1.f; |
michael@0 | 817 | klm_rev[1] = -1.f; |
michael@0 | 818 | } |
michael@0 | 819 | } else { |
michael@0 | 820 | if (smallS < 0.f && largeS > 1.f) { |
michael@0 | 821 | klm_rev[0] = -1.f; |
michael@0 | 822 | } else { |
michael@0 | 823 | klm_rev[0] = 1.f; |
michael@0 | 824 | } |
michael@0 | 825 | } |
michael@0 | 826 | SkScalar controlK[4]; |
michael@0 | 827 | SkScalar controlL[4]; |
michael@0 | 828 | SkScalar controlM[4]; |
michael@0 | 829 | |
michael@0 | 830 | if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) { |
michael@0 | 831 | set_serp_klm(d, controlK, controlL, controlM); |
michael@0 | 832 | } else if (kLoop_CubicType == cType) { |
michael@0 | 833 | set_loop_klm(d, controlK, controlL, controlM); |
michael@0 | 834 | } else if (kCusp_CubicType == cType) { |
michael@0 | 835 | SkASSERT(0.f == d[0]); |
michael@0 | 836 | set_cusp_klm(d, controlK, controlL, controlM); |
michael@0 | 837 | } else if (kQuadratic_CubicType == cType) { |
michael@0 | 838 | set_quadratic_klm(d, controlK, controlL, controlM); |
michael@0 | 839 | } |
michael@0 | 840 | |
michael@0 | 841 | calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]); |
michael@0 | 842 | } |
michael@0 | 843 | return chop_count + 1; |
michael@0 | 844 | } |
michael@0 | 845 | |
michael@0 | 846 | void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) { |
michael@0 | 847 | SkScalar d[3]; |
michael@0 | 848 | calc_cubic_inflection_func(p, d); |
michael@0 | 849 | |
michael@0 | 850 | CubicType cType = classify_cubic(p, d); |
michael@0 | 851 | |
michael@0 | 852 | SkScalar controlK[4]; |
michael@0 | 853 | SkScalar controlL[4]; |
michael@0 | 854 | SkScalar controlM[4]; |
michael@0 | 855 | |
michael@0 | 856 | if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) { |
michael@0 | 857 | set_serp_klm(d, controlK, controlL, controlM); |
michael@0 | 858 | } else if (kLoop_CubicType == cType) { |
michael@0 | 859 | set_loop_klm(d, controlK, controlL, controlM); |
michael@0 | 860 | } else if (kCusp_CubicType == cType) { |
michael@0 | 861 | SkASSERT(0.f == d[0]); |
michael@0 | 862 | set_cusp_klm(d, controlK, controlL, controlM); |
michael@0 | 863 | } else if (kQuadratic_CubicType == cType) { |
michael@0 | 864 | set_quadratic_klm(d, controlK, controlL, controlM); |
michael@0 | 865 | } |
michael@0 | 866 | |
michael@0 | 867 | calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]); |
michael@0 | 868 | } |