gfx/skia/trunk/src/gpu/GrPathUtils.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2  * Copyright 2011 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     8 #include "GrPathUtils.h"
    10 #include "GrPoint.h"
    11 #include "SkGeometry.h"
    13 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
    14                                           const SkMatrix& viewM,
    15                                           const SkRect& pathBounds) {
    16     // In order to tesselate the path we get a bound on how much the matrix can
    17     // stretch when mapping to screen coordinates.
    18     SkScalar stretch = viewM.getMaxStretch();
    19     SkScalar srcTol = devTol;
    21     if (stretch < 0) {
    22         // take worst case mapRadius amoung four corners.
    23         // (less than perfect)
    24         for (int i = 0; i < 4; ++i) {
    25             SkMatrix mat;
    26             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
    27                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
    28             mat.postConcat(viewM);
    29             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
    30         }
    31     }
    32     srcTol = SkScalarDiv(srcTol, stretch);
    33     return srcTol;
    34 }
    36 static const int MAX_POINTS_PER_CURVE = 1 << 10;
    37 static const SkScalar gMinCurveTol = 0.0001f;
    39 uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
    40                                           SkScalar tol) {
    41     if (tol < gMinCurveTol) {
    42         tol = gMinCurveTol;
    43     }
    44     SkASSERT(tol > 0);
    46     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
    47     if (d <= tol) {
    48         return 1;
    49     } else {
    50         // Each time we subdivide, d should be cut in 4. So we need to
    51         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
    52         // points.
    53         // 2^(log4(x)) = sqrt(x);
    54         int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
    55         int pow2 = GrNextPow2(temp);
    56         // Because of NaNs & INFs we can wind up with a degenerate temp
    57         // such that pow2 comes out negative. Also, our point generator
    58         // will always output at least one pt.
    59         if (pow2 < 1) {
    60             pow2 = 1;
    61         }
    62         return GrMin(pow2, MAX_POINTS_PER_CURVE);
    63     }
    64 }
    66 uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
    67                                               const GrPoint& p1,
    68                                               const GrPoint& p2,
    69                                               SkScalar tolSqd,
    70                                               GrPoint** points,
    71                                               uint32_t pointsLeft) {
    72     if (pointsLeft < 2 ||
    73         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
    74         (*points)[0] = p2;
    75         *points += 1;
    76         return 1;
    77     }
    79     GrPoint q[] = {
    80         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    81         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    82     };
    83     GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
    85     pointsLeft >>= 1;
    86     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
    87     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
    88     return a + b;
    89 }
    91 uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
    92                                            SkScalar tol) {
    93     if (tol < gMinCurveTol) {
    94         tol = gMinCurveTol;
    95     }
    96     SkASSERT(tol > 0);
    98     SkScalar d = GrMax(
    99         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
   100         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
   101     d = SkScalarSqrt(d);
   102     if (d <= tol) {
   103         return 1;
   104     } else {
   105         int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
   106         int pow2 = GrNextPow2(temp);
   107         // Because of NaNs & INFs we can wind up with a degenerate temp
   108         // such that pow2 comes out negative. Also, our point generator
   109         // will always output at least one pt.
   110         if (pow2 < 1) {
   111             pow2 = 1;
   112         }
   113         return GrMin(pow2, MAX_POINTS_PER_CURVE);
   114     }
   115 }
   117 uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
   118                                           const GrPoint& p1,
   119                                           const GrPoint& p2,
   120                                           const GrPoint& p3,
   121                                           SkScalar tolSqd,
   122                                           GrPoint** points,
   123                                           uint32_t pointsLeft) {
   124     if (pointsLeft < 2 ||
   125         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
   126          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
   127             (*points)[0] = p3;
   128             *points += 1;
   129             return 1;
   130         }
   131     GrPoint q[] = {
   132         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
   133         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
   134         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
   135     };
   136     GrPoint r[] = {
   137         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
   138         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
   139     };
   140     GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
   141     pointsLeft >>= 1;
   142     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
   143     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
   144     return a + b;
   145 }
   147 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
   148                                      SkScalar tol) {
   149     if (tol < gMinCurveTol) {
   150         tol = gMinCurveTol;
   151     }
   152     SkASSERT(tol > 0);
   154     int pointCount = 0;
   155     *subpaths = 1;
   157     bool first = true;
   159     SkPath::Iter iter(path, false);
   160     SkPath::Verb verb;
   162     GrPoint pts[4];
   163     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
   165         switch (verb) {
   166             case SkPath::kLine_Verb:
   167                 pointCount += 1;
   168                 break;
   169             case SkPath::kQuad_Verb:
   170                 pointCount += quadraticPointCount(pts, tol);
   171                 break;
   172             case SkPath::kCubic_Verb:
   173                 pointCount += cubicPointCount(pts, tol);
   174                 break;
   175             case SkPath::kMove_Verb:
   176                 pointCount += 1;
   177                 if (!first) {
   178                     ++(*subpaths);
   179                 }
   180                 break;
   181             default:
   182                 break;
   183         }
   184         first = false;
   185     }
   186     return pointCount;
   187 }
   189 void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
   190     SkMatrix m;
   191     // We want M such that M * xy_pt = uv_pt
   192     // We know M * control_pts = [0  1/2 1]
   193     //                           [0  0   1]
   194     //                           [1  1   1]
   195     // And control_pts = [x0 x1 x2]
   196     //                   [y0 y1 y2]
   197     //                   [1  1  1 ]
   198     // We invert the control pt matrix and post concat to both sides to get M.
   199     // Using the known form of the control point matrix and the result, we can
   200     // optimize and improve precision.
   202     double x0 = qPts[0].fX;
   203     double y0 = qPts[0].fY;
   204     double x1 = qPts[1].fX;
   205     double y1 = qPts[1].fY;
   206     double x2 = qPts[2].fX;
   207     double y2 = qPts[2].fY;
   208     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
   210     if (!sk_float_isfinite(det)
   211         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
   212         // The quad is degenerate. Hopefully this is rare. Find the pts that are
   213         // farthest apart to compute a line (unless it is really a pt).
   214         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
   215         int maxEdge = 0;
   216         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
   217         if (d > maxD) {
   218             maxD = d;
   219             maxEdge = 1;
   220         }
   221         d = qPts[2].distanceToSqd(qPts[0]);
   222         if (d > maxD) {
   223             maxD = d;
   224             maxEdge = 2;
   225         }
   226         // We could have a tolerance here, not sure if it would improve anything
   227         if (maxD > 0) {
   228             // Set the matrix to give (u = 0, v = distance_to_line)
   229             GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
   230             // when looking from the point 0 down the line we want positive
   231             // distances to be to the left. This matches the non-degenerate
   232             // case.
   233             lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
   234             lineVec.dot(qPts[0]);
   235             // first row
   236             fM[0] = 0;
   237             fM[1] = 0;
   238             fM[2] = 0;
   239             // second row
   240             fM[3] = lineVec.fX;
   241             fM[4] = lineVec.fY;
   242             fM[5] = -lineVec.dot(qPts[maxEdge]);
   243         } else {
   244             // It's a point. It should cover zero area. Just set the matrix such
   245             // that (u, v) will always be far away from the quad.
   246             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
   247             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
   248         }
   249     } else {
   250         double scale = 1.0/det;
   252         // compute adjugate matrix
   253         double a0, a1, a2, a3, a4, a5, a6, a7, a8;
   254         a0 = y1-y2;
   255         a1 = x2-x1;
   256         a2 = x1*y2-x2*y1;
   258         a3 = y2-y0;
   259         a4 = x0-x2;
   260         a5 = x2*y0-x0*y2;
   262         a6 = y0-y1;
   263         a7 = x1-x0;
   264         a8 = x0*y1-x1*y0;
   266         // this performs the uv_pts*adjugate(control_pts) multiply,
   267         // then does the scale by 1/det afterwards to improve precision
   268         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
   269         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
   270         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
   272         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
   273         m[SkMatrix::kMScaleY] = (float)(a7*scale);
   274         m[SkMatrix::kMTransY] = (float)(a8*scale);
   276         m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale);
   277         m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale);
   278         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
   280         // The matrix should not have perspective.
   281         SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f);
   282         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
   283         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
   285         // It may not be normalized to have 1.0 in the bottom right
   286         float m33 = m.get(SkMatrix::kMPersp2);
   287         if (1.f != m33) {
   288             m33 = 1.f / m33;
   289             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
   290             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
   291             fM[2] = m33 * m.get(SkMatrix::kMTransX);
   292             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
   293             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
   294             fM[5] = m33 * m.get(SkMatrix::kMTransY);
   295         } else {
   296             fM[0] = m.get(SkMatrix::kMScaleX);
   297             fM[1] = m.get(SkMatrix::kMSkewX);
   298             fM[2] = m.get(SkMatrix::kMTransX);
   299             fM[3] = m.get(SkMatrix::kMSkewY);
   300             fM[4] = m.get(SkMatrix::kMScaleY);
   301             fM[5] = m.get(SkMatrix::kMTransY);
   302         }
   303     }
   304 }
   306 ////////////////////////////////////////////////////////////////////////////////
   308 // k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
   309 // l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
   310 // m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
   311 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
   312     const SkScalar w2 = 2.f * weight;
   313     klm[0] = p[2].fY - p[0].fY;
   314     klm[1] = p[0].fX - p[2].fX;
   315     klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
   317     klm[3] = w2 * (p[1].fY - p[0].fY);
   318     klm[4] = w2 * (p[0].fX - p[1].fX);
   319     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
   321     klm[6] = w2 * (p[2].fY - p[1].fY);
   322     klm[7] = w2 * (p[1].fX - p[2].fX);
   323     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
   325     // scale the max absolute value of coeffs to 10
   326     SkScalar scale = 0.f;
   327     for (int i = 0; i < 9; ++i) {
   328        scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
   329     }
   330     SkASSERT(scale > 0.f);
   331     scale = 10.f / scale;
   332     for (int i = 0; i < 9; ++i) {
   333         klm[i] *= scale;
   334     }
   335 }
   337 ////////////////////////////////////////////////////////////////////////////////
   339 namespace {
   341 // a is the first control point of the cubic.
   342 // ab is the vector from a to the second control point.
   343 // dc is the vector from the fourth to the third control point.
   344 // d is the fourth control point.
   345 // p is the candidate quadratic control point.
   346 // this assumes that the cubic doesn't inflect and is simple
   347 bool is_point_within_cubic_tangents(const SkPoint& a,
   348                                     const SkVector& ab,
   349                                     const SkVector& dc,
   350                                     const SkPoint& d,
   351                                     SkPath::Direction dir,
   352                                     const SkPoint p) {
   353     SkVector ap = p - a;
   354     SkScalar apXab = ap.cross(ab);
   355     if (SkPath::kCW_Direction == dir) {
   356         if (apXab > 0) {
   357             return false;
   358         }
   359     } else {
   360         SkASSERT(SkPath::kCCW_Direction == dir);
   361         if (apXab < 0) {
   362             return false;
   363         }
   364     }
   366     SkVector dp = p - d;
   367     SkScalar dpXdc = dp.cross(dc);
   368     if (SkPath::kCW_Direction == dir) {
   369         if (dpXdc < 0) {
   370             return false;
   371         }
   372     } else {
   373         SkASSERT(SkPath::kCCW_Direction == dir);
   374         if (dpXdc > 0) {
   375             return false;
   376         }
   377     }
   378     return true;
   379 }
   381 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
   382                                        SkScalar toleranceSqd,
   383                                        bool constrainWithinTangents,
   384                                        SkPath::Direction dir,
   385                                        SkTArray<SkPoint, true>* quads,
   386                                        int sublevel = 0) {
   388     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
   389     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
   391     SkVector ab = p[1] - p[0];
   392     SkVector dc = p[2] - p[3];
   394     if (ab.isZero()) {
   395         if (dc.isZero()) {
   396             SkPoint* degQuad = quads->push_back_n(3);
   397             degQuad[0] = p[0];
   398             degQuad[1] = p[0];
   399             degQuad[2] = p[3];
   400             return;
   401         }
   402         ab = p[2] - p[0];
   403     }
   404     if (dc.isZero()) {
   405         dc = p[1] - p[3];
   406     }
   408     // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
   409     // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
   410     // the max subdivision count. However, in this case the cubic is approaching a line and the
   411     // accuracy of the quad point isn't so important. We check if the two middle cubic control
   412     // points are very close to the baseline vector. If so then we just pick quadratic points on the
   413     // control polygon.
   415     if (constrainWithinTangents) {
   416         SkVector da = p[0] - p[3];
   417         SkScalar invDALengthSqd = da.lengthSqd();
   418         if (invDALengthSqd > SK_ScalarNearlyZero) {
   419             invDALengthSqd = SkScalarInvert(invDALengthSqd);
   420             // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
   421             // same goed for point c using vector cd.
   422             SkScalar detABSqd = ab.cross(da);
   423             detABSqd = SkScalarSquare(detABSqd);
   424             SkScalar detDCSqd = dc.cross(da);
   425             detDCSqd = SkScalarSquare(detDCSqd);
   426             if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
   427                 SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
   428                 SkPoint b = p[0] + ab;
   429                 SkPoint c = p[3] + dc;
   430                 SkPoint mid = b + c;
   431                 mid.scale(SK_ScalarHalf);
   432                 // Insert two quadratics to cover the case when ab points away from d and/or dc
   433                 // points away from a.
   434                 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
   435                     SkPoint* qpts = quads->push_back_n(6);
   436                     qpts[0] = p[0];
   437                     qpts[1] = b;
   438                     qpts[2] = mid;
   439                     qpts[3] = mid;
   440                     qpts[4] = c;
   441                     qpts[5] = p[3];
   442                 } else {
   443                     SkPoint* qpts = quads->push_back_n(3);
   444                     qpts[0] = p[0];
   445                     qpts[1] = mid;
   446                     qpts[2] = p[3];
   447                 }
   448                 return;
   449             }
   450         }
   451     }
   453     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
   454     static const int kMaxSubdivs = 10;
   456     ab.scale(kLengthScale);
   457     dc.scale(kLengthScale);
   459     // e0 and e1 are extrapolations along vectors ab and dc.
   460     SkVector c0 = p[0];
   461     c0 += ab;
   462     SkVector c1 = p[3];
   463     c1 += dc;
   465     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
   466     if (dSqd < toleranceSqd) {
   467         SkPoint cAvg = c0;
   468         cAvg += c1;
   469         cAvg.scale(SK_ScalarHalf);
   471         bool subdivide = false;
   473         if (constrainWithinTangents &&
   474             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
   475             // choose a new cAvg that is the intersection of the two tangent lines.
   476             ab.setOrthog(ab);
   477             SkScalar z0 = -ab.dot(p[0]);
   478             dc.setOrthog(dc);
   479             SkScalar z1 = -dc.dot(p[3]);
   480             cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
   481             cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
   482             SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
   483             z = SkScalarInvert(z);
   484             cAvg.fX *= z;
   485             cAvg.fY *= z;
   486             if (sublevel <= kMaxSubdivs) {
   487                 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
   488                 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
   489                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
   490                 // the distances and tolerance can't be negative.
   491                 // (d0 + d1)^2 > toleranceSqd
   492                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
   493                 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
   494                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
   495             }
   496         }
   497         if (!subdivide) {
   498             SkPoint* pts = quads->push_back_n(3);
   499             pts[0] = p[0];
   500             pts[1] = cAvg;
   501             pts[2] = p[3];
   502             return;
   503         }
   504     }
   505     SkPoint choppedPts[7];
   506     SkChopCubicAtHalf(p, choppedPts);
   507     convert_noninflect_cubic_to_quads(choppedPts + 0,
   508                                       toleranceSqd,
   509                                       constrainWithinTangents,
   510                                       dir,
   511                                       quads,
   512                                       sublevel + 1);
   513     convert_noninflect_cubic_to_quads(choppedPts + 3,
   514                                       toleranceSqd,
   515                                       constrainWithinTangents,
   516                                       dir,
   517                                       quads,
   518                                       sublevel + 1);
   519 }
   520 }
   522 void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
   523                                       SkScalar tolScale,
   524                                       bool constrainWithinTangents,
   525                                       SkPath::Direction dir,
   526                                       SkTArray<SkPoint, true>* quads) {
   527     SkPoint chopped[10];
   528     int count = SkChopCubicAtInflections(p, chopped);
   530     // base tolerance is 1 pixel.
   531     static const SkScalar kTolerance = SK_Scalar1;
   532     const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
   534     for (int i = 0; i < count; ++i) {
   535         SkPoint* cubic = chopped + 3*i;
   536         convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
   537     }
   539 }
   541 ////////////////////////////////////////////////////////////////////////////////
   543 enum CubicType {
   544     kSerpentine_CubicType,
   545     kCusp_CubicType,
   546     kLoop_CubicType,
   547     kQuadratic_CubicType,
   548     kLine_CubicType,
   549     kPoint_CubicType
   550 };
   552 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
   553 // Classification:
   554 // discr(I) > 0        Serpentine
   555 // discr(I) = 0        Cusp
   556 // discr(I) < 0        Loop
   557 // d0 = d1 = 0         Quadratic
   558 // d0 = d1 = d2 = 0    Line
   559 // p0 = p1 = p2 = p3   Point
   560 static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
   561     if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
   562         return kPoint_CubicType;
   563     }
   564     const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
   565     if (discr > SK_ScalarNearlyZero) {
   566         return kSerpentine_CubicType;
   567     } else if (discr < -SK_ScalarNearlyZero) {
   568         return kLoop_CubicType;
   569     } else {
   570         if (0.f == d[0] && 0.f == d[1]) {
   571             return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType);
   572         } else {
   573             return kCusp_CubicType;
   574         }
   575     }
   576 }
   578 // Assumes the third component of points is 1.
   579 // Calcs p0 . (p1 x p2)
   580 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
   581     const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
   582     const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
   583     const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
   584     return (xComp + yComp + wComp);
   585 }
   587 // Solves linear system to extract klm
   588 // P.K = k (similarly for l, m)
   589 // Where P is matrix of control points
   590 // K is coefficients for the line K
   591 // k is vector of values of K evaluated at the control points
   592 // Solving for K, thus K = P^(-1) . k
   593 static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
   594                            const SkScalar controlL[4], const SkScalar controlM[4],
   595                            SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
   596     SkMatrix matrix;
   597     matrix.setAll(p[0].fX, p[0].fY, 1.f,
   598                   p[1].fX, p[1].fY, 1.f,
   599                   p[2].fX, p[2].fY, 1.f);
   600     SkMatrix inverse;
   601     if (matrix.invert(&inverse)) {
   602        inverse.mapHomogeneousPoints(k, controlK, 1);
   603        inverse.mapHomogeneousPoints(l, controlL, 1);
   604        inverse.mapHomogeneousPoints(m, controlM, 1);
   605     }
   607 }
   609 static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
   610     SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
   611     SkScalar ls = 3.f * d[1] - tempSqrt;
   612     SkScalar lt = 6.f * d[0];
   613     SkScalar ms = 3.f * d[1] + tempSqrt;
   614     SkScalar mt = 6.f * d[0];
   616     k[0] = ls * ms;
   617     k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
   618     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
   619     k[3] = (lt - ls) * (mt - ms);
   621     l[0] = ls * ls * ls;
   622     const SkScalar lt_ls = lt - ls;
   623     l[1] = ls * ls * lt_ls * -1.f;
   624     l[2] = lt_ls * lt_ls * ls;
   625     l[3] = -1.f * lt_ls * lt_ls * lt_ls;
   627     m[0] = ms * ms * ms;
   628     const SkScalar mt_ms = mt - ms;
   629     m[1] = ms * ms * mt_ms * -1.f;
   630     m[2] = mt_ms * mt_ms * ms;
   631     m[3] = -1.f * mt_ms * mt_ms * mt_ms;
   633     // If d0 < 0 we need to flip the orientation of our curve
   634     // This is done by negating the k and l values
   635     // We want negative distance values to be on the inside
   636     if ( d[0] > 0) {
   637         for (int i = 0; i < 4; ++i) {
   638             k[i] = -k[i];
   639             l[i] = -l[i];
   640         }
   641     }
   642 }
   644 static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
   645     SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
   646     SkScalar ls = d[1] - tempSqrt;
   647     SkScalar lt = 2.f * d[0];
   648     SkScalar ms = d[1] + tempSqrt;
   649     SkScalar mt = 2.f * d[0];
   651     k[0] = ls * ms;
   652     k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
   653     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
   654     k[3] = (lt - ls) * (mt - ms);
   656     l[0] = ls * ls * ms;
   657     l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
   658     l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
   659     l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
   661     m[0] = ls * ms * ms;
   662     m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
   663     m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
   664     m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
   667     // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
   668     // we need to flip the orientation of our curve.
   669     // This is done by negating the k and l values
   670     if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
   671         for (int i = 0; i < 4; ++i) {
   672             k[i] = -k[i];
   673             l[i] = -l[i];
   674         }
   675     }
   676 }
   678 static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
   679     const SkScalar ls = d[2];
   680     const SkScalar lt = 3.f * d[1];
   682     k[0] = ls;
   683     k[1] = ls - lt / 3.f;
   684     k[2] = ls - 2.f * lt / 3.f;
   685     k[3] = ls - lt;
   687     l[0] = ls * ls * ls;
   688     const SkScalar ls_lt = ls - lt;
   689     l[1] = ls * ls * ls_lt;
   690     l[2] = ls_lt * ls_lt * ls;
   691     l[3] = ls_lt * ls_lt * ls_lt;
   693     m[0] = 1.f;
   694     m[1] = 1.f;
   695     m[2] = 1.f;
   696     m[3] = 1.f;
   697 }
   699 // For the case when a cubic is actually a quadratic
   700 // M =
   701 // 0     0     0
   702 // 1/3   0     1/3
   703 // 2/3   1/3   2/3
   704 // 1     1     1
   705 static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
   706     k[0] = 0.f;
   707     k[1] = 1.f/3.f;
   708     k[2] = 2.f/3.f;
   709     k[3] = 1.f;
   711     l[0] = 0.f;
   712     l[1] = 0.f;
   713     l[2] = 1.f/3.f;
   714     l[3] = 1.f;
   716     m[0] = 0.f;
   717     m[1] = 1.f/3.f;
   718     m[2] = 2.f/3.f;
   719     m[3] = 1.f;
   721     // If d2 < 0 we need to flip the orientation of our curve
   722     // This is done by negating the k and l values
   723     if ( d[2] > 0) {
   724         for (int i = 0; i < 4; ++i) {
   725             k[i] = -k[i];
   726             l[i] = -l[i];
   727         }
   728     }
   729 }
   731 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
   732 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
   733 // d0 = a1 - 2*a2+3*a3
   734 // d1 = -a2 + 3*a3
   735 // d2 = 3*a3
   736 // a1 = p0 . (p3 x p2)
   737 // a2 = p1 . (p0 x p3)
   738 // a3 = p2 . (p1 x p0)
   739 // Places the values of d1, d2, d3 in array d passed in
   740 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
   741     SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
   742     SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
   743     SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
   745     // need to scale a's or values in later calculations will grow to high
   746     SkScalar max = SkScalarAbs(a1);
   747     max = SkMaxScalar(max, SkScalarAbs(a2));
   748     max = SkMaxScalar(max, SkScalarAbs(a3));
   749     max = 1.f/max;
   750     a1 = a1 * max;
   751     a2 = a2 * max;
   752     a3 = a3 * max;
   754     d[2] = 3.f * a3;
   755     d[1] = d[2] - a2;
   756     d[0] = d[1] - a2 + a1;
   757 }
   759 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
   760                                              SkScalar klm_rev[3]) {
   761     // Variable to store the two parametric values at the loop double point
   762     SkScalar smallS = 0.f;
   763     SkScalar largeS = 0.f;
   765     SkScalar d[3];
   766     calc_cubic_inflection_func(src, d);
   768     CubicType cType = classify_cubic(src, d);
   770     int chop_count = 0;
   771     if (kLoop_CubicType == cType) {
   772         SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
   773         SkScalar ls = d[1] - tempSqrt;
   774         SkScalar lt = 2.f * d[0];
   775         SkScalar ms = d[1] + tempSqrt;
   776         SkScalar mt = 2.f * d[0];
   777         ls = ls / lt;
   778         ms = ms / mt;
   779         // need to have t values sorted since this is what is expected by SkChopCubicAt
   780         if (ls <= ms) {
   781             smallS = ls;
   782             largeS = ms;
   783         } else {
   784             smallS = ms;
   785             largeS = ls;
   786         }
   788         SkScalar chop_ts[2];
   789         if (smallS > 0.f && smallS < 1.f) {
   790             chop_ts[chop_count++] = smallS;
   791         }
   792         if (largeS > 0.f && largeS < 1.f) {
   793             chop_ts[chop_count++] = largeS;
   794         }
   795         if(dst) {
   796             SkChopCubicAt(src, dst, chop_ts, chop_count);
   797         }
   798     } else {
   799         if (dst) {
   800             memcpy(dst, src, sizeof(SkPoint) * 4);
   801         }
   802     }
   804     if (klm && klm_rev) {
   805         // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
   806         // flipped. This will always be the section that is the "loop"
   807         if (2 == chop_count) {
   808             klm_rev[0] = 1.f;
   809             klm_rev[1] = -1.f;
   810             klm_rev[2] = 1.f;
   811         } else if (1 == chop_count) {
   812             if (smallS < 0.f) {
   813                 klm_rev[0] = -1.f;
   814                 klm_rev[1] = 1.f;
   815             } else {
   816                 klm_rev[0] = 1.f;
   817                 klm_rev[1] = -1.f;
   818             }
   819         } else {
   820             if (smallS < 0.f && largeS > 1.f) {
   821                 klm_rev[0] = -1.f;
   822             } else {
   823                 klm_rev[0] = 1.f;
   824             }
   825         }
   826         SkScalar controlK[4];
   827         SkScalar controlL[4];
   828         SkScalar controlM[4];
   830         if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
   831             set_serp_klm(d, controlK, controlL, controlM);
   832         } else if (kLoop_CubicType == cType) {
   833             set_loop_klm(d, controlK, controlL, controlM);
   834         } else if (kCusp_CubicType == cType) {
   835             SkASSERT(0.f == d[0]);
   836             set_cusp_klm(d, controlK, controlL, controlM);
   837         } else if (kQuadratic_CubicType == cType) {
   838             set_quadratic_klm(d, controlK, controlL, controlM);
   839         }
   841         calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
   842     }
   843     return chop_count + 1;
   844 }
   846 void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
   847     SkScalar d[3];
   848     calc_cubic_inflection_func(p, d);
   850     CubicType cType = classify_cubic(p, d);
   852     SkScalar controlK[4];
   853     SkScalar controlL[4];
   854     SkScalar controlM[4];
   856     if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
   857         set_serp_klm(d, controlK, controlL, controlM);
   858     } else if (kLoop_CubicType == cType) {
   859         set_loop_klm(d, controlK, controlL, controlM);
   860     } else if (kCusp_CubicType == cType) {
   861         SkASSERT(0.f == d[0]);
   862         set_cusp_klm(d, controlK, controlL, controlM);
   863     } else if (kQuadratic_CubicType == cType) {
   864         set_quadratic_klm(d, controlK, controlL, controlM);
   865     }
   867     calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
   868 }

mercurial