gfx/skia/trunk/src/pathops/SkDQuadIntersection.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 // Another approach is to start with the implicit form of one curve and solve
michael@0 2 // (seek implicit coefficients in QuadraticParameter.cpp
michael@0 3 // by substituting in the parametric form of the other.
michael@0 4 // The downside of this approach is that early rejects are difficult to come by.
michael@0 5 // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
michael@0 6
michael@0 7
michael@0 8 #include "SkDQuadImplicit.h"
michael@0 9 #include "SkIntersections.h"
michael@0 10 #include "SkPathOpsLine.h"
michael@0 11 #include "SkQuarticRoot.h"
michael@0 12 #include "SkTArray.h"
michael@0 13 #include "SkTSort.h"
michael@0 14
michael@0 15 /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
michael@0 16 * and given x = at^2 + bt + c (the parameterized form)
michael@0 17 * y = dt^2 + et + f
michael@0 18 * then
michael@0 19 * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
michael@0 20 */
michael@0 21
michael@0 22 static int findRoots(const SkDQuadImplicit& i, const SkDQuad& quad, double roots[4],
michael@0 23 bool oneHint, bool flip, int firstCubicRoot) {
michael@0 24 SkDQuad flipped;
michael@0 25 const SkDQuad& q = flip ? (flipped = quad.flip()) : quad;
michael@0 26 double a, b, c;
michael@0 27 SkDQuad::SetABC(&q[0].fX, &a, &b, &c);
michael@0 28 double d, e, f;
michael@0 29 SkDQuad::SetABC(&q[0].fY, &d, &e, &f);
michael@0 30 const double t4 = i.x2() * a * a
michael@0 31 + i.xy() * a * d
michael@0 32 + i.y2() * d * d;
michael@0 33 const double t3 = 2 * i.x2() * a * b
michael@0 34 + i.xy() * (a * e + b * d)
michael@0 35 + 2 * i.y2() * d * e;
michael@0 36 const double t2 = i.x2() * (b * b + 2 * a * c)
michael@0 37 + i.xy() * (c * d + b * e + a * f)
michael@0 38 + i.y2() * (e * e + 2 * d * f)
michael@0 39 + i.x() * a
michael@0 40 + i.y() * d;
michael@0 41 const double t1 = 2 * i.x2() * b * c
michael@0 42 + i.xy() * (c * e + b * f)
michael@0 43 + 2 * i.y2() * e * f
michael@0 44 + i.x() * b
michael@0 45 + i.y() * e;
michael@0 46 const double t0 = i.x2() * c * c
michael@0 47 + i.xy() * c * f
michael@0 48 + i.y2() * f * f
michael@0 49 + i.x() * c
michael@0 50 + i.y() * f
michael@0 51 + i.c();
michael@0 52 int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
michael@0 53 if (rootCount < 0) {
michael@0 54 rootCount = SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
michael@0 55 }
michael@0 56 if (flip) {
michael@0 57 for (int index = 0; index < rootCount; ++index) {
michael@0 58 roots[index] = 1 - roots[index];
michael@0 59 }
michael@0 60 }
michael@0 61 return rootCount;
michael@0 62 }
michael@0 63
michael@0 64 static int addValidRoots(const double roots[4], const int count, double valid[4]) {
michael@0 65 int result = 0;
michael@0 66 int index;
michael@0 67 for (index = 0; index < count; ++index) {
michael@0 68 if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
michael@0 69 continue;
michael@0 70 }
michael@0 71 double t = 1 - roots[index];
michael@0 72 if (approximately_less_than_zero(t)) {
michael@0 73 t = 0;
michael@0 74 } else if (approximately_greater_than_one(t)) {
michael@0 75 t = 1;
michael@0 76 }
michael@0 77 valid[result++] = t;
michael@0 78 }
michael@0 79 return result;
michael@0 80 }
michael@0 81
michael@0 82 static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2) {
michael@0 83 // the idea here is to see at minimum do a quick reject by rotating all points
michael@0 84 // to either side of the line formed by connecting the endpoints
michael@0 85 // if the opposite curves points are on the line or on the other side, the
michael@0 86 // curves at most intersect at the endpoints
michael@0 87 for (int oddMan = 0; oddMan < 3; ++oddMan) {
michael@0 88 const SkDPoint* endPt[2];
michael@0 89 for (int opp = 1; opp < 3; ++opp) {
michael@0 90 int end = oddMan ^ opp; // choose a value not equal to oddMan
michael@0 91 if (3 == end) { // and correct so that largest value is 1 or 2
michael@0 92 end = opp;
michael@0 93 }
michael@0 94 endPt[opp - 1] = &q1[end];
michael@0 95 }
michael@0 96 double origX = endPt[0]->fX;
michael@0 97 double origY = endPt[0]->fY;
michael@0 98 double adj = endPt[1]->fX - origX;
michael@0 99 double opp = endPt[1]->fY - origY;
michael@0 100 double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp;
michael@0 101 if (approximately_zero(sign)) {
michael@0 102 goto tryNextHalfPlane;
michael@0 103 }
michael@0 104 for (int n = 0; n < 3; ++n) {
michael@0 105 double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
michael@0 106 if (test * sign > 0 && !precisely_zero(test)) {
michael@0 107 goto tryNextHalfPlane;
michael@0 108 }
michael@0 109 }
michael@0 110 return true;
michael@0 111 tryNextHalfPlane:
michael@0 112 ;
michael@0 113 }
michael@0 114 return false;
michael@0 115 }
michael@0 116
michael@0 117 // returns false if there's more than one intercept or the intercept doesn't match the point
michael@0 118 // returns true if the intercept was successfully added or if the
michael@0 119 // original quads need to be subdivided
michael@0 120 static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax,
michael@0 121 SkIntersections* i, bool* subDivide) {
michael@0 122 double tMid = (tMin + tMax) / 2;
michael@0 123 SkDPoint mid = q2.ptAtT(tMid);
michael@0 124 SkDLine line;
michael@0 125 line[0] = line[1] = mid;
michael@0 126 SkDVector dxdy = q2.dxdyAtT(tMid);
michael@0 127 line[0] -= dxdy;
michael@0 128 line[1] += dxdy;
michael@0 129 SkIntersections rootTs;
michael@0 130 rootTs.allowNear(false);
michael@0 131 int roots = rootTs.intersect(q1, line);
michael@0 132 if (roots == 0) {
michael@0 133 if (subDivide) {
michael@0 134 *subDivide = true;
michael@0 135 }
michael@0 136 return true;
michael@0 137 }
michael@0 138 if (roots == 2) {
michael@0 139 return false;
michael@0 140 }
michael@0 141 SkDPoint pt2 = q1.ptAtT(rootTs[0][0]);
michael@0 142 if (!pt2.approximatelyEqual(mid)) {
michael@0 143 return false;
michael@0 144 }
michael@0 145 i->insertSwap(rootTs[0][0], tMid, pt2);
michael@0 146 return true;
michael@0 147 }
michael@0 148
michael@0 149 static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2,
michael@0 150 double t2s, double t2e, SkIntersections* i, bool* subDivide) {
michael@0 151 SkDQuad hull = q1.subDivide(t1s, t1e);
michael@0 152 SkDLine line = {{hull[2], hull[0]}};
michael@0 153 const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] };
michael@0 154 const size_t kTestCount = SK_ARRAY_COUNT(testLines);
michael@0 155 SkSTArray<kTestCount * 2, double, true> tsFound;
michael@0 156 for (size_t index = 0; index < kTestCount; ++index) {
michael@0 157 SkIntersections rootTs;
michael@0 158 rootTs.allowNear(false);
michael@0 159 int roots = rootTs.intersect(q2, *testLines[index]);
michael@0 160 for (int idx2 = 0; idx2 < roots; ++idx2) {
michael@0 161 double t = rootTs[0][idx2];
michael@0 162 #ifdef SK_DEBUG
michael@0 163 SkDPoint qPt = q2.ptAtT(t);
michael@0 164 SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]);
michael@0 165 SkASSERT(qPt.approximatelyPEqual(lPt));
michael@0 166 #endif
michael@0 167 if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
michael@0 168 continue;
michael@0 169 }
michael@0 170 tsFound.push_back(rootTs[0][idx2]);
michael@0 171 }
michael@0 172 }
michael@0 173 int tCount = tsFound.count();
michael@0 174 if (tCount <= 0) {
michael@0 175 return true;
michael@0 176 }
michael@0 177 double tMin, tMax;
michael@0 178 if (tCount == 1) {
michael@0 179 tMin = tMax = tsFound[0];
michael@0 180 } else {
michael@0 181 SkASSERT(tCount > 1);
michael@0 182 SkTQSort<double>(tsFound.begin(), tsFound.end() - 1);
michael@0 183 tMin = tsFound[0];
michael@0 184 tMax = tsFound[tsFound.count() - 1];
michael@0 185 }
michael@0 186 SkDPoint end = q2.ptAtT(t2s);
michael@0 187 bool startInTriangle = hull.pointInHull(end);
michael@0 188 if (startInTriangle) {
michael@0 189 tMin = t2s;
michael@0 190 }
michael@0 191 end = q2.ptAtT(t2e);
michael@0 192 bool endInTriangle = hull.pointInHull(end);
michael@0 193 if (endInTriangle) {
michael@0 194 tMax = t2e;
michael@0 195 }
michael@0 196 int split = 0;
michael@0 197 SkDVector dxy1, dxy2;
michael@0 198 if (tMin != tMax || tCount > 2) {
michael@0 199 dxy2 = q2.dxdyAtT(tMin);
michael@0 200 for (int index = 1; index < tCount; ++index) {
michael@0 201 dxy1 = dxy2;
michael@0 202 dxy2 = q2.dxdyAtT(tsFound[index]);
michael@0 203 double dot = dxy1.dot(dxy2);
michael@0 204 if (dot < 0) {
michael@0 205 split = index - 1;
michael@0 206 break;
michael@0 207 }
michael@0 208 }
michael@0 209 }
michael@0 210 if (split == 0) { // there's one point
michael@0 211 if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) {
michael@0 212 return true;
michael@0 213 }
michael@0 214 i->swap();
michael@0 215 return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
michael@0 216 }
michael@0 217 // At this point, we have two ranges of t values -- treat each separately at the split
michael@0 218 bool result;
michael@0 219 if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
michael@0 220 result = true;
michael@0 221 } else {
michael@0 222 i->swap();
michael@0 223 result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
michael@0 224 }
michael@0 225 if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
michael@0 226 result = true;
michael@0 227 } else {
michael@0 228 i->swap();
michael@0 229 result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
michael@0 230 }
michael@0 231 return result;
michael@0 232 }
michael@0 233
michael@0 234 static double flat_measure(const SkDQuad& q) {
michael@0 235 SkDVector mid = q[1] - q[0];
michael@0 236 SkDVector dxy = q[2] - q[0];
michael@0 237 double length = dxy.length(); // OPTIMIZE: get rid of sqrt
michael@0 238 return fabs(mid.cross(dxy) / length);
michael@0 239 }
michael@0 240
michael@0 241 // FIXME ? should this measure both and then use the quad that is the flattest as the line?
michael@0 242 static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
michael@0 243 double measure = flat_measure(q1);
michael@0 244 // OPTIMIZE: (get rid of sqrt) use approximately_zero
michael@0 245 if (!approximately_zero_sqrt(measure)) {
michael@0 246 return false;
michael@0 247 }
michael@0 248 return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL);
michael@0 249 }
michael@0 250
michael@0 251 // FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
michael@0 252 // avoid imprecision incurred with chopAt
michael@0 253 static void relaxed_is_linear(const SkDQuad* q1, double s1, double e1, const SkDQuad* q2,
michael@0 254 double s2, double e2, SkIntersections* i) {
michael@0 255 double m1 = flat_measure(*q1);
michael@0 256 double m2 = flat_measure(*q2);
michael@0 257 i->reset();
michael@0 258 const SkDQuad* rounder, *flatter;
michael@0 259 double sf, midf, ef, sr, er;
michael@0 260 if (m2 < m1) {
michael@0 261 rounder = q1;
michael@0 262 sr = s1;
michael@0 263 er = e1;
michael@0 264 flatter = q2;
michael@0 265 sf = s2;
michael@0 266 midf = (s2 + e2) / 2;
michael@0 267 ef = e2;
michael@0 268 } else {
michael@0 269 rounder = q2;
michael@0 270 sr = s2;
michael@0 271 er = e2;
michael@0 272 flatter = q1;
michael@0 273 sf = s1;
michael@0 274 midf = (s1 + e1) / 2;
michael@0 275 ef = e1;
michael@0 276 }
michael@0 277 bool subDivide = false;
michael@0 278 is_linear_inner(*flatter, sf, ef, *rounder, sr, er, i, &subDivide);
michael@0 279 if (subDivide) {
michael@0 280 relaxed_is_linear(flatter, sf, midf, rounder, sr, er, i);
michael@0 281 relaxed_is_linear(flatter, midf, ef, rounder, sr, er, i);
michael@0 282 }
michael@0 283 if (m2 < m1) {
michael@0 284 i->swapPts();
michael@0 285 }
michael@0 286 }
michael@0 287
michael@0 288 // each time through the loop, this computes values it had from the last loop
michael@0 289 // if i == j == 1, the center values are still good
michael@0 290 // otherwise, for i != 1 or j != 1, four of the values are still good
michael@0 291 // and if i == 1 ^ j == 1, an additional value is good
michael@0 292 static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed,
michael@0 293 double* t2Seed, SkDPoint* pt) {
michael@0 294 double tStep = ROUGH_EPSILON;
michael@0 295 SkDPoint t1[3], t2[3];
michael@0 296 int calcMask = ~0;
michael@0 297 do {
michael@0 298 if (calcMask & (1 << 1)) t1[1] = quad1.ptAtT(*t1Seed);
michael@0 299 if (calcMask & (1 << 4)) t2[1] = quad2.ptAtT(*t2Seed);
michael@0 300 if (t1[1].approximatelyEqual(t2[1])) {
michael@0 301 *pt = t1[1];
michael@0 302 #if ONE_OFF_DEBUG
michael@0 303 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__,
michael@0 304 t1Seed, t2Seed, t1[1].fX, t1[1].fY, t2[1].fX, t2[1].fY);
michael@0 305 #endif
michael@0 306 return true;
michael@0 307 }
michael@0 308 if (calcMask & (1 << 0)) t1[0] = quad1.ptAtT(*t1Seed - tStep);
michael@0 309 if (calcMask & (1 << 2)) t1[2] = quad1.ptAtT(*t1Seed + tStep);
michael@0 310 if (calcMask & (1 << 3)) t2[0] = quad2.ptAtT(*t2Seed - tStep);
michael@0 311 if (calcMask & (1 << 5)) t2[2] = quad2.ptAtT(*t2Seed + tStep);
michael@0 312 double dist[3][3];
michael@0 313 // OPTIMIZE: using calcMask value permits skipping some distance calcuations
michael@0 314 // if prior loop's results are moved to correct slot for reuse
michael@0 315 dist[1][1] = t1[1].distanceSquared(t2[1]);
michael@0 316 int best_i = 1, best_j = 1;
michael@0 317 for (int i = 0; i < 3; ++i) {
michael@0 318 for (int j = 0; j < 3; ++j) {
michael@0 319 if (i == 1 && j == 1) {
michael@0 320 continue;
michael@0 321 }
michael@0 322 dist[i][j] = t1[i].distanceSquared(t2[j]);
michael@0 323 if (dist[best_i][best_j] > dist[i][j]) {
michael@0 324 best_i = i;
michael@0 325 best_j = j;
michael@0 326 }
michael@0 327 }
michael@0 328 }
michael@0 329 if (best_i == 1 && best_j == 1) {
michael@0 330 tStep /= 2;
michael@0 331 if (tStep < FLT_EPSILON_HALF) {
michael@0 332 break;
michael@0 333 }
michael@0 334 calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
michael@0 335 continue;
michael@0 336 }
michael@0 337 if (best_i == 0) {
michael@0 338 *t1Seed -= tStep;
michael@0 339 t1[2] = t1[1];
michael@0 340 t1[1] = t1[0];
michael@0 341 calcMask = 1 << 0;
michael@0 342 } else if (best_i == 2) {
michael@0 343 *t1Seed += tStep;
michael@0 344 t1[0] = t1[1];
michael@0 345 t1[1] = t1[2];
michael@0 346 calcMask = 1 << 2;
michael@0 347 } else {
michael@0 348 calcMask = 0;
michael@0 349 }
michael@0 350 if (best_j == 0) {
michael@0 351 *t2Seed -= tStep;
michael@0 352 t2[2] = t2[1];
michael@0 353 t2[1] = t2[0];
michael@0 354 calcMask |= 1 << 3;
michael@0 355 } else if (best_j == 2) {
michael@0 356 *t2Seed += tStep;
michael@0 357 t2[0] = t2[1];
michael@0 358 t2[1] = t2[2];
michael@0 359 calcMask |= 1 << 5;
michael@0 360 }
michael@0 361 } while (true);
michael@0 362 #if ONE_OFF_DEBUG
michael@0 363 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__,
michael@0 364 t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY);
michael@0 365 #endif
michael@0 366 return false;
michael@0 367 }
michael@0 368
michael@0 369 static void lookNearEnd(const SkDQuad& q1, const SkDQuad& q2, int testT,
michael@0 370 const SkIntersections& orig, bool swap, SkIntersections* i) {
michael@0 371 if (orig.used() == 1 && orig[!swap][0] == testT) {
michael@0 372 return;
michael@0 373 }
michael@0 374 if (orig.used() == 2 && orig[!swap][1] == testT) {
michael@0 375 return;
michael@0 376 }
michael@0 377 SkDLine tmpLine;
michael@0 378 int testTIndex = testT << 1;
michael@0 379 tmpLine[0] = tmpLine[1] = q2[testTIndex];
michael@0 380 tmpLine[1].fX += q2[1].fY - q2[testTIndex].fY;
michael@0 381 tmpLine[1].fY -= q2[1].fX - q2[testTIndex].fX;
michael@0 382 SkIntersections impTs;
michael@0 383 impTs.intersectRay(q1, tmpLine);
michael@0 384 for (int index = 0; index < impTs.used(); ++index) {
michael@0 385 SkDPoint realPt = impTs.pt(index);
michael@0 386 if (!tmpLine[0].approximatelyEqual(realPt)) {
michael@0 387 continue;
michael@0 388 }
michael@0 389 if (swap) {
michael@0 390 i->insert(testT, impTs[0][index], tmpLine[0]);
michael@0 391 } else {
michael@0 392 i->insert(impTs[0][index], testT, tmpLine[0]);
michael@0 393 }
michael@0 394 }
michael@0 395 }
michael@0 396
michael@0 397 int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) {
michael@0 398 fMax = 4;
michael@0 399 // if the quads share an end point, check to see if they overlap
michael@0 400 for (int i1 = 0; i1 < 3; i1 += 2) {
michael@0 401 for (int i2 = 0; i2 < 3; i2 += 2) {
michael@0 402 if (q1[i1].asSkPoint() == q2[i2].asSkPoint()) {
michael@0 403 insert(i1 >> 1, i2 >> 1, q1[i1]);
michael@0 404 }
michael@0 405 }
michael@0 406 }
michael@0 407 SkASSERT(fUsed < 3);
michael@0 408 if (only_end_pts_in_common(q1, q2)) {
michael@0 409 return fUsed;
michael@0 410 }
michael@0 411 if (only_end_pts_in_common(q2, q1)) {
michael@0 412 return fUsed;
michael@0 413 }
michael@0 414 // see if either quad is really a line
michael@0 415 // FIXME: figure out why reduce step didn't find this earlier
michael@0 416 if (is_linear(q1, q2, this)) {
michael@0 417 return fUsed;
michael@0 418 }
michael@0 419 SkIntersections swapped;
michael@0 420 swapped.setMax(fMax);
michael@0 421 if (is_linear(q2, q1, &swapped)) {
michael@0 422 swapped.swapPts();
michael@0 423 set(swapped);
michael@0 424 return fUsed;
michael@0 425 }
michael@0 426 SkIntersections copyI(*this);
michael@0 427 lookNearEnd(q1, q2, 0, *this, false, &copyI);
michael@0 428 lookNearEnd(q1, q2, 1, *this, false, &copyI);
michael@0 429 lookNearEnd(q2, q1, 0, *this, true, &copyI);
michael@0 430 lookNearEnd(q2, q1, 1, *this, true, &copyI);
michael@0 431 int innerEqual = 0;
michael@0 432 if (copyI.fUsed >= 2) {
michael@0 433 SkASSERT(copyI.fUsed <= 4);
michael@0 434 double width = copyI[0][1] - copyI[0][0];
michael@0 435 int midEnd = 1;
michael@0 436 for (int index = 2; index < copyI.fUsed; ++index) {
michael@0 437 double testWidth = copyI[0][index] - copyI[0][index - 1];
michael@0 438 if (testWidth <= width) {
michael@0 439 continue;
michael@0 440 }
michael@0 441 midEnd = index;
michael@0 442 }
michael@0 443 for (int index = 0; index < 2; ++index) {
michael@0 444 double testT = (copyI[0][midEnd] * (index + 1)
michael@0 445 + copyI[0][midEnd - 1] * (2 - index)) / 3;
michael@0 446 SkDPoint testPt1 = q1.ptAtT(testT);
michael@0 447 testT = (copyI[1][midEnd] * (index + 1) + copyI[1][midEnd - 1] * (2 - index)) / 3;
michael@0 448 SkDPoint testPt2 = q2.ptAtT(testT);
michael@0 449 innerEqual += testPt1.approximatelyEqual(testPt2);
michael@0 450 }
michael@0 451 }
michael@0 452 bool expectCoincident = copyI.fUsed >= 2 && innerEqual == 2;
michael@0 453 if (expectCoincident) {
michael@0 454 reset();
michael@0 455 insertCoincident(copyI[0][0], copyI[1][0], copyI.fPt[0]);
michael@0 456 int last = copyI.fUsed - 1;
michael@0 457 insertCoincident(copyI[0][last], copyI[1][last], copyI.fPt[last]);
michael@0 458 return fUsed;
michael@0 459 }
michael@0 460 SkDQuadImplicit i1(q1);
michael@0 461 SkDQuadImplicit i2(q2);
michael@0 462 int index;
michael@0 463 bool flip1 = q1[2] == q2[0];
michael@0 464 bool flip2 = q1[0] == q2[2];
michael@0 465 bool useCubic = q1[0] == q2[0];
michael@0 466 double roots1[4];
michael@0 467 int rootCount = findRoots(i2, q1, roots1, useCubic, flip1, 0);
michael@0 468 // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
michael@0 469 double roots1Copy[4];
michael@0 470 int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
michael@0 471 SkDPoint pts1[4];
michael@0 472 for (index = 0; index < r1Count; ++index) {
michael@0 473 pts1[index] = q1.ptAtT(roots1Copy[index]);
michael@0 474 }
michael@0 475 double roots2[4];
michael@0 476 int rootCount2 = findRoots(i1, q2, roots2, useCubic, flip2, 0);
michael@0 477 double roots2Copy[4];
michael@0 478 int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
michael@0 479 SkDPoint pts2[4];
michael@0 480 for (index = 0; index < r2Count; ++index) {
michael@0 481 pts2[index] = q2.ptAtT(roots2Copy[index]);
michael@0 482 }
michael@0 483 if (r1Count == r2Count && r1Count <= 1) {
michael@0 484 if (r1Count == 1 && used() == 0) {
michael@0 485 if (pts1[0].approximatelyEqual(pts2[0])) {
michael@0 486 insert(roots1Copy[0], roots2Copy[0], pts1[0]);
michael@0 487 } else if (pts1[0].moreRoughlyEqual(pts2[0])) {
michael@0 488 // experiment: try to find intersection by chasing t
michael@0 489 if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
michael@0 490 insert(roots1Copy[0], roots2Copy[0], pts1[0]);
michael@0 491 }
michael@0 492 }
michael@0 493 }
michael@0 494 return fUsed;
michael@0 495 }
michael@0 496 int closest[4];
michael@0 497 double dist[4];
michael@0 498 bool foundSomething = false;
michael@0 499 for (index = 0; index < r1Count; ++index) {
michael@0 500 dist[index] = DBL_MAX;
michael@0 501 closest[index] = -1;
michael@0 502 for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
michael@0 503 if (!pts2[ndex2].approximatelyEqual(pts1[index])) {
michael@0 504 continue;
michael@0 505 }
michael@0 506 double dx = pts2[ndex2].fX - pts1[index].fX;
michael@0 507 double dy = pts2[ndex2].fY - pts1[index].fY;
michael@0 508 double distance = dx * dx + dy * dy;
michael@0 509 if (dist[index] <= distance) {
michael@0 510 continue;
michael@0 511 }
michael@0 512 for (int outer = 0; outer < index; ++outer) {
michael@0 513 if (closest[outer] != ndex2) {
michael@0 514 continue;
michael@0 515 }
michael@0 516 if (dist[outer] < distance) {
michael@0 517 goto next;
michael@0 518 }
michael@0 519 closest[outer] = -1;
michael@0 520 }
michael@0 521 dist[index] = distance;
michael@0 522 closest[index] = ndex2;
michael@0 523 foundSomething = true;
michael@0 524 next:
michael@0 525 ;
michael@0 526 }
michael@0 527 }
michael@0 528 if (r1Count && r2Count && !foundSomething) {
michael@0 529 relaxed_is_linear(&q1, 0, 1, &q2, 0, 1, this);
michael@0 530 return fUsed;
michael@0 531 }
michael@0 532 int used = 0;
michael@0 533 do {
michael@0 534 double lowest = DBL_MAX;
michael@0 535 int lowestIndex = -1;
michael@0 536 for (index = 0; index < r1Count; ++index) {
michael@0 537 if (closest[index] < 0) {
michael@0 538 continue;
michael@0 539 }
michael@0 540 if (roots1Copy[index] < lowest) {
michael@0 541 lowestIndex = index;
michael@0 542 lowest = roots1Copy[index];
michael@0 543 }
michael@0 544 }
michael@0 545 if (lowestIndex < 0) {
michael@0 546 break;
michael@0 547 }
michael@0 548 insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
michael@0 549 pts1[lowestIndex]);
michael@0 550 closest[lowestIndex] = -1;
michael@0 551 } while (++used < r1Count);
michael@0 552 return fUsed;
michael@0 553 }

mercurial